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A cell-type deconvolution meta-analysis of whole
blood EWAS reveals lineage-specific smoking-
associated DNA methylation changes
Chenglong You1, Sijie Wu1,2,3, Shijie C. Zheng 1,4, Tianyu Zhu 1, Han Jing1, Ken Flagg5, Guangyu Wang6,

Li Jin1,2,3, Sijia Wang 1,7✉ & Andrew E. Teschendorff 1,8✉

Highly reproducible smoking-associated DNA methylation changes in whole blood have been

reported by many Epigenome-Wide-Association Studies (EWAS). These epigenetic altera-

tions could have important implications for understanding and predicting the risk of smoking-

related diseases. To this end, it is important to establish if these DNA methylation changes

happen in all blood cell subtypes or if they are cell-type specific. Here, we apply a cell-type

deconvolution algorithm to identify cell-type specific DNA methylation signals in seven large

EWAS. We find that most of the highly reproducible smoking-associated hypomethylation

signatures are more prominent in the myeloid lineage. A meta-analysis further identifies a

myeloid-specific smoking-associated hypermethylation signature enriched for DNase

Hypersensitive Sites in acute myeloid leukemia. These results may guide the design of future

smoking EWAS and have important implications for our understanding of how smoking

affects immune-cell subtypes and how this may influence the risk of smoking related

diseases.
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A lterations in DNA methylation (DNAm) that accrue in
normal cells as a function of age and exposure to envir-
onmental factors have been proposed to play a critical role

in disease development1,2. Among the various phenotypes and
exposures, aging and smoking stand out as two where highly
reproducible DNA methylation changes have been identified3–9.
Smoking-associated DNAm changes have attracted particular
attention: for instance, such DNAm changes in blood have been
shown to correlate with future lung cancer risk and incidence10–12,
with all-cause mortality13,14, and with health span15,16. However,
whether these DNAm changes are causally implicated in smoking-
related pathologies like lung cancer or cardiovascular disease is still
unclear and a matter of debate10,17,18.

In order to better understand the role of smoking-associated
DNAm changes in smoking-related disease etiology, it is
important to determine the cell-type specificity of such changes in
tissues like blood or lung19,20. Indeed, relatively little is known
about the cell and tissue-type specificity of smoking-associated
DNA methylation changes, in contrast to aging where most of the
DNAm changes appear to be independent of tissue and cell-
type21. So far, most epigenome-wide-association studies (EWAS)
in smoking have been performed in easily accessible but hetero-
geneous tissues like whole blood7,22–29 or buccal swabs9. A
number of small-scale studies have been performed in highly
relevant cell-types like lung macrophages30–32, but were generally
underpowered to assess if smoking-associated DNAm changes
are common across different cell-types. Other studies have
focused on tumor-adjacent normal colonic mucosa33, or tumor-
adjacent normal lung tissue34, which have identified smoking-
associated DNAm changes shared with blood, yet did not com-
pletely adjust for the high level of immune-cell infiltration:
approximately 40% of cells in lung tissue are immune cells35,36,
which could confound analyses and interpretation. Thus, putative
smoking-associated DNAm signatures derived in such solid tis-
sues may reflect the alterations already known to be present in the
blood cells that infiltrate the tissue. Indeed, we recently confirmed
this for the case of buccal swabs, a tissue that consists mainly of
squamous epithelial and immune-cell infiltrates35,37–39 by
demonstrating that known smoking-associated DNAm changes
in blood are fully recapitulated in the immune-cell compartment
of buccal swabs from smokers40.

Focusing only on the immune-system, it is equally unclear
whether smoking-associated DNAm changes reported in whole
blood EWAS occur simultaneously across all immune-cell sub-
types or only in specific subsets. This is a critically important
question given the fundamental role the immune response and
inflammation plays in the development of cancer18,41,42 and
cardiovascular disease43,44. Some EWAS performed in purified
blood cell populations have begun to address this important
question, but were limited to one or two cell-types45, or limited in
terms of sample size46,47. Thus, preliminary findings from these
studies await confirmation from large EWAS performed in pur-
ified blood cell subtypes, ideally encompassing all major cell
subtypes. Such studies would ideally also derive the different
blood cell subtype samples from the same individuals, yet per-
forming such a multi cell-type EWAS in a large cohort is extre-
mely labor-intensive and costly. An alternative much cheaper
strategy is to apply a computational algorithm designed to extract
cell-type specific differential DNAm signal from an EWAS per-
formed in whole blood40. A number of such algorithms have
recently been proposed40,48–50. Although the full extent to which
these algorithms can carry out proper inferences at cell-type
resolution on real data is still unclear, one of these algorithms
called CellDMC was validated across several different real
EWAS40, suggesting that inference of cell-type specific smoking-
associated DNAm changes may be possible. Indeed, CellDMC is

able to identify cell-type specific differential methylation by
incorporation of statistical interaction terms in the linear model,
which can resolve variation in effect-size as a function of cell-type
abundance in a cell-type specific manner40.

Here, we apply CellDMC to 7 independent large EWAS
cohorts, totaling 4448 samples, encompassing 2 main ethnicities
(Chinese and White Caucasian) and tissue types (blood and
buccal swabs). Consistent across all seven studies, we find that the
highly reproducible smoking-associated hypomethylation sig-
nature in blood, as summarized in Gao et al.8, is largely specific to
cells within the myeloid lineage, encompassing mainly neu-
trophils and monocytes. A meta-analysis over the seven studies
further reveals a novel smoking-associated hypermethylation
signature in myeloid cells and a few loci specifically altered in
lymphoid cells. Thus, our study provides a novel gold-standard
list of smoking-associated differentially methylated cytosines at
the highest yet cellular resolution.

Results
Smoking-associated DNAm changes in a Chinese cohort. Pre-
vious studies have established that smoking associated DNAm
changes are largely shared between cohorts of European and
African ancestry28. We decided to test this for a Chinese popu-
lation, in order to justify its inclusion in a subsequent meta-
analysis. We performed Illumina DNA methylation profiling at
over 850,000 CpGs51 in whole blood from a total of 712 Chinese
individuals (after QC) (the “TZH” cohort, “Methods”). DNAm
data were normalized according to a standard protocol that we
have validated many times before52, including BMIQ for type-2
probe bias correction53 and COMBAT to adjust for beadchip
effects54, which were evident in an SVD-analysis55. Blood cell
type fractions were estimated using our EpiDISH algorithm and
DNAm reference matrix defined over seven blood cell subtypes56

(“Methods”). These fractions were in line with those commonly
observed in blood EWAS, with neutrophils defining the major
component (Supplementary Fig. 1). Of the 712 samples, a total of
688 reported lifetime smoking habits, which included 453 never-
smokers, 62 ex-smokers, and 173 smokers at sample draw
(Supplementary Data 1). We identified smoking-associated dif-
ferentially methylated cytosines (DMCs) by performing ordinary
linear regression analysis with DNAm as the response and
smoking as the exposure, whilst also adjusting for potential
confounders including age, sex, array-position and blood cell type
fractions. We note that smoking was encoded as an ordinal
variable (0= never smoker, 1= ex-smoker, 2= current smoker)
and was chosen over smoking-pack-years, because the latter was
not available for all the cohorts to be included in the later meta-
analysis. We observed a relatively strong association between
smoking and DNAm, with 417 smoking-associated DMCs pas-
sing an false-discovery rate (FDR) < 0.05 threshold (Fig. 1a).
Previously derived gold-standard lists of smoking-associated
CpGs exhibited the expected patterns of DNAm change in the
TZH cohort. For instance, a gold-standard list of 62 smoking-
associated CpGs derived from a review of 12 blood EWAS8,
exhibited significant association in our Chinese cohort (Fig. 1a),
with the great majority of these displaying hypomethylation, as
observed previously8. The fact that the top hits (e.g., cg05575921
at the AHRR locus), are exactly as those in most previous
smoking EWAS, demonstrates that these smoking-associated
DMCs are largely independent of ethnicity. Another more com-
prehensive list of 2622 smoking-associated CpGs, which includes
the above 62 sites and which was derived from a meta-analysis
over 16 cohorts (Joehanes et al.28), also exhibited the same
directional smoking-associated DNAm changes in our TZH
cohort (Fig. 1b, Fisher-test P < 1e−100). This strong association
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Fig. 1 Blood lineage specific smoking-associated DNAm changes in TZH cohort. a Volcano scatterplot for 811,902 CpGs displaying the estimated
coefficient (x-axis) and −log10P value (y-axis) derived from a linear model of DNAm against smoking status. Dashed line denotes FDR= 0.05, and in red
we highlight the set of 62 gold-standard smoking-associated CpGs. The number of DMCs passing FDR < 0.05 is given. b Scatterplot of z-statistics of the
2622 smoking-associated CpGs from the meta-analysis of Joehanes et al. (x-axis) vs. their corresponding t-statistics in the TZH cohort. Odds ratio (OR)
and one-tailed Fisher-test P value are given. Consistently hypermethylated and hypomethylated CpGs are shown in blue and orange, respectively. Vertical
and horizontal green dashed lines represent the Bonferroni and FDR < 0.05 significance levels in the Joehanes and TZH, respectively. The number of CpGs
in each significant quadrant are indicated by “n”. c Quantile–quantile plots displaying the results of CellDMC for the lymphoid and myeloid cell-types, as
indicated. Red dashed line indicates the line where observed P values match the expected ones under the null-hypothesis of no global association between
smoking and differential DNAm in the respective cell-type. Blue data points represent the DMCTs passing an FDR < 0.3 threshold. d Scatterplot of
CellDMC-derived t-statistics of smoking-associated differential DNAm in lymphoid cell-type (x-axis) vs. the corresponding t-statistic in myeloid cell-type
(y-axis). Dashed lines represent the P= 0.05 thresholds, and t= 0. In orange (blue) we depict the gold-standard smoking-associated CpGs that passed QC
and that are hypomethylated (hypermethylated) in smokers. e Density distributions of CellDMC-derived t-statistics of smoking-associated differential
DNAm in the TZH cohort for 53 gold-standard smoking hypomethylated CpGs in the lymphoid and myeloid lineages, as indicated. P value derives from a
one-tailed Wilcoxon test, testing that these gold-standard CpGs do exhibit a significant trend toward hypomethylation. f Monte-Carlo significance analysis
of hypomethylation trends for the 53 gold-standard hypomethylated smoking-CpGs. Density plots of the −log10P values derived from a one-tailed
Wilcoxon rank sum test to determine if the t-statistics of association between DNAm and smoking of 53 randomly selected CpGs is significantly less than
zero, for a total of 100,000 Monte-Carlo runs (“Null”, gray). The vertical red line indicates the corresponding one-tailed P value for the 53 gold-standard
hypomethylated smoking-CpGs from Gao and Brenner. P values in red are derived from the Monte-Carlo analysis. All the data in this figure derives from
analysis in our Chinese cohort. g Density distributions of CellDMC-derived t-statistics of smoking-associated differential DNAm in the TZH cohort for the
2622 gold-standard smoking CpGs from Joehanes et al in the lymphoid and myeloid lineages, as indicated. The 2622 CpGs have been split according to
hypo (left) or hypermethylation (right) in the Joehanes meta-analysis study. P values derive from a one-tailed Wilcoxon test, testing that these gold-
standard CpGs do exhibit a significant trend towards hypo-or-hypermethylation, as required.
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was driven by 146 consistently hypermethylated and 633 con-
sistently hypomethylated CpGs, with the remaining CpGs not
exhibiting significant changes (Fig. 1b).

CellDMC reveals distinct myeloid and lymphoid smoking
DNAm signatures. Next, we applied our CellDMC algorithm40

to the TZH cohort data in order to determine the specific cell-
types driving the observed smoking-associated differential
methylation. CellDMC runs the same linear model as before, but
now including statistical interaction terms between phenotype
(i.e., smoking status at sample draw) and cell-type fractions.
Although EpiDISH estimates fractions for seven blood cell sub-
types (B-cells, NK, CD4+, and CD8+ T-cells, monocytes, neu-
trophils, and eosinophils), we decided to run CellDMC at a more
coarse-grained level that assumes only two major cell types, i.e.,
myeloid (monocytes, neutrophils+ eosinophils) and lymphoid
cells (B-cells, T-cells, and NK-cells). This was done in order to
more robustly identify separate lymphoid and myeloid smoking-
associated DNAm signatures (“Methods”). However, at an FDR <
0.05 threshold, CellDMC predicted no DMCTs, indicating lack of
power. Relaxing the FDR threshold to 0.1, we obtained 5 myeloid
DMCTs (Fig. 1c), with these numbers increasing to 50 myeloid
and 35 lymphoid DMCTs if relaxed further to FDR < 0.3.

Next, we explored the CellDMC predictions for the gold-
standard lists of 62 smoking-associated DMCs (henceforth
gsSMK-CpGs) from Gao and Brenner8 and the 2622 gsSMK-
CpGs from Joehanes et al.28. Of the 62 gsSMK-CpGs, 60 have
been observed to undergo hypomethylation in smokers in at least
3 independent whole blood EWAS8, of which 54 were present on
the EPIC beadarray, with 53 of these passing QC. We observed
that 62% of these 53 CpGs exhibited hypomethylation in the
myeloid cells of smokers, albeit not always with genome-wide
statistical significance (Fig. 1d). Only one of the two hypermethy-
lated gsSMK-CpGs is present on the EPIC beadarray, and this
one was marginally hypermethylated in the myeloid cells (Fig. 1d).
The same direction of effect was observed in the lymphoid cells,
albeit not as strong as in the myeloid compartment (Fig. 1d) in
line with the observed reduced global significance levels (Fig. 1c).
To determine whether the trend towards hypomethylation in
each lineage is statistically significant, we performed a Wilcoxon
rank sum test (Fig. 1e), supplemented by a Monte-Carlo analysis
(Fig. 1f), to ascertain that the skew toward hypomethylation could
not have arisen by random chance. These analyses confirmed that
the 53 gsSMK-CpGs exhibited highly significant trends toward
hypomethylation in smokers in both lineages, but more strongly
so in myeloid cells (Fig. 1e, f).

Next, we investigated the pattern of DNAm for the other gold-
standard list of 2622 CpGs from Joehanes et al. We split the list
into the 1555 and 1067 that exhibited hypo-and-
hypermethylation in their meta-analysis, respectively. Interest-
ingly, whilst for the 1555 hypomethylated gsSMK-CpGs we
observed a statistically significant trend towards hypomethylation
in both myeloid and lymphoid lineages, for the 1067 hyper-
methylated gsSMK-CpGs a corresponding trend toward hyper-
methylation was only seen in the myeloid lineage (Fig. 1g).

Validation in three independent whole blood cohorts. We
sought to validate the above findings for the gsSMK-CpGs in
independent large whole blood EWAS. To this end we applied
CellDMC to Illumina 450k DNAm datasets consisting of 689
whole blood samples from Liu et al.57, a separate cohort of 656
whole blood samples from Hannum et al.6, and 464 blood samples
from Tsaprouni et al.25, all with available smoking exposure
information (“Methods”, Supplementary Data 1). After normal-
ization and adjustment for potential confounders (“Methods”),

CellDMC predicted DMCTs in both lymphoid and myeloid
lineages, but consistency was only observed for the gsSMK-CpGs
in the myeloid lineage (Fig. 2a). In line with this and the results in
the TZH cohort, the 60 hypomethylated gsSMK-CpGs exhibited a
clear trend toward hypomethylation in smokers in the Liu, Han-
num, and Tsaprouni cohorts, which was only consistent and much
stronger in myeloid cells (Fig. 2b–d). Indeed, in Liu the trend
toward hypomethylation in the lymphoid lineage was only evident
when assessing all 60 gsSMK-CpGs globally, with only 1 CpG
exhibiting statistical significance (FDR < 0.05), in stark contrast to
the myeloid lineage where 34 of the 60 gsSMK-CpGs exhibited
statistically significant (FDR < 0.05) hypomethylation (Fig. 2b).
Similar patterns were seen in Tsaprouni and Hannum, with mar-
ginal or no evidence of hypomethylation in the lymphoid lineage,
in stark contrast to the myeloid cells (Fig. 2c, d). These data suggest
that the well-known and highly reproducible smoking-associated
hypomethylation at gsSMK-CpGs in whole blood is mainly driven
by corresponding hypomethylation in myeloid cells.

While the validation of the top ranked DMCTs in the myeloid
lineage is reassuring, the discrepancy between the cohorts in the
lymphoid lineage motivated us to seek additional confirmation of
our results. First, we compared our findings to that of a recent
study (Su et al.) which performed a small-scale EWAS in 5–6
purified blood cell subtypes46, identifying blood cell subtype
specific smoking-associated DNAm changes. In particular, they
focused on a panel of 7 CpGs mapping to AHRR, ALPPL2, GFI1,
IER3, F2RL3, GPR15, and ITGAL, for which DNAm had been
measured in smokers and non-smokers in CD14+ monocytes,
CD15+ granulocytes, CD19+ B-cells, and CD2+ T-cells46. This
study found that AHRR, ALPPL2, GFI1, IER3, and F2RL3 were
hypomethylated predominantly or almost specifically in neutro-
phils and monocytes (i.e., myeloid cells), whereas GPR15 and
ITGAL were specifically hypomethylated in lymphoid cells. We
thus compared the CellDMC predictions for these seven CpGs
across the four independent whole blood cohorts, which revealed
strong consistency with Su et al. (Fig. 3). Indeed, cg19859270
(GPR15) was predicted by CellDMC to be hypomethylated
predominantly in lymphoid cells, whereas the five CpGs mapping
to AHRR, ALPPL2, GFI1, IER3, F2RL3 were correctly predicted to
be hypomethylated predominantly in the myeloid lineage (Fig. 3).
The only CpG not consistent with Su et al. was cg09099830
mapping to ITGAL, which according to Su et al. should be
hypomethylated only in lymphocytes.

Further validation in HIV samples and buccal swabs. As further
validation of our results, we ran CellDMC on three additional
cohorts, profiled with Illumina 450k/850k DNAm beadarrays
(“Methods”). Two of these cohorts consist of 608 and 529 blood
samples (Zhang et al.58), both from HIV patients (Supplementary
Data 1). Blood cell subtype proportions in these HIV cohorts
were similar to those of the other cohorts, albeit with a marginally
higher lymphoid and marginally lower myeloid fraction (Sup-
plementary Fig. 2). We further verified that adherence to anti-
retroviral therapy (ART) did not impact blood cell subtype
proportions (Supplementary Figs. 3 and 4). Application of
CellDMC to these HIV cohorts also revealed highly consistent
patterns to those observed in blood of healthy individuals (Sup-
plementary Fig. 5). The other third cohort consists of 790 buccal
swab samples from women all aged 539. Buccal swabs are known
to contain both squamous epithelial cells as well as immune cell
infiltrates, thus for these samples we applied HEpiDISH35 to first
infer total epithelial, total lymphoid and total myeloid fractions in
each sample (Supplementary Fig. 6). In the buccal swabs,
CellDMC revealed that the 60 hypomethylated gsSMK-CpGs
exhibited a clear trend towards hypomethylation in the myeloid
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lineage, but not so in the epithelial or lymphoid lineages (Fig. 2e),
consistent with the findings in blood.

Next, we explored the patterns of association for the same panel
of seven CpGs considered earlier, and which have been tested for
smoking-associated DNAm changes in purified FACS-sorted blood
cell subtypes. This revealed strong consistency with the TZH, Liu,
Hannum, and Tsaprouni cohorts, as well as with Su et al., i.e the five
CpGs mapping to AHRR, ALPPL2, GFI1, IER3, F2RL3, which
according to Su et al. are hypomethylated specifically (or
predominantly) in myeloid cells, were correctly predicted by
CellDMC to be hypomethylated specifically in the myeloid cells
present in buccal swabs (Fig. 3), and myeloid cells of HIV patients

(Supplementary Fig. 7). Similarly, of the two CpGs mapping to
GPR15 and ITGAL, which according to Su et al. are predominantly
hypomethylated in lymphoid cells, CellDMC correctly predicted
this pattern for both CpGs in buccal swabs (Fig. 3), while for the
HIV-cohorts results were in line with those seen in the blood
samples of healthy cohorts (Supplementary Fig. 7).

Meta-analysis reveals novel myeloid smoking-associated
DNAm signatures. In order to increase power, we next per-
formed a genome-wide meta-analysis over the seven cohorts in
order to determine whether an extended smoking DNAm
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t-statistics (as obtained with CellDMC) across four whole blood cohorts (TZH, Liu, Hannum, and Tsaprouni) with associated Pearson Correlation
Coefficient (PCC) values, and separately for the lymphoid (left) and myeloid (right) lineages. The t-statistics are displayed for the 62 gold-standard
smoking-associated CpGs (60 hypomethylated (orange) and 2 hypermethylated (blue)). b Boxplots of t-statistics of association of DNAm with smoking in
the whole blood (n= 689) from Liu et al., as derived with CellDMC for both lymphoid and myeloid lineages. Boxplots only display the 60 gold-standard
smoking hypomethylated CpGs from Gao and Brenner. P value derives from a one-tailed Wilcoxon rank sum test. Horizontal line within boxes indicate
median, box-boundaries the interquartile range, and whiskers extend to 1.5 times this range. c–e As b, but now for the 656 samples from Hannum et al., the
464 samples from Tsaprouni et al., and the 790 buccal swab samples.
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signature specific to each hematopoietic lineage exists (“Meth-
ods”). We used Efron’s empirical Bayes approach in combination
with the Stouffer’s meta-analysis method59,60 to obtain aggregate
meta-analysis P values for a common set of 356,158 CpGs from
the CellDMC-derived statistics in each cohort (“Methods”),
which we subsequently adjusted for multiple testing using
Benjamini–Hochberg (BH) procedure61. FDR estimates were
broadly consistent with those derived from an empirical per-
mutation procedure (“Methods”, Fig. 4a). At an FDR < 0.05
threshold, this revealed 173 DMCTs in the myeloid lineage, but
only 1 DMCT (cg19859270, GPR15) in lymphoid cells. Among
the 173 myeloid DMCTs, 103 were consistently hypomethylated
across at least 6 of the 7 studies, whereas 67 were consistently
hypermethylated (Fig. 4b). Of the 62 gsSMK-CpGs from Gao and
Brenner, 48 were assessed in the meta-analysis, of which 37 were
among our 173 myeloid DMCTs, with 36 of these in the hypo-
methylated group and one (cg12803068) mapping to MYO1G in
the hypermethylated group. Using a more relaxed threshold
(FDR < 0.3) a total of 536 myeloid DMCTs and 4
lymphoid DMCTs (Fig. 4b, Supplementary Datas 2 and 3) were
detected, which included 42 of the 48 assessed gsSMK-CpGs from
Gao & Brenner. At the same FDR threshold, 76 and 75% of the
536 myeloid and 4 lymphoid DMCTs were found in the list of
2622 gsSMK-CpGs from Joehanes et al.28, with the overlapping
CpGs all exhibiting the same directional DNAm change between
our meta-analysis and that of Joehanes et al. (Supplementary
Data 4).

In order to gain insight into the nature of the 536 myeloid
DMCTs, we used the eFORGE tool62,63, which tests for
enrichment of cell-type specific DNase hypersensitive sites
(DHS). This analysis was performed for DHS profiled in specific
blood cell subtypes as generated by BLUEPRINT64, and carried
out separately for the 250 consistently hypomethylated and 252

consistently hypermethylated myeloid DMCTs. For the hypo-
methylated category the strongest enrichment was for DHS in
inflammatory macrophages, which we note is consistent with the
smoking-associated DMCTs occurring in the myeloid lineage
(Fig. 4c). Among the implicated genes (Supplementary Data 5), it
is worth highlighting ZEB2, a transcription factor that has
recently been shown to play a key role in monocyte and
macrophage identity65,66, as well as retinoic acid receptor alpha
(RARA), which plays a key role in the maintenance of immune
homeostasis during inflammatory responses67, and which has
been implicated in aortic dissection44. Interestingly, for the
hypermethylated myeloid DMCTs, the only observed enrichment
was for DHS as defined in acute myeloid leukemia (AML)
(Fig. 4c). This is intriguing given that AML is the only
hematological cancer for which smoking is a major risk
factor68,69. Among the implicated genes (Supplementary Data 6)
it is worth highlighting RAD52, an enzyme involved in DNA
repair of double-strand breaks, TELO2, a regulator of DNA
damage response kinases like ATM70,71, and RPTOR, an essential
component of the mTORC1 complex which has been implicated
in AML development and progression72.

Given that our meta-analysis only revealed 4 lymphoid-
DMCTs, enrichment analysis is not possible. Besides
cg19859270 (GPR15), cg02657160 (CPOX) was also hypo-
methylated in lymphoid cells across all 7 studies, whilst the
other two (cg09837977, LRRN3 & cg08529529, ALOX5AP) were
hypomethylated in six. Of note, two of the implicated genes
(GPR15 & LRRN3) have been shown to be associated with
smoking in a recent transcriptome-wide meta-analysis per-
formed in whole blood73. LRRN3 in particular was also
identified to be one of the few genes exhibiting simultaneous
DNAm and gene-expression changes in blood in association
with smoking74.
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Fig. 3 Validation of CellDMC’s predictions. Heatmaps of myeloid and lymphoid significance P values, as derived from CellDMC, in five separate cohorts
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Simulation model predicts few lymphoid-specific DMCTs. Our
meta-analysis, as well as the analysis in the individual cohorts,
suggests a scarcity of smoking-associated lymphoid-DMCTs. In
order to determine whether this result reflects a lack of power or
underlying biology, we devised a simulation model (“Methods”)
to estimate the expected sensitivity of CellDMC to detect three
separate categories of DMCTs: (i) non-specific DMCTs that occur

in both myeloid and lymphoid lineages, (ii) lymphoid-specific
DMCTs (i.e., DMCTs present in lymphoid cells but not present in
myeloid cells), and (iii) myeloid-specific DMCTs (i.e., DMCTs
present in myeloid cell but not present in lymphoid cells). For the
simulation, we used realistic cell-type fractions derived from the
TZH cohort (mean myeloid fraction= 72%, mean lymphoid
fraction= 28%). We also estimated realistic effect sizes for
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Fig. 4 Myeloid and lymphoid DMCTs as revealed by meta-analysis. a Smoothed scatterplots of the expected quantile of the absolute z-statistic in the
meta-analysis, as inferred from a Monte-Carlo permutation analysis (x-axis) vs. the observed quantile (y-axis). CpGs that passed an FDR < 0.05 thresholds
are shown in red. b Heatmaps of CellDMC t-statistics for myeloid and lymphoid DMCTs, that were deemed statistically significant in a meta-analysis over
the seven studies, as indicated by the Stouffer-test P value. For the myeloid lineage, we used a FDR < 0.05 threshold and only display DMCTs which were
consistently hypomethylated or consistently hypermethylated across at least six of the seven studies. For the lymphoid lineage, an FDR < 0.3 threshold was
used. c eFORGE enrichment analysis results on the myeloid hypomethylated and hypermethylated DMCTs. The y-axis labels the cell-types for which
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myeloid and lymphoid cells, derived from the observed effect
sizes in whole blood and the estimated cell-type fractions
(“Methods”). Assuming an average effect size in individual cell-
types of approximately 1.6 (corresponding to a mean methylation
difference of about 10%, “Methods”), and a total sample size of
600 (e.g., 300 smokers and 300 never-smokers), we have esti-
mated a sensitivity of over 90% to detect lymphoid-specific and
myeloid-specific DMCTs respectively (Fig. 5a). However, for
DMCTs occurring simultaneously in both lineages, the sensitivity
to detect them in the lymphoid lineage is severely compromised,
while the sensitivity to detect them in the myeloid lineage remains
over 90% (Fig. 5b). Thus, unless effect sizes are large, DMCTs that
occur simultaneously in myeloid and lymphoid cells would be
hard to detect. We also estimated the precision (PPV) to correctly
detect DMCTs, as well as the specificity, defined as one minus the
FPR, which quantifies the proportion of false positive calls among
all true non-DMCTs (“Methods”). In line with our previous
study40, specificity and PPV were always close to 1 (Fig. 5c–f,
Supplementary Fig. 8), which is consistent with our observations
on real data. Overall, the obtained results support the view that
lymphoid-specific DMCTs are rare.

Discussion
By applying CellDMC40 to seven large independent EWAS
cohorts, we have here performed virtual in silico blood cell-type
specific EWASs, thus benefiting from the high sample numbers in
these studies, whilst simultaneously avoiding the labor-intensive
effort and high economic cost of profiling multiple purified blood
cell subtypes in such large numbers of individuals. Although
CellDMC was extensively tested and validated on both simulated
and real EWAS data in our previous work40, it is important to
stress that sensitivity is limited, especially if one seeks to identify
DMCTs at high cellular resolution. There are approximately
seven major blood cell subtypes and we found that application of
CellDMC at this level of resolution exhibited limited sensitivity
across specific cell-types (data not shown). To overcome this, we
ran CellDMC at the resolution of lymphoid and myeloid lineages,
or in the case of buccal swabs, at the resolution of 3 main cell-
types (epithelial, lymphoid, and myeloid cells). While running
CellDMC at this coarser level is a limitation, the ability to infer
smoking-associated DNAm changes that may be specific or
common to the two major hematopoietic lineages is a novel
question that is of paramount interest. Indeed, to the best of our
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knowledge, this study is among the first to perform such a virtual
hematopoietic lineage-specific EWAS, and thus one of the first
studies to comprehensively assess whether the prominent and
highly reproducible smoking-associated DNAm signature seen in
whole blood, as summarized by Gao and Brenner8, is present in
both myeloid and lymphoid lineages.

Our analysis in the TZH cohort as well as the meta-analysis over
the 7 EWASs encompassing 4448 samples has revealed that the 62
CpG smoking signature from Gao and Brenner is more prominent
in the myeloid lineage. This result is very much line with that of
previous preliminary studies addressing the cell-type specific nat-
ure of smoking-DMCs. For instance, Su et al.46 performed a small-
scale case/control study (around 20 cases and controls) in purified
granulocytes, monocytes, B-cells and T-cells, focusing on a panel
of well-known smoking-associated loci as determined by whole
blood EWAS. Although this study was limited in terms of sample
size and number of loci examined, they did show that some of the
well-known smoking-associated loci like AHRR, F2RL3, GFI1, and
GPR15, exhibit blood cell-type specific changes, in broad agree-
ment with findings from another small-scale smoking-EWAS47,
thus justifying the use of these loci as a means to test the validity of
CellDMC’s predictions. Indeed, according to CellDMC across the
seven cohorts analyzed here, the panel of five myeloid-specific loci
considered in Su et al. (AHRR, F2RL3, GFI1, ALPPL2, IER3)
exhibited consistent and significant hypomethylation in myeloid
cells, but not so in lymphoid cells, whilst the lymphocyte-specific
marker GPR15 exhibited the reverse pattern. That gsSMK-CpGs
derived from whole blood are more prominent in the myeloid
lineage is also supported by another study that assessed smoking
associated DNAm changes in lymphoblasts and pulmonary mac-
rophages30. This study only identified one marginal association in
lymphoid cells in comparison to many highly significant hits found
in macrophages30. Another study by Reynolds et al45 assessed
smoking-associated DNAm changes using Illumina 450k data in a
large cohort of purified monocyte samples, and although it could
not assess specificity, it did demonstrate that most of the gsSMK-
CpGs exhibit corresponding smoking-associated DNAm changes
in monocytes45.

Importantly, our lineage-specific meta-analysis performed over
the seven studies also revealed a number of novel insights. First, it
has demonstrated that the smoking-associated hypomethylation
signature in myeloid cells is highly enriched for DHS as defined in
inflammatory macrophages. This could have important ramifi-
cations for understanding the effect of smoking on inflammatory
processes within organs like the lung or heart. For instance, a
well-known gene in this myeloid-specific hypomethylation sig-
nature is AHRR, the repressor of the aryl-hydrocarbon-receptor
(AHR) detoxification pathway75. The AHR pathway is activated
by xenobiotic toxic chemicals (e.g., aromatic polycyclic hydro-
carbons) in cigarette smoke and is thought to play a key role in
metabolizing them76. The AHR-pathway also plays an important
tumor suppressive role in lung inflammation77. The inactivation
of the AHR-pathway, possibly initiated and mediated by hypo-
methylation and overexpression of AHRR, could be an important
early step in lung cancer development18. A novel gene present in
the myeloid hypomethylation signature and which merits further
discussion is ZEB2, which controls monocyte and macrophage
identity65,66. It is plausible that smoking-associated disruption of
ZEB2 regulatory activity could skew lung alveolar macrophage
polarization to an inflammatory phenotype that promotes tumor
development30. RARA was also part of the myeloid hypomethy-
lation signature, and given its role in immune-system home-
ostasis and inflammation67, its deregulation could be important
in cardiovascular disease. For instance, RARA differential
methylation has been observed in the context of aortic dissection,
for which smoking is a major risk factor44.

Second, our meta-analysis has revealed a myeloid-specific smok-
ing-associated 63-CpG hypermethylation signature, which was
found to be enriched for DHS as profiled in AML. This is note-
worthy, as smoking is a well-known risk factor for AML68,69, and
not a risk factor for lymphomas or multiple myeloma, for which
corresponding DHS were not enriched. Some of the genes (e.g.,
RPTOR) in this signature are also relevant to AML development72,
including RAD52 and TELO2 which have key roles in DNA
repair70,71. The presence of such DNA repair enzymes is important
because tobacco smoke is well-known to induce many double-strand
breaks, which in turn are known to recruit DNMT1 and EZH2 to
these sites78. Indeed, a recent study performed in bronchial epithelial
cells has demonstrated how exposure to cigarette smoke can lead to
repressive polycomb (EZH2) marking and hypermethylation at
many developmental genes, sensitizing cells to oncogenic transfor-
mation78. Thus, the myeloid-specific hypermethylation signature
identified here may represent an analogous process occurring in
myeloid progenitor cells present in the bone marrow. Exploring the
relevance of this smoking-associated hypermethylation signature in
AML will be an interesting task for future studies.

Third, our meta-analysis has revealed that there are few con-
sistent alterations happening in the lymphoid compartment. In
fact, only cg19859270 (GPR15) passed a meta-analysis FDR < 0.05
threshold, thus confirming the observation in Su et al. that this
locus is lymphocyte-specific, but also demonstrating this specifi-
city across 7 large cohorts encompassing over 4400 samples.
Relaxing the FDR threshold to FDR < 0.3, only revealed an
additional three lymphoid-specific DMCTs. As remarked earlier,
one of these mapped to LRRN3, a gene found associated with
smoking in a recent transcriptome-wide meta-analysis performed
in whole blood73, and also one of the few genes exhibiting
simultaneous DNAm and gene-expression changes in blood in
association with smoking74. Our analysis further suggests that
smoking-associated DNAm changes at LRRN3 are specific to
lymphocytes, which is an entirely novel insight. Of note, another
recent study has shown that both GPR15 and LRRN3 exhibit
elevated expression in the blood of smokers that have had an
ischemic stroke, for which smoking is a risk factor79. Among the
other lymphoid-specific DMCTs, cg02657160 (CPOX) has pre-
viously been reported to be specifically hypomethylated in per-
ipheral blood mononuclear cells (PBMCs) of smokers, but not in
whole blood47. Since PBMCs are devoid of granulocytes and
enriched for lymphocytes, this is consistent with our meta-
analysis result. Thus, given that LRRN3 and CPOX have been
previously implicated as exhibiting DNAm alterations in smo-
kers, this lends support to our statistical significance estimates.
Finally, it is worth highlighting the lymphoid-DMCT mapping to
ALOX5AP, a gene implicated in the leukotriene pathway, and
with polymorphisms that have been associated with increased risk
of coronary artery disease80. Synergistic interactions between
single-nucleotide polymorphisms (SNPs) in this gene with
cigarette smoking have also been reported in relation to an ele-
vated risk of atherosclerotic cerebral infarction81. Of note, Su
et al. reported another CpG that exhibited lymphocyte-specific
smoking-associated DNAm changes (mapping to ITGAL), which
however, did not change significantly in our meta-analysis, except
for a marginal association in the buccal swab study. It follows that
either ITGAL is a false-positive finding of Su et al., or CellDMC
could not detect ITGAL, perhaps due to the fact that ITGAL only
exhibited significant hypomethylation in CD8+ T-cells, in con-
trast to the observed hypomethylation of GPR15 which was sig-
nificant in both T- and B-cells46: a DNAm alteration present in
both T-cells and B-cells is more likely to be picked out by
CellDMC, as such an alteration is effectively present in most
lymphocytes, whereas a change occurring in B-cells but not
T-cells would be much harder to detect.
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There are a number of plausible explanations as to why our
analysis has detected relatively few DMCTs in the lymphoid
lineage. Biologically, it could reflect the fact that the majority of
lymphoid cells (i.e., T-cells) undergo further development and
maturation in the thymus. Thus, in contrast to monocytes and
neutrophils, which are produced in the bone marrow, it is plau-
sible that smoking-associated changes present in precursor T-cells
within the bone marrow are erased when they undergo further
development into mature T-cells in the thymus. While lymphoid-
specific smoking-associated changes could also be acquired in the
thymus, this also seems to be less likely. The absence of many
DMCTs in the lymphoid lineage could, however, also be due to a
lack of power. Indeed, we stress that our results need to be
interpreted with great caution, because the fraction of lympho-
cytes in whole blood is lower (i.e., around 30% compared to a
myeloid fraction of 70%), and also less variable between healthy
individuals, compared to that of neutrophils. Supporting this, the
simulation analysis performed here has shown that whilst the
sensitivity to detect myeloid-specific and lymphoid-specific
DMCTs is reasonably high, that the sensitivity to detect non-
specific DMCTs in the lymphoid lineage is compromised by the
fact that the myeloid proportion in whole blood is much higher.
Thus, it is possible that a proportion of myeloid-DMCTs are not
truly myeloid-specific, exhibiting changes also in the lymphoid
lineage, and that CellDMC just lacked power to detect the
changes in lymphoid cells. On the other hand, we also stress that
the comparison to previous studies (e.g., Su et al.), as discussed
earlier, suggests that this lack-of-power may not be an issue for
the top ranked myeloid-DMCTs, which do seem to be myeloid-
specific. In future, it will be interesting to apply algorithms like
CellDMC to thousands of samples merged together in one
dataset, as this may improve power.

In conclusion, the analyses and data presented here support the
view that most smoking-associated DNAm changes reported in
whole blood are driven by corresponding changes in myeloid
cells. This may help guide the design of future smoking EWAS,
but may also have key implications and ramifications for our
understanding of smoking-related disease etiology.

Methods
Illumina DNAm EPIC dataset (TZH cohort). Blood samples from three Chinese
cities (Zhengzhou, Taizhou, Nanning) were sent to Fudan University Taizhou
Institute of Health Sciences for storage at −80 °C until DNA extraction. Hence-
forth, we refer to this cohort as the TZH cohort. The TZH cohort study was
conducted with the official approval of the Ethics Committee of the Shanghai
Institutes for Biological Sciences (ER-SIBS-261410). The Declaration of Helsinki
Principles was followed and all participants provided written informed consent.
DNA extraction was performed using a TGuide M48 Automated nucleic acid
extractor. Genome-wide DNA methylation was profiled using the Infinium
MethylationEPIC BeadChips (Illumina). Five hundred nanogram of genomic DNA
from each whole blood sample was bisulfite converted using the EZ DNA
Methylation Kit (Zymo Research). BeadChips were processed following the man-
ufacturer guide and protocol for Infinium MethylationEPIC array. DNA was
hybridized to BeadChips and single base extension were performed using a Free-
dom EVO robot (Tecan). BeadChips were subsequently imaged using the iScan
Microarray Scanner (Illumina). Illumina.idat files were then processed with the
minfi Bioconductor package82 without background correction (although back-
ground correction reduces bias it does so at the expense of increased variance,
which is generally something to be avoided, unless the DNAm data are used for
copy-number estimation). Probes with SNPs were removed using the dropLoci-
WithSnps function from minfi.

This function uses the SNP information provided by Illumina and UCSC
Common SNP tables (including version 132, 135, 137, 138, 141, 142, 144, 146, and
147) with preset MAF (0 is the default value and was used here) to filter SNP CpGs.
We further removed probes on chromosomes X and Y. We further used the
Illumina definition of β values and derived P values of detection for the rest of
probes by comparing the total intensity U+M to that of the background
distribution (given by negative control probes), as implemented in minfi. β values
with P values of detection greater than 0.01 were set to NA. Of note, the threshold
of detection (P < 0.01) is more stringent than the P < 0.05 threshold used in the
other cohorts, partly because sample coverages were very high, allowing for a more

stringent threshold while also retaining a high coverage over probes. Only probes
with less than 5% missing values were retained. The missing β values were then
imputed with the impute.knn function (using k= 5) in R. Type-2 probe bias was
corrected using BMIQ53. All this resulted in a 811,902 probe times 712 sample data
matrix. Based on principal component analyses, we found a significant slide/
beadchip effect. Therefore we used ComBat54 on M-values (logit of β values) to
correct for the slide effect and then transformed the M-values back to β values.

Independent smoking EWAS cohorts. Liu: One Illumina 450 k dataset derives
from the study Liu et al.57, an EWAS for Rheumatoid Arthritis encompassing
whole blood samples for 689 individuals (white Caucasian population). The raw
data is available from GEO under accession number GSE42861. Batch normalized
DNAm data was obtained from the authors and further adjusted for type-2 probe
bias using BMIQ53.

Hannum: Another Illumina 450k DNAm dataset derives from Hannum et al.6,
encompassing whole blood samples from 656 healthy individuals (426 white
Caucasians and 230 Mexican Hispanic). The raw and normalized data is available
from GEO under accession number GSE40279. Normalized DNAm data were
further adjusted for type-2 probe bias using BMIQ53.

Buccal: Another Illumina 450k dataset derived from 790 buccal swabs collected
as part of the MRC1946 birth cohort NSHD study, and which was previously
normalized and analyzed by us9. All 790 buccal swabs derive from women born in
Britain in 1946 and were all collected at the same age (age= 53). This data is only
available by submitting data requests to mrclha.swiftinfo@ucl.ac.uk; see full policy
at http://www.nshd.mrc.ac.uk/data.aspx. Managed access is in place for this 74-
year-old study to ensure that use of the data are within the bounds of consent given
previously by participants, and to safeguard any potential threat to anonymity since
the participants were all born in the same week.

Tsaprouni: This Illumina 450k DNAm dataset derives from Tsaprouni et al.25,
and consists of 464 whole blood samples from the CARDIOGENICS cohort,
representing individuals of Caucasian ancestry, of which 226 were healthy and 238
had cardiovascular artery disease (CAD). Normalized data were downloaded from
GEO under accession number GSE50660, and further adjusted for type-2 probe
bias using BMIQ. CAD status information was not made available.

ZhangHIV(450k/850k): The Illumina 450k DNAm dataset derives from Zhang
et al.58, encompassing 608 blood samples from HIV patients. This population was
predominantly white (n= 522) with 58 blacks and the 28 rest from other
unspecified ethnicities. Normalized intensity values were downloaded from GEO
under accession number GSE117859. The β values (Illumina definition) were
calculated using the provided unmethylated and methylated intensity values. Using
the provided detection P values, we first computed coverage per probe (fraction of
samples with detection P value < 0.05), removing low quality probes (coverage <
0.99) and subsequently computing coverage per sample over the good-quality
probes, removing low quality samples (coverage < 0.99). The small remaining
number of missing values were imputed using impute.knn (with k= 5) from the
impute R-package83. The β values were then corrected for type-2 probe bias using
BMIQ. The β values were then adjusted for type-2 probe bias using BMIQ.
Beadchip effects were normalized using ComBat54, as implemented in the sva R-
package84 The same Zhang et al.58 study also used EPIC 850k beadarrays to profile
an additional 529 whole blood samples, also from HIV patients (GSE117860). This
population consisted of 426 whites, 48 blacks and 55 from other ethnic groups. The
β values (Illumina definition) were calculated using the provided unmethylated and
methylated intensity values. We excluded samples and probes with more than 1%
missing probes at detection P value < 0.05. The small remaining number of missing
values were imputed using impute.knn (with k= 5) from the impute R-package83.
The β values were then adjusted for type-2 probe bias using BMIQ. Beadchip
effects were normalized using ComBat54.

Identification of smoking-associated DMCs and DMCTs. In the TZH cohort
we inferred both DMCs and cell-type specific DMCs, denoted DMCTs, whereas in
the other cohorts we only inferred DMCTs. The inference of DMCTs proceeds via
the CellDMC algorithm40. Briefly, CellDMC model runs the following linear
model, which is run separately for each CpG c:

yc
!¼

XK
k¼1

μck
bfk
!

þ
XK
k¼1

βðIÞck
bfk
!
* z
*þ ε!;

where yc
! denotes the vector of DNAm values of CpG c across all samples, bfk

!
denotes the corresponding vector of cell-type fraction estimates for cell-type k

across all samples, z! denotes the exposure of interest vector, μc; μck; βc; β
ðIÞ
ck are

regression coefficients to be estimated, * denotes the interaction term, and where
we assume K cell-types and that errors are Gaussianly distributed with a variance

that may depend on the specific CpG c. The regression coefficients βðIÞck inform us as
to whether there is a significant interaction between the exposure and the corre-
sponding fraction for cell-type k. We note that if differential methylation associated
with the phenotype occurs at a CpG c and in cell-type k, that the observed dif-
ferential methylation should be larger in samples with high fractions for that cell-
type k compared to samples with low content for cell-type k, and should be

detectable via a statistically significant interaction term β Ið Þ
ck . We solve the above
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model using least squares which provides estimates for the regression coefficients

and their statistical significance via P values PðIÞ
ck . The P values PðIÞ

ck for each cell-type
k are adjusted for multiple hypothesis testing using BH FDR estimation. For those
CpGs with BH-adjusted P values less than a predefined significance threshold (i.e.,
typically BH FDR < 0.05), we call it a DMCT (differentially methylated cell-type) in
the given cell-type. Finally, CpGs can be ranked within each cell-type according to
the associated P value of significance. Finally, we note that additional covariates
representing other biological (e.g., age, gender, and ethnicity) or technical factors
(batch) can be included in the above model, as described by us previously40.

Below we describe the specific implementations in each cohort:
TZH: Smoking-associated differentially methylated cytosines (DMCs) in our

TZH whole blood cohort were identified by running multivariate linear models
with DNAm as the dependent variable, smoking status (encoded as 0 for never-
smokers, 1 for ex-smokers, and 2 for smokers at sample draw) as the exposure, and
with age, sex, beadchip position, and blood cell type fractions (estimated using
EpiDISH56) as covariates. Because the DNAm data matrix had already been
adjusted for beadchip effects using ComBat, it was not necessary to adjust for this
factor again. Regression t test P values were adjusted for multiple-testing using FDR
estimates, as obtained using the q value Bioconductor package85. CellDMC was run
with smoking status as exposure and with the same covariates, but at the resolution
of 2 cell-types (i.e., K= 2) representing generic lymphoid and myeloid cells. In the
case of lymphocytes, we summed the estimated cell-type fractions of NK-cells, CD4
+ T-cells, CD8+ T-cells and B-cells, whereas for the myeloid lineage, we added the
cell-type fractions of monocytes, neutrophils and eosinophils.

Liu: Total myeloid and lymphoid fractions per sample were estimated by
running EpiDISH56 with our seven blood cell subtype reference DNAm matrix and
then separately adding the fractions within the lymphoid and myeloid
compartments. We then ran CellDMC by adjusting for rheumatoid arthritis status,
age and gender, and with smoking status (encoded as never-smokers, ex-smokers,
and current smokers) as the exposure of interest, and at a cell-type resolution level
of two cell-types (myeloid and lymphoid).

Hannum: Total myeloid and lymphoid fractions per sample were estimated by
running EpiDISH56 with our seven blood cell subtype reference DNAm matrix and
then separately adding the fractions within the lymphoid and myeloid
compartments. We then ran CellDMC by adjusting for age and plate, with smoking
status as the exposure of interest, and at a cell-type resolution level of two cell-types
(myeloid and lymphoid). In the case of Hannum, adjusting for plate has the
advantage that it also adjusts for center and ethnic group, as these were distributed
in a plate-specific manner. Like in the TZH cohort, in Hannum we also observed a
correlation between smoking-status and gender, and therefore decided against
using sex as a covariate.

Buccal: In the case of the buccal swab cohort, we estimated total epithelial, total
lymphoid and total myeloid fractions using HEpiDISH35. We then ran CellDMC at
a resolution of these three cell-types with smoking status as the exposure of
interest. In this cohort, no adjustment for age or gender is necessary because the
buccal samples were all from women, and collected at the same age (53 years old).
Beadchip and position effects were minor, and not deemed necessary to adjust for
them, in line with our previous studies9,18.

Tsaprouni: Total myeloid and lymphoid fractions per sample were estimated by
running EpiDISH56 with our seven blood cell subtype reference DNAm matrix and
then separately adding the fractions within the lymphoid and myeloid
compartments. We then ran CellDMC by adjusting for age and gender, with
smoking status as the exposure of interest and at a cell-type resolution level of two
cell-types (myeloid and lymphoid). We did not adjust for beadchip effects, because
the dataset did not contain chip/batch information.

ZhangHIV450k/850k: Total myeloid and lymphoid fractions per sample were
estimated by running EpiDISH56 with our seven blood cell subtype reference
DNAm matrix and then separately adding the fractions within the lymphoid and
myeloid compartments. In these all male cohorts (Illumina 450 k and EPIC), we
ran CellDMC by adjusting for age, with smoking status (encoded as nonsmokers
and current smokers) as the exposure of interest, and at a cell-type resolution level
of two cell-types (myeloid and lymphoid). Because the DNAm data matrix had
already been adjusted for beadchip effects using ComBat, it was not necessary to
adjust for this factor again.

Meta-analysis. Before running the meta-analysis, we clarify that polymorphic and
cross-reactive probes were removed using the lists provided by Chen et al.86.
CellDMC yields t-statistics of differential methylation in separate myeloid and
lymphoid lineages and for each of the seven studies analyzed here. To obtain an
aggregate meta-analysis P value for the common CpGs across all seven studies, we
followed Efron’s empirical Bayes procedure59,60 to adjust the null-statistics in each
study so as to ensure uniformity of these null-statistics across studies. Specifically,
the t-statistic P values in each study were first transformed into corresponding z-
statistics (i.e., quantiles of a normal distribution of mean 0 and standard deviation
1) taking into account the directionality of the t-statistics. For each study, we then
used the locfdr R-package to estimate the mean μ and standard deviation σ of the
null z-statistics in each study. Modified z-statistics in each study were then defined
by performing the z-score transformation →(z− μ)/σ. This guarantees that the
null-statistics follow a N(0,1) distribution in each study, making the statistics more
comparable between studies and thus avoiding study-specific biases due to

potential unaccounted confounding factors60. Next, for each of the common CpGs,
an overall z-statistic is computed using Stouffer’s method, i.e., by taking z ¼
1ffiffiffi
K

p
PK

s¼1 zðsÞ where K is the number of studies (K= 7) and where s labels the study.

From these aggregate z-statistics we obtain corresponding meta-analysis P values,
which we finally adjust for multiple testing using the well-known BH procedure to
estimate the FDR. We also estimated the FDR by an independent method, where
we randomized (i.e., permuted) the modified z-scores over all features in each
study, subsequently deriving an empirical null for the aggregate z-statistics by
performing the permutation operation a total of 1000 times and averaging the
obtained aggregate z-statistics over the 1000 runs. An R-script, DoMetaEfron,
implementing the above meta-analysis has been added to the EpiDISH Bio-
conductor package (http://www.bioconductor.org/packages/devel/EpiDISH).

Simulation and sensitivity analysis. We devised a simulation model in order to
estimate the sensitivity to detect three separate categories of DMCTs: (i) DMCTs
changing in both lymphoid and myeloid lineages (nonspecific DMCTs), (ii)
DMCTs changing only in lymphoid cells (lymphoid-specific DMCTs), and (iii)
DMCTs changing only in myeloid cells (myeloid-specific DMCTs). The DNAm
profile of each sample was generated using Illumina 450 k DNAm profiles from
Reynolds et al.87, representing DNAm profiles for 214 CD4+ T-cell and 1202
monocyte samples. The raw idat files for this study are available from GEO under
accession numbers GSE56581 and GSE56046, and were normalized with minfi and
BMIQ as described by us previously88, resulting in 482,077 common CpGs across
all T-cell and monocyte samples. We considered two different sample size sce-
narios: n= 200 (100 cases and 100 controls) and n= 600 (300 cases and 300
controls). The first scenario guarantees statistical independence, since drawing 300
CD4+ T-cell profiles from only 214 samples can only be done with replacement,
which would violate the statistical independence assumption. On the other hand,
there is also the need to simulate for a more realistic sample size matched to real
cohorts, as analyzed in this manuscript. Most of the cohorts analyzed in this study
contain at least 600 samples. Each of the samples in our simulation were generated
by taking an in silico mixture of two normalized DNAm profiles, one CD4+ T-cell
sample and one monocyte sample, randomly selected from the population. The
cell-type fractions were chosen randomly from realistic lymphoid myeloid fraction
combinations, as estimated in our large TZH cohort. To define DMCTs, we first
identified a total of 34,443 CpGs that were unmethylated (i.e., DNAm β value < 0.1)
across all 214 CD4+ T-cells and 1202 monocyte samples. We then randomly
picked 1000 of these CpGs to be DMCTs. In cases, the DNAm values of DMCTs
were drawn from a β-distribution with (a,b) parameters chosen to represent a
range of different effect sizes, where the effect size is defined as

effect size ¼ Δμ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

σ21 þ σ22ð Þ
r

where Δμ ¼ μ1 � μ2
�� �� is the absolute difference in average DNA methylation

between case and control group, μ1 and μ2 are the mean DNA methylation levels in
case and control group respectively, and where σ1 and σ2 are the standard deviation
of DNA methylation levels in case and control groups, respectively. We chose eight
parameter combinations (a,b)= (1,9) (0.5,2) (1,4) (2,8) (3,7) (4,6) (5,5) (7,3), where
Δμ ¼ μ1 � μ2

�� �� ranged from 0.05 to >0.1, >0.2, >0.3, >0.4, >0.6. These eight
parameter combinations lead to effect size estimates of around 1, 1.1, 1.4, 1.9, 2.7,
3.5, 4.4, and 6.8. We stress that these are effect sizes as measured in the individual
cell-types, and do not represent the effect sizes observed in the mixtures. To justify
that the range of effect sizes considered is realistic, we obtained estimates for the
average effect size in whole blood from the TZH cohort. The mean effect size for
the top 50 smoking-DMCs in whole blood was 1.7, for the top 100 it was 1.6, and
for the top 1000 it was approximately 1. These effect sizes would also apply to
individual lymphoid and myeloid cell compartments, provided the DMCTs occur
in both lineages. However, if the DMCTs occur only in the myeloid linage, the
above effect sizes would be inflated by a factor 10/7 (since the average myeloid
fraction is around 70%), and so could range from 2.4 to 1.4. In the case of DMCTs
only occurring in the lymphoid lineage, the above effect sizes would be inflated by a
factor 10/3 (since the average myeloid fraction is around 30%), and so could range
from 5.6 to 3.3. Thus, our choice of parameters, which leads to a range of effect
sizes from approximately 1 to as high as 7, encompass realistic effect sizes at the
resolution of myeloid and lymphoid cell-types. We ran a total of ten Monte-Carlo
runs for each of the 8 parameter choices and for each of the 3 separate categories of
DMCTs, recording their sensitivities, defined as the fraction of the 1000 DMCTs
correctly predicted by CellDMC to be a DMCT in the corresponding cell-type. We
also recorded the specificity, i.e., 1—false-positive rate (FPR), with the FPR defined
as the fraction of false positives among all true non-DMCTs, as well as the pre-
cision or positive predictive value (PPV), defined as the fraction of true DMCTs
among called DMCTs.

Ethics. The TZH cohort study was conducted with the official approval of the
Ethics Committee of the Shanghai Institutes for Biological Sciences (ER-SIBS-
261410). The Declaration of Helsinki Principles was followed and all participants
provided written informed consent.
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Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
All data analyzed in this paper are publicly available from GEO under accession numbers
GSE42861 (Liu et al. dataset), GSE40279 (Hannum et al. dataset), GSE50660 (Tsaprouni
et al. dataset), GSE117859 and GSE117860 (Zhang et al. dataset). The buccal swab
DNAm data is only available by submitting data requests to mrclha.swiftinfo@ucl.ac.uk;
see full policy at http://www.nshd.mrc.ac.uk/data.aspx. Managed access is in place for this
73-year-old study to ensure that use of the data are within the bounds of consent given
previously by participants, and to safeguard any potential threat to anonymity since the
participants are all born in the same week. The Illumina EPIC DNAm data for the TZH
cohort can be viewed at NODE under accession number OEP000260, or directly at
https://www.biosino.org/node/project/detail/OEP000260, and accessed by submitting a
request for data-access. Data usage shall be in full compliance with the Regulations on
Management of Human Genetic Resources in China. All other relevant data supporting
the key findings of this study are available within the article and its Supplementary
Information files or from the corresponding author upon reasonable request.

Code availability
The code needed to run CellDMC and the meta-analysis are available in the EpiDISH
Bioconductor R-package, which is freely available from http://bioconductor.org/packages/
devel/EpiDISH. eFORGE was run with the webserver at https://eforge.altiusinstitute.org/.
BMIQ was run using R-code, freely available from https://aeteschendorff-lab.github.io/
software/BMIQ.

Received: 2 January 2020; Accepted: 31 August 2020;

References
1. Petronis, A. Epigenetics as a unifying principle in the aetiology of complex

traits and diseases. Nature 465, 721–727 (2010).
2. Herceg, Z. et al. Roadmap for investigating epigenome deregulation and

environmental origins of cancer. Int. J. Cancer 142, 874–882 (2018).
3. Christensen, B. C. et al. Aging and environmental exposures alter tissue-

specific DNA methylation dependent upon CpG island context. PLoS Genet. 5,
e1000602 (2009).

4. Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are
suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446
(2010).

5. Horvath, S. DNA methylation age of human tissues and cell types. Genome
Biol. 14, R115 (2013).

6. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views
of human aging rates. Mol. Cell 49, 359–367 (2013).

7. Zeilinger, S. et al. Tobacco smoking leads to extensive genome-wide changes
in DNA methylation. PloS ONE 8, e63812 (2013).

8. Gao, X., Jia, M., Zhang, Y., Breitling, L. P. & Brenner, H. DNA methylation
changes of whole blood cells in response to active smoking exposure in adults:
a systematic review of DNA methylation studies. Clin. Epigenet. 7, 113 (2015).

9. Teschendorff, A. E. et al. Correlation of smoking-associated DNA methylation
changes in buccal cells with DNA methylation changes in epithelial cancer.
JAMA Oncol. 1, 476–485 (2015).

10. Fasanelli, F. et al. Hypomethylation of smoking-related genes is associated
with future lung cancer in four prospective cohorts. Nat. Commun. 6, 10192
(2015).

11. Baglietto, L. et al. DNA methylation changes measured in pre-diagnostic
peripheral blood samples are associated with smoking and lung cancer risk.
Int. J. Cancer 140, 50–61 (2017).

12. Zhang, Y. et al. Smoking-associated DNA methylation markers predict lung
cancer incidence. Clin. Epigenet. 8, 127 (2016).

13. Zhang, Y. et al. Comparison and combination of blood DNA methylation at
smoking-associated genes and at lung cancer-related genes in prediction of
lung cancer mortality. International journal of cancer. Int. J. Cancer 139,
2482–2492 (2016).

14. Zhang, Y. et al. Smoking-associated DNA methylation biomarkers and their
predictive value for all-cause and cardiovascular mortality. Environ. Health
Perspect. 124, 67–74 (2016).

15. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and
healthspan. Aging 11, 303–327 (2019).

16. Gao, X. et al. Tobacco smoking and smoking-related DNA methylation are
associated with the development of frailty among older adults. Epigenetics 12,
149–156 (2017).

17. Battram, T. et al. Appraising the causal relevance of DNA methylation for risk
of lung cancer. Int. J. Epidemiol. 48, 1493–1504 (2019).

18. Chen, Y., Widschwendter, M. & Teschendorff, A. E. Systems-epigenomics
inference of transcription factor activity implicates aryl-hydrocarbon-receptor
inactivation as a key event in lung cancer development. Genome Biol. 18, 236
(2017).

19. Lappalainen, T. & Greally, J. M. Associating cellular epigenetic models with
human phenotypes. Nat. Rev. Genet. 18, 441–451 (2017).

20. Teschendorff, A. E. & Relton, C. L. Statistical and integrative system-level
analysis of DNA methylation data. Nat. Rev. Genet. 19, 129–147 (2018).

21. Zhu, T., Zheng, S. C., Paul, D. S., Horvath, S. & Teschendorff, A. E. Cell and
tissue type independent age-associated DNA methylation changes are not rare
but common. Aging 10, 3541–3557 (2018).

22. Breitling, L. P., Yang, R., Korn, B., Burwinkel, B. & Brenner, H. Tobacco-
smoking-related differential DNA methylation: 27K discovery and replication.
Am. J. Hum. Genet. 88, 450–457 (2011).

23. Shenker, N. S. et al. Epigenome-wide association study in the European
Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel
genetic loci associated with smoking. Hum. Mol. Genet. 22, 843–851 (2013).

24. Sun, Y. V. et al. Epigenomic association analysis identifies smoking-related DNA
methylation sites in African Americans. Hum. Genet. 132, 1027–1037 (2013).

25. Tsaprouni, L. G. et al. Cigarette smoking reduces DNA methylation levels at
multiple genomic loci but the effect is partially reversible upon cessation.
Epigenetics 9, 1382–1396 (2014).

26. Harlid, S., Xu, Z., Panduri, V., Sandler, D. P. & Taylor, J. A. CpG sites
associated with cigarette smoking: analysis of epigenome-wide data from the
Sister Study. Environ. Health Perspect. 122, 673–678 (2014).

27. Ambatipudi, S. et al. Tobacco smoking-associated genome-wide DNA
methylation changes in the EPIC study. Epigenomics 8, 599–618 (2016).

28. Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circul.
Cardiovasc. Genet. 9, 436–447 (2016).

29. Joubert, B. R. et al. DNA methylation in newborns and maternal smoking in
pregnancy: genome-wide consortium meta-analysis. Am. J. Hum. Genet. 98,
680–696 (2016).

30. Monick, M. M. et al. Coordinated changes in AHRR methylation in
lymphoblasts and pulmonary macrophages from smokers. Am. J. Med. Genet.
Part B Neuropsychiatr. Genet. 159B, 141–151 (2012).

31. Philibert, R. A. et al. Coordinated DNA methylation and gene expression
changes in smoker alveolar macrophages: specific effects on VEGF receptor 1
expression. J. Leukoc. Biol. 92, 621–631 (2012).

32. Ringh, M. V. et al. Tobacco smoking induces changes in true DNA
methylation, hydroxymethylation and gene expression in bronchoalveolar
lavage cells. EBioMedicine 46, 290–304 (2019).

33. Barrow, T. M. et al. Smoking is associated with hypermethylation of the APC 1A
promoter in colorectal cancer: the ColoCare Study. J. Pathol. 243, 366–375 (2017).

34. Stueve, T. R. et al. Epigenome-wide analysis of DNA methylation in lung
tissue shows concordance with blood studies and identifies tobacco smoke-
inducible enhancers. Hum. Mol. Genet. 26, 3014–3027 (2017).

35. Zheng, S. C. et al. A novel cell-type deconvolution algorithm reveals
substantial contamination by immune cells in saliva, buccal and cervix.
Epigenomics 10, 925–940 (2018).

36. Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell
states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).

37. Theda, C. et al. Quantitation of the cellular content of saliva and buccal swab
samples. Sci. Rep. 8, 6944 (2018).

38. Eipel, M. et al. Epigenetic age predictions based on buccal swabs are more
precise in combination with cell type-specific DNA methylation signatures.
Aging 8, 1034–1048 (2016).

39. van Dongen, J. et al. Genome-wide analysis of DNA methylation in buccal cells:
a study of monozygotic twins and mQTLs. Epigenet. Chromatin 11, 54 (2018).

40. Zheng, S. C., Breeze, C. E., Beck, S. & Teschendorff, A. E. Identification of
differentially methylated cell types in epigenome-wide association studies.
Nat. Methods 15, 1059–1066 (2018).

41. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell
144, 646–674 (2011).

42. Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer
evolution. Nature 567, 479–485 (2019).

43. Duncan, M. S. et al. Association of smoking cessation with subsequent risk of
cardiovascular disease. J. Am. Med. Assoc. 322, 642–650 (2019).

44. Pan, S. et al. DNA methylome analysis reveals distinct epigenetic patterns of
ascending aortic dissection and bicuspid aortic valve. Cardiovasc. Res. 113,
692–704 (2017).

45. Reynolds, L. M. et al. Tobacco exposure-related alterations in DNA
methylation and gene expression in human monocytes: the Multi-Ethnic
Study of Atherosclerosis (MESA). Epigenetics 12, 1092–1100 (2017).

46. Su, D. et al. Distinct epigenetic effects of tobacco smoking in whole blood and
among leukocyte subtypes. PloS ONE 11, e0166486 (2016).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18618-y

12 NATURE COMMUNICATIONS |         (2020) 11:4779 | https://doi.org/10.1038/s41467-020-18618-y | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/geo/
http://www.nshd.mrc.ac.uk/data.aspx
https://www.biosino.org/node
https://www.biosino.org/node/project/detail/OEP000260
http://bioconductor.org/packages/devel/EpiDISH
http://bioconductor.org/packages/devel/EpiDISH
https://eforge.altiusinstitute.org/
https://aeteschendorff-lab.github.io/software/BMIQ
https://aeteschendorff-lab.github.io/software/BMIQ
www.nature.com/naturecommunications


47. Bauer, M. et al. Tobacco smoking differently influences cell types of the innate
and adaptive immune system-indications from CpG site methylation. Clin.
Epigenet. 7, 83 (2015).

48. Li, Z., Wu, Z., Jin, P. & Wu, H. Dissecting differential signals in high-
throughput data from complex tissues. Bioinformatics https://doi.org/10.1093/
bioinformatics/btz196 (2019).

49. Luo, X., Yang, C. & Wei, Y. Detection of cell-type-specific risk-CpG sites in
epigenome-wide association studies. Nat. Commun. 10, 3113 (2019).

50. Rahmani, E. et al. Cell-type-specific resolution epigenetics without the need
for cell sorting or single-cell biology. Nat. Commun. 10, 3417 (2019).

51. Moran, S., Arribas, C. & Esteller, M. Validation of a DNA methylation
microarray for 850,000 CpG sites of the human genome enriched in enhancer
sequences. Epigenomics 8, 389–399 (2016).

52. Teschendorff, A. E. et al. DNA methylation outliers in normal breast tissue
identify field defects that are enriched in cancer. Nat. Commun. 7, 10478 (2016).

53. Teschendorff, A. E. et al. A beta-mixture quantile normalization method for
correcting probe design bias in Illumina Infinium 450 k DNA methylation
data. Bioinformatics 29, 189–196 (2013).

54. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

55. Teschendorff, A. E. et al. An epigenetic signature in peripheral blood predicts
active ovarian cancer. PloS ONE 4, e8274 (2009).

56. Teschendorff, A. E., Breeze, C. E., Zheng, S. C. & Beck, S. A comparison of
reference-based algorithms for correcting cell-type heterogeneity in
Epigenome-Wide Association Studies. BMC Bioinform. 18, 105 (2017).

57. Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as
an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31,
142–147 (2013).

58. Zhang, X. et al. Machine learning selected smoking-associated DNA
methylation signatures that predict HIV prognosis and mortality. Clin.
Epigenet. 10, 155 (2018).

59. Sikdar, S., Datta, S. & Datta, S. EAMA: Empirically adjusted meta-analysis for
large-scale simultaneous hypothesis testing in genomic experiments. PloS ONE
12, e0187287 (2017).

60. Efron, B. Large-scale simultaneous hypothesis testing: the choice of null
hypothesis. JASA 99, 96–104 (2004).

61. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

62. Breeze, C. E. et al. eFORGE v2.0: updated analysis of cell type-specific signal in
epigenomic data. Bioinformatics 35, 4767–4769 (2019).

63. Breeze, C. E. et al. eFORGE: a Tool for Identifying Cell Type-Specific Signal in
Epigenomic Data. Cell Rep. 17, 2137–2150 (2016).

64. Adams, D. et al. BLUEPRINT to decode the epigenetic signature written in
blood. Nat. Biotechnol. 30, 224–226 (2012).

65. Scott, C. L. et al. The transcription factor ZEB2 is required to maintain the
tissue-specific identities of macrophages. Immunity 49, 312–325 e315 (2018).

66. Scott, C. L. & Omilusik, K. D. ZEBs: novel players in immune cell
development and function. Trends Immunol. 40, 431–446 (2019).

67. Oliveira, L. M., Teixeira, F. M. E. & Sato, M. N. Impact of retinoic acid on
immune cells and inflammatory diseases. Mediators Inflamm. 2018, 3067126
(2018).

68. Fircanis, S., Merriam, P., Khan, N. & Castillo, J. J. The relation between
cigarette smoking and risk of acute myeloid leukemia: an updated meta-
analysis of epidemiological studies. Am. J. Hematol. 89, E125–E132 (2014).

69. Kane, E. V., Roman, E., Cartwright, R., Parker, J. & Morgan, G. Tobacco and
the risk of acute leukaemia in adults. Br. J. Cancer 81, 1228–1233 (1999).

70. Takai, H., Wang, R. C., Takai, K. K., Yang, H. & de Lange, T. Tel2 regulates
the stability of PI3K-related protein kinases. Cell 131, 1248–1259 (2007).

71. Horejsi, Z. et al. CK2 phospho-dependent binding of R2TP complex to TEL2
is essential for mTOR and SMG1 stability. Mol. Cell 39, 839–850 (2010).

72. Hoshii, T. et al. mTORC1 is essential for leukemia propagation but not stem
cell self-renewal. J. Clin. Investig. 122, 2114–2129 (2012).

73. Huan, T. et al. A whole-blood transcriptome meta-analysis identifies gene
expression signatures of cigarette smoking. Hum. Mol. Genet. 25, 4611–4623
(2016).

74. Guida, F. et al. Dynamics of smoking-induced genome-wide methylation changes
with time since smoking cessation. Hum. Mol. Genet. 24, 2349–2359 (2015).

75. Lee, K. W. & Pausova, Z. Cigarette smoking and DNA methylation. Front.
Genet. 4, 132 (2013).

76. Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl
hydrocarbon receptor. Nature 478, 197–203 (2011).

77. Beamer, C. A. & Shepherd, D. M. Role of the aryl hydrocarbon receptor (AhR)
in lung inflammation. Semin. Immunopathol. 35, 693–704 (2013).

78. Vaz, M. et al. Chronic cigarette smoke-induced epigenomic changes precede
sensitization of bronchial epithelial cells to single-step transformation by
KRAS mutations. Cancer Cell 32, 360–376. e366 (2017).

79. Cheng, X. et al. Smoking affects gene expression in blood of patients with
ischemic stroke. Ann. Clin. Transl. Neurol. 6, 1748–1756 (2019).

80. Merhi, M. et al. Impact of inflammation, gene variants, and cigarette smoking
on coronary artery disease risk. Inflamm. Res. 64, 415–422 (2015).

81. Yao, Q. et al. Synergistic effect of ALOX5AP polymorphisms and cigarette
smoking on the risk of atherosclerotic cerebral infarction in a Northern Han
Chinese population. J. Clin. Neurosci. 21, 975–979 (2014).

82. Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package
for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30,
1363–1369 (2014).

83. Troyanskaya, O. et al. Missing value estimation methods for DNA
microarrays. Bioinformatics 17, 520–525 (2001).

84. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva
package for removing batch effects and other unwanted variation in high-
throughput experiments. Bioinformatics https://doi.org/10.1093/
bioinformatics/bts034 (2012).

85. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies.
Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

86. Chen, Y. A. et al. Discovery of cross-reactive probes and polymorphic CpGs in
the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8,
203–209 (2013).

87. Reynolds, L. M. et al. Age-related variations in the methylome associated with
gene expression in human monocytes and T cells. Nat. Commun. 5, 5366 (2014).

88. Zheng, S. C. et al. Correcting for cell-type heterogeneity in epigenome-wide
association studies: revisiting previous analyses. Nat. Methods 14, 216–217 (2017).

Acknowledgements
A.E.T. was supported by NSFC (National Science Foundation of China) grants, grant
nos. 31571359, 31771464, and 31970632. S. Wang and L.J. were supported by grants from
Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), Ministry
of Science and Technology (2015FY111700), National Key Research and Development
Project (2018YFC0910403) and the Strategic Priority Research Program of the Chinese
Academy of Sciences (XDB38020400).

Author contributions
Study was conceived by A.E.T. Statistical analyses were performed by C.Y. and A.E.T.
with input from H.J., T.Z., S.C.Z., and S. Wu. Smoking information for Hannum cohort
was provided by K.F. and G.W. Samples and DNAm data for the T.Z.H. cohort were
generated and provided by S. Wang and J.L.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-18618-y.

Correspondence and requests for materials should be addressed to S.W. or A.E.T.

Peer review information Nature Communications thanks E. Andres Houseman, Elena
Colicino and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18618-y ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4779 | https://doi.org/10.1038/s41467-020-18618-y | www.nature.com/naturecommunications 13

https://doi.org/10.1093/bioinformatics/btz196
https://doi.org/10.1093/bioinformatics/btz196
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1038/s41467-020-18618-y
https://doi.org/10.1038/s41467-020-18618-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	A cell-type deconvolution meta-analysis of whole blood EWAS reveals lineage-specific smoking-associated DNA methylation changes
	Results
	Smoking-associated DNAm changes in a Chinese cohort
	CellDMC reveals distinct myeloid and lymphoid smoking DNAm signatures
	Validation in three independent whole blood cohorts
	Further validation in HIV samples and buccal swabs
	Meta-analysis reveals novel myeloid smoking-associated DNAm signatures
	Simulation model predicts few lymphoid-specific DMCTs

	Discussion
	Methods
	Illumina DNAm EPIC dataset (TZH cohort)
	Independent smoking EWAS cohorts
	Identification of smoking-associated DMCs and DMCTs
	Meta-analysis
	Simulation and sensitivity analysis
	Ethics

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




