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Epigenetic drift refers to the gradual and stochastic accumulation of epigenetic changes, such as DNA methylation variabil-
ity, with advancing age. Although increasingly recognized for its potential role in aging biology, its extent, biological sig-
nificance, and population specificity remain insufficiently characterized. Here, we present the first comprehensive
epigenome-wide drift study (EWDS) in a large Chinese cohort (n = 3538), with replication in two independent Chinese (total
n =1467) and two European cohorts (total n = 956), to investigate the scale and relevance of epigenetic drift across popu-
lations. Through simulation, we identify White’s test as the most powerful method among four alternatives for detecting
age-associated methylation variability. Our EWDS reveals that 10.8% (50,385 CpGs) of sites on the 850 K EPIC array
exhibit epigenome-wide significant drift, with 99% showing increased interindividual variability (positive drift) and 1%
showing decreased variability (negative drift). Integration with single-cell RNA-seq data demonstrates that positive drift-
CpGs are associated with increased transcriptional variability and upregulation in specific cell types, whereas negative
drift-CpGs exhibit the opposite effect. We develop epigenetic drift scores (EDSs) to quantify individual drift burden; these
scores are strongly age-associated and correlate with lipidomic profiles and clinical aging indicators. Longitudinal data con-
firm within-individual accumulation of drift over time. Finally, a GWAS of EDS identifies genetic determinants of drift mag-
nitude, including heritable loci (e.g., ASTNZ, SOCS5). Collectively, these findings establish epigenetic drift as a pervasive,
directional, and biologically meaningful feature of human aging.

[Supplemental material is available for this article.]

Epigenetic drift refers to the progressive, stochastic accumulation
of molecular alterations across the epigenome during aging.
These include changes in DNA methylation, histone modifica-
tions, chromatin remodeling, and noncoding RNAs. Collectively,
such alterations disrupt gene regulatory networks, leading to tran-
scriptional dysregulation, loss of cellular homeostasis, and in-
creased vulnerability to age-related diseases (Li and Tollefsbol
2016; Lopez-Otin et al. 2023). Among these, DNA methylation
drift has emerged as the most extensively characterized compo-
nent of epigenetic aging. It is typified by increased variance in
methylation levels at specific CpG sites—termed drift-CpGs—
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over chronological age, distinguishing it from the linear age-asso-
ciated methylation changes at epigenetic clock sites (Fraga et al.
2005; Horvath and Raj 2018; Seale et al. 2022). Importantly, epige-
netic drift likely unfolds more gradually across wider temporal
windows, capturing interindividual and cellular heterogeneity in
a way that reflects biological aging beyond the linear progression
captured by clock-based models. This stochastic accumulation is
hypothesized to reflect rising intercellular and interindividual
heterogeneity with age, potentially capturing biological aging
more dynamically than static methylation clocks (Meyer and
Schumacher 2024). Understanding and quantifying epigenetic
drift may offer novel biomarkers for aging trajectories, disease sus-
ceptibility, and therapeutic interventions aimed at mitigating age-
associated decline.
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The etiology of epigenetic drift is multifactorial. Genetic pre-
disposition accounts for substantial interindividual variation in
baseline methylation patterns (Shah et al. 2014). In addition, lon-
gitudinal twin studies have underscored the influence of environ-
mental factors; for instance, Tan et al. (2016) identified over 2000
CpGs exhibiting significant methylation drift over a decade,
strongly implicating environmental exposures. Infectious agents,
such as cytomegalovirus, have also been shown to induce wide-
spread methylation variance in a cell composition-independent
manner (Bergstedt et al. 2022). At the chromatin level, drift-
CpGs are enriched in repressive Polycomb-bound regions (Slieker
et al. 2016) and exhibit pronounced variability on the inactive X
Chromosome (Liu et al. 2023), suggesting epigenomic compart-
mentalization of drift. The biological consequences of epigenetic
drift are increasingly being explored. Hannum et al. (2013) showed
that drift-CpGs in blood are associated with transcriptional chang-
es, implicating drift as a potential regulator of aging pace. At the
molecular level, this may manifest as altered transcriptional out-
put and increased expression noise, disrupting cellular function.

Detecting epigenetic drift, however, requires robust statistical
modeling capable of detecting changes in variance rather than
mean methylation. Several approaches have been proposed. The
most commonly used methods apply heteroscedasticity tests,
such as the Breusch-Pagan test or double generalized linear models
(DGLMs), to identify CpG sites whose methylation variance in-
creases linearly with age (Slieker et al. 2016; Bergstedt et al. 2022;
Liu et al. 2023). Complementary entropy-based metrics estimate
methylome-wide disorder, capturing the global stochasticity of
the epigenome (Hannum et al. 2013). These statistical frameworks
serve as critical tools for identifying drift-CpGs and quantifying
the systemic erosion of epigenetic fidelity.

Despite recent advances, several key challenges remain. First,
there is no consensus on the optimal statistical framework for
identifying drift-CpGs, with different studies applying distinct
models and yielding limited concordance. Second, the generaliz-
ability of previously identified drift-CpGs is limited, as most
were derived in European populations and lack validation across
diverse ancestries, such as East Asians. Third, previous research
has predominantly focused on CpGs with increasing methylation
variance over age, whereas CpGs with decreasing methylation var-
iance over age remain largely understudied, despite their potential
biological importance. Fourth, it is still unclear whether drift-CpGs
are cell type-specific or reflect a shared aging signature across he-
matopoietic lineages. Fifth, although entropy-based metrics have
been used to estimate global methylation disorder, no standard-
ized method currently exists to construct an epigenetic drift score
(EDS) at the individual level using a finite set of CpGs. Lastly, the
biological relevance of drift-CpGs, particularly their contribution
to age-related complex traits and their relationship with underly-
ing genetic architecture, remains poorly understood.

To address these challenges, we first performed a comprehen-
sive evaluation of four commonly used statistical methods for
identifying heteroscedasticity, using both computer simulations
and empirical population data. We then applied this method to
735,267 CpG sites (850 K EPIC Array) measured in 3538 Chinese
individuals, systematically identifying a high-confidence set of
drift-CpGs. Our replication analysis was conducted in 2423 indi-
viduals from two additional Chinese cohorts and two European
cohorts. Both positive and negative drift-CpGs were characterized
to reveal complementary biological patterns. We further investi-
gated whether drift-CpGs exhibit cell type specificity or represent
shared signatures of hematopoietic aging by integrating single-cell

RNA-seq analyses. To quantify individual-level epigenetic drift, we
developed an EDS based on a finite subset of drift-CpGs, offering a
standardized alternative to entropy-based metrics. Finally, we eval-
uated the functional relevance of EDS through association
analyses with age, lipidomic profiles, and genome-wide genetic
variation, uncovering potential mechanistic links between sto-
chastic epigenetic changes and age-related complex traits.

Results

Population characteristics

An overview of the study design, detection technologies, and an-
alytical workflow is presented in Figure 1. The discovery cohort,
the National Survey of Physical Traits (NSPT), comprised 3538
Chinese individuals with a mean age of 50.2 years (SD=12.7,
range 18-83) and 37.0% male participants (Supplemental Table
S1). The first replication cohort included 1060 individuals from
the Chinese Academy of Sciences cohort (CAS), predominantly
highly educated individuals in intellectual professions, with a
mean age of 40.8 years (SD=9.4, range 22-64) and 59.7% male
participants. The second replication cohort, a longitudinal study
from the Shanghai Changfeng Study (Changfeng), spanned a me-
dian follow-up period of 4 years with 407 subjects. Baseline ages
ranged from 47.6 to 80.0 years, with a mean age of 61.4 years
(SD=7.4), and follow-up ages ranged from 51.9 to 84.0 years,
with a mean age of 65.5 years (SD=7.3). DNA methylation at
735,267 CpGs, overlapping between the discovery and replication
cohorts, showed highly concordant distributions (Supplemental
Fig. S1). For subsequent epigenome-wide analysis, we retained
469,061 CpGs after excluding those affected by mQTLs (Peng
et al. 2024), those with minimal variance in age-regressed residu-
als (R2<1x107%), or those significant in a multimodal distribu-
tion test (P<1x107%).

Positive and negative drifts enriched in different functional
regions

A simulation analysis was conducted to compare the statistical
power and Type-I error rates of four existing heteroscedasticity
test methods: Method A: double generalized linear model (Liu
et al. 2023); Method B: Breusch-Pagan likelihood ratio-based x>
statistic (Bergstedt et al. 2022); Method C: Breusch-Pagan T-statis-
tic (Slieker et al. 2016); and Method D: White Test (White 1980; see
Supplemental Notes for details). This analysis showed that Method
B was overly aggressive, whereas Method A was overly conserva-
tive. Method D showed superior performance in scenarios in-
volving nonlinear relationships between CpG variance and age
(Supplemental Fig. S2). Using the White Test, our epigenome-
wide drift study (EWDS) identified 10.8% of CpG sites (50,385)
as drift-CpGs (P<1x1077) (Fig. 2A,B). This number significantly
exceeds findings from previous studies, including one involving
385 Swiss twin pairs using the 450K array, which identified 571
drift-CpGs (different method due to twin samples), with 229 over-
lapping with our list (Wang et al. 2018). Another study of 3295
European individuals from the BIOS Consortium using the 450K
array and the Method C identified 6366 drift-CpGs (Fig. 2C),
with 3000 overlapping with ours (Wang et al. 2018). Our number
also surpassed that from the Milieu Intérieur study of 968
Europeans (Bergstedt et al. 2022), which identified 20,140 drift-
CpGs from a total of 644,517 CpGs using Method B. These discrep-
ancies are likely attributable to a combination of factors such as
larger sample size, broader age range, greater CpG coverage, and
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Figure 1. Schematic representation of the study design, detection technologies, and analytic approaches. The method marked in red text and with a

checkmark (\/) was selected for downstream analysis.

enhanced statistical power. The vast majority of the identified
drift-CpGs (99.0%, n=49,877) exhibited an increase in variance
with aging, termed as positive drift-CpGs (Fig. 2D), whereas a small
fraction showed a significant decrease in variance, termed as neg-
ative drift-CpGs (1.0%, n=508) (Fig. 2E). Positive drift-CpGs were
highly significantly enriched in expression-repressed CpG islands
(CGIs) (OR=2.4, P<1x 1073%) (Fig. 2F,G), whereas negative drift-
CpGs were significantly enriched in expression-active non-CGIs,
such as open sea regions (OR=2.4, P<8.8 x 107'%), with a particu-
larly pronounced enrichment in enhancers (OR=10.1, P=2.1x
107%%). A transcription factor binding motif enrichment analysis
showed that negative drift-CpGs significantly enriched at AHR-
ARNT, CREB3L4, HES1, and GMEB2 (Supplemental Fig. S3).
Compared to the abundant age-associated CpGs identified by
linear regression in the same data set, referred to here as clock-
CpGs (31.2%, n=146,497, P<1x1077), the number of drift-
CpGs was substantially smaller and exhibited lower statistical sig-
nificance, as expected. Nonetheless, we observed a significant
overlap between drift-CpGs and clock-CpGs (23.3%, n=34,118),
indicating that methylation drift and directional age associations
are not mutually exclusive. In fact, drift-CpGs were significantly
more likely than non-drift-CpGs to also exhibit age-associated
mean changes in methylation (OR=5.7, P<1x1073%) (Supple-
mental Table S2). Notably, positive drift-CpGs were more fre-
quently associated with CpGs that also showed increasing
average methylation with age (positive clock-CpGs), whereas neg-
ative drift-CpGs were more likely to coincide with CpGs that de-
creased in methylation with age (negative clock-CpGs; OR=1.3,
P=7.8x107%) (Supplemental Table S2). Positive drift-CpGs and
positive clock-CpGs were most significantly enriched in CGIs
(Fig. 2H), whereas negative drift-CpGs and negative clock-CpGs
were most significantly enriched in enhancers (Fig. 2I). This con-

cordance suggests a partial coupling between directional epigenet-
ic aging and the age-related changes in epigenetic variability.

We examined whether changes in DNA methylation variance
at CpG sites are associated with initial (young group age < mean —
2SD) and terminal (old group age > mean + 2SD) methylation lev-
els. Specifically, we asked whether reduced variance indicates con-
vergence toward methylation extremes (0 or 1), and whether
increased variance reflects divergence from such states. This anal-
ysis identified differential drift patterns based on the direction of
methylation drift (Fig. 2J-L). Positive drift-CpGs predominantly
remained at intermediate methylation ranges (0.1-0.9) through-
out aging, rarely converging toward either hypermethylation or
hypomethylation extremes. In contrast, negative drift-CpGs
typically moved from intermediate methylation states toward
methylation extremes but rarely vice versa. These observations
suggest fundamentally different biological mechanisms underly-
ing positive versus negative methylation drift during aging. We
hypothesize that negative drift, characterized by shifts towards
methylation extremes, likely reflects more targeted biological ag-
ing processes such as cellular senescence or clonal expansions,
whereas positive drift might represent broader stochastic or het-
erogeneous aging processes.

Epigenetic drift’s cell type specificity and transcriptional impact

To investigate whether epigenetic drift-CpGs are driven by chang-
es in blood cell-type composition, we applied the EpiDISH
algorithm (Zheng et al. 2018). Among the 50,385 identified
drift-CpGs, the majority (88%) did not exhibit cell type-specific
methylation patterns, suggesting that most epigenetic drift occurs
independently of blood cell composition (Fig. 2M). Of the 6226
CpGs (12%) that did show significant cell type specificity, the
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Figure 2. Epigenome-wide identification and annotation of drift- and clock-CpGs. (4) Manhattan plot of significant CpGs (P< 1 x 10~7), colored by drift
(blue), clock (blue), or both (red) effects. (B) Venn diagram showing overlap between drift- and clock-CpGs. (C) Overlap of NSPT drift-CpGs with those from
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vast majority (>99%) were associated with lymphoid lineage cells.
Specifically, these CpGs were predominantly enriched in B cells
(82%), followed by CD8* T cells (12%), CD4" T cells (4%), and nat-
ural killer (NK) cells (2%), whereas <1% were linked to myeloid
cells. Importantly, CD4* T cell-specific drift-CpGs (n=266)
showed a distinct pattern, all of which exhibited negative drift
with age. These findings suggest a cell type—specific suppression
of epigenetic drift noise in CD4" T cells, in contrast to the general
age-associated increase observed in other cell types. Representative
examples of lymphoid, myeloid, and CD4" T cell-specific drifts are
provided in Supplemental Figure S4A-C.

To investigate how age-associated
DNA methylation drift influences gene

epigenetic drift were observed in B cells (Supplemental Fig. S5G).
Conversely, negative epigenetic drift primarily affected CD4* T
cells, driving distinct transcriptional changes in this subset
(Supplemental Fig. SSH).

Robust drifts in an independent CAS cohort

In the CAS cohort of 1060 samples, 48,171 CpGs overlapped with
the 50,385 significant CpGs identified in NSPT. Of these overlap-
ping CpGs, 50.2% were replicated at a nominal significance
level in CAS (P<0.05). The significance of this replication rate
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types. Our analysis revealed statistically
significant, albeit modest, shifts in gene
expression profiles associated with
drift-CpGs relative to the genome-wide
background (Supplemental Fig. SS5A,B).
Specifically, genes associated with posi-
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wards higher mean expression and
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(OR = 8.9) was confirmed by a Fisher’s exact test (P<2.2x 107'°)
(Fig. 3A; Supplemental Table S3). An analysis of these replicated
drifts revealed that 99.9% of positive drifts were consistently pos-
itive, and 99.1% of the negative drifts remained negative. When
applying more stringent significance criteria in the discovery
cohort, we observed a progressive increase in replication rates,
peaking at 100% for a threshold of 1 x 1072°. Notably, both posi-
tive and negative drifts exhibited complete consistency at these
stringent levels.

In the CAS cohort, the most significantly replicated positive
drift was observed on Chr 4 for cg24035745 in FBXO2 (NSPT P=
5.1x107™, CAS P=6.8x107!"). Young individuals exhibited sig-
nificantly smaller variance in methylation compared to mid-aged
and elderly individuals (Fig. 3B). Increased expression of FBXOZ2 oc-
curs with neurons’ developmental maturation (Ciceri et al. 2024).
FBXO02 deficiency exacerbated deficits in motor function and en-
hanced neurodegeneration (Liu et al. 2020). Similarly, the most sig-
nificantly replicated negative drift was identified on Chr 14 for
cg13868026 in EVL (NSPT P=6.8x107%?, CAS P=8.8x107"). In
this case, young and mid-aged individuals showed significantly
larger variance in methylation compared to elderly individuals
(Fig. 3C). DNA methylation of EVL was identified as a prognostic
signature in colon cancer, and promoter methylation of EVL differs
between individuals and between regions of the normal colon (Yi
et al. 2011). The CAS cohort also replicated the presence of other
top significant negative drift-CpGs that were found in or near
MAPRE2, ARPIN-AP3S2, TRAPPC9, APBB1IP, and FOXK1. Among
these, methylation of FOXKI has a known effect on the regulation
of immune and metabolic functions (Fujinuma et al. 2023).

Epigenetic drifts in independent longitudinal Changfeng
population

We further analyzed the CAS-replicated drift-CpGs (23,758 out of
the available 24,161) within the Changfeng longitudinal cohort to
determine if the methylation levels showed any drift over an ap-
proximate follow-up period of 4 years. For each individual CpG
site, we performed a paired t-test. This test compared the squared
deviation of the methylation level from the population mean at
the baseline to the same deviation at the follow-up. In mathemat-
ical terms, it involved comparing (cpg — mean(cpg))? at baseline
with those at follow-up. Our results indicated that 48.1% (n=
11,422, P < 0.05) of the examined drift-CpGs exhibited a nominal-
ly significant difference (OR=5.0, Fisher’s test, P<2.2x 10719)
between these two time points. Among these nominally signifi-
cant CpGs, 99.7% exhibit the same effect directions as observed
in NSPT and CAS (Fig. 3D). These findings demonstrated the ro-
bustness of the drift effects at our identified sites and underscore
the genuine impact of negative drifts. In Changfeng, the most
significantly replicated positive drift-CpG was ¢g27099280 in
CELF6 (P=6.2x107"°) (Fig. 3E) and negative drift-CpG was
cg03883331 in ZBTBIS (P=4.0x 107*) (Fig. 3F) and cg22005677
in LPP (P=0.02). The repeated highlighting of the negative drift
at LPP in both the CAS and Changfeng cohorts underscores its ro-
bustness and prominence in our findings. It is important to note
that both the CAS and Changfeng replication cohorts have nar-
rower age ranges compared to the discovery cohort, which may
contribute to conservative replication rates. Functionally, the
CpG site in ZBTB18 is instrumental in regulating the expression
of ZBTB18, a colorectal tumor suppressor gene (Bazzocco et al.
2021). Loss of its activity enhances chromatin accessibility
and transcriptional adaptations that promote the phenotypic

changes required for metastasis (Wang et al. 2023). This suggests
that negative drifts may be involved in regulating global chroma-
tin accessibility dysregulation in the development of age-related
phenotypes.

Epigenetic drift is cross-ethnic

We further examined 14,909 of our drift-CpGs overlapping with
the 450K beadchip in the data set of Hannum et al. (2013), which
consisted of a mixed population of 426 Caucasian and 230
Hispanic individuals (age range: 19-101 years). A substantial pro-
portion (76.3%, 11,378 out of 14,909) exhibited nominally signif-
icant drifting effects in the same direction (OR=9.3, Fisher’s test, P
<2.2x107'%) (Fig. 3G-I).

Next, we focused on a cohort of 150 pairs of monozygotic
(MZ) Danish twins aged 30 to 74 years (78 male pairs and 72 female
pairs) (Tan et al. 2014). Our aim was to determine whether our
identified drift-CpGs could account for previously observed inter-
individual epigenetic variations (Planterose Jiménez et al. 2021).
To this end, we categorized the MZ twins into two age groups
(<50 years and >50 years). Using a t-test, we examined the absolute
methylation level discrepancies ((MZ1 — MZ2|) between the two
age groups. Among the CpGs corresponding with our drift-
CpGs, a substantial proportion (49.6%, 6731 out of 13,571)
showed nominally significant drift effects (Fig. 3]-L). These find-
ings support our hypothesis that aging plays a pivotal role in the
epigenomic differentiation of MZ twins.

Positive drifts related to neural system functions and negative
drifts linked to immune functions

GO and KEGG functional enrichment analyses of our replicated
drift-CpGs have illuminated possible mechanisms tied to both pos-
itive and negative epigenetic drift (Fig. 4). Specifically, positive
drift-CpGs (n=24,051) were markedly enriched for processes relat-
ed to nervous system development (P=7.9 x 107! after FDR) and
neuroactive ligand-receptor interaction (P= 6.2 x 10723 after FDR),
corroborating the work of Slieker et al. (2016). Conversely, negative
drift-CpGs (n=110) showed distinct enrichment in alpha-beta T
cell differentiation (P=1.4x107* after FDR). Phenotype enrich-
ment analysis, derived from EWAS Atlas data, revealed that positive
drift-CpGs were significantly associated with phenotypes such as B
acute lymphoblastic leukemia (P=1.8 x 10! after FDR), hepato-
cellular carcinoma (P < 3.4 x 10~? after FDR), and Helicobacter pylori
infection (P=5.4 x 1078 after FDR). This finding aligns with earlier
studies showing that increased DNA methylation variability fre-
quently occurs at loci related to malignancy and can be predictive
of cancer emergence (Landau et al. 2014; Feinberg and Levchenko
2023). In contrast, the phenotype enrichment for negative drift
underscored aging as the most significantly associated trait (P=
1.3 x 10736 after FDR), followed by Down syndrome as the second
most significant (P=2.1 x 1072* after FDR). These patterns suggest
a differential impact of positive versus negative drift on phenotype
expression, with negative drift showing a pronounced association
with aging processes.

EDS represents a unique aging dimension

We developed a positive epigenetic drift score (EDS_POS) using
204 independent CpGs, each more than 500 kbp apart
(Supplemental Table S4). These CpGs were selected from the
49,877 positive drift-CpGs identified in NSPT, based on their
smallest Fisher combined P-values across NSPT, CAS, and
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Figure 4. Biological and trait enrichments of directional epigenetic drift. This circular plot visualizes Gene Ontology (GO) terms, KEGG pathways, and
traits enriched for positive (PosD) and negative (NegD) drift-CpGs. Enrichment score, calculated as —log1o(FDR P), increases with distance from center.

Hannum et al. (2013), using a nonnegative least squares regression
model.

The EDS_POS ranges from O to 1, reflecting low to high levels
of epigenetic positive drift. In both NSPT and Hannum et al.
(2013), the distribution of EDS_POS was slightly right-skewed,
with a mean of 0.41 (box plot: 0.21, 0.32, 0.39, 0.47, 0.69). EDS_
POS exhibited a linear correlation with age, which strengthened
as more CpGs were included. Specifically, Pearson’s correlation in-
creased from O to 0.56 as the number of CpGs grew from 1 to 100,
and plateaued at 0.60 with 200 CpGs (Fig. 5A,B). The EDS_POS con-
structed in CAS using the same weights also demonstrated a highly
consistent distribution (mean 0.39, box plot: 0.25,0.34,0.37,0.43,
0.56) (Fig. 5C) and a robust age correlation (r=0.50).

We also found that EDS_POS increases more slowly with age
in females compared to males (P=3.7 x 1077) (Fig. 5B). We then
compared the performance of EDS_POS with a more robust but
less sensitive score that included more CpGs with equal weights
(11,367 positive drift-CpGs nominally replicated in both CAS
and Hannum et al. 2013). This score had a lower correlation
with age (r=0.46) than EDS_POS, likely due to added noise from
less significant CpGs given equal weight. However, EDS_POS still
showed a high correlation (r=0.82) with this score (Fig. 5D). This

result, along with the observation that age correlation plateaued
after including 200 CpGs in EDS_POS, suggests that our
EDS_POS effectively captures genome-wide epigenetic drift, with
204 drift-CpGs being sufficient for this purpose.

We similarly developed a negative epigenetic drift score
(EDS_NEG) based on 81 significant negative drift-CpGs identified
in NSPT. The EDS_NEG ranges from O to 1, indicating low to high
levels of negative drift (Supplemental Table S5). In NSPT, the distri-
bution of EDS_NEG was slightly right-skewed with a mean of 0.36
(box plot: 0.23, 0.31, 0.36, 0.42, 0.57). EDS_NEG showed an in-
creasingly strong negative correlation with age as more CpGs
were included, reaching —0.38 when all 81 CpGs were included
(r=—0.39 in males and r=-0.38 in females) (Fig. SE,F). The
EDS_NEG constructed in CAS using the same weights demonstrat-
ed a highly consistent distribution (mean 0.42, box plot statistics:
0.14, 0.31, 0.40, 0.50, 0.79) (Fig. 5G) and a robust correlation with
age (r=-0.49). A more robust but less sensitive score, based on 508
equally weighted negative drift-CpGs, also showed a negative cor-
relation with age at —0.34. The correlation between EDS_NEG and
this 508-CpG score was 0.54 (Fig. SH).

We further investigated into the correlations of our EDS with
several previously established DNA methylation-based aging
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scores, including Horvath (2013), Hannum et al. (2013), Levine
et al. (2018), and Dunedin (Fig. SI; Belsky et al. 2020). The
Horvath and Hannum scores represent different versions of epige-
netic clocks, whereas the Levine and Dunedin scores focus more
on aging and aging pace. Our hypothesis posits that epigenetic
drift may reflect a distinct or complementary aspect of aging com-
pared to other epigenetic aging scores. Indeed, in NSPT, we ob-
served expected modest levels of correlations prior to adjusting
for age (EDS_POS: 0.29~0.63, EDS_NEG: —0.11~-0.39) (Fig. 5J),
which were further reduced after adjusting for age (EDS_POS:
0.17~0.31, EDS_NEG: -0.05~-0.09) (Fig. 5K). These results sup-

09 0.09 0-26

entropy measures showed significant age
associations: positive drift entropy signif-
icantly correlated with chronological age
(Pearson correlation coefficient, r=0.39,
P=6.9x10""%), and negative drift
entropy exhibited a significant inverse
relationship (Pearson correlation coeffi-
cient, r=—0.51, P=8.5x10"2%7). We
observed moderate but significant con-
cordance between individual entropy
and population-level drift scores (Pear-
son correlation coefficient, EDS_POS: r=
0.25, P=1.0x107%; negative: r=0.29,
P=6.7x10""9) (Fig. SL,M). Furthermore,
longitudinal analysis in the Changfeng
cohort revealed a significant increase in

.080.310.17
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Sig
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i
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p=12x07 overall epigenetic entropy over 4 years
i ' (paired t-test, P=1.7 x 10713, with the
H mean epigenetic entropy increasing
l%l from 4101 at baseline to 4172 at the 4-

year follow-up, confirming the progres-

Baseline Follow-up sive nature of epigenetic drift at the indi-
vidual level (Fig. 5N).

To evaluate EDS dynamics in the
same individual’s longitudinal aging pro-
cess, we compared EDS_POS changes in
methylation levels and variance from
baseline to follow-up using longitudinal
Changfeng data. These changes were
then compared to analogous changes de-
rived from a bootstrapped genome back-
ground, matched for the number of
CpGs. The mean methylation (P=3.6x
10719 and variance (P=2.8x107%) of these 204 positive drift-
CpGs showed a statistically significant increase from baseline to
the follow-up period (Fig. SO,P). Applying the weights derived
from the NSPT to Changfeng confirmed a significant increase in
EDS from the baseline to follow-up (baseline mean EDS =0.35; fol-
low-up mean EDS=0.38, P=1.2x 10~'?) (Fig. 5Q).

EDS_POS shows increasing
lots of EDS_POS versus age

EDS associated with lipid metabolites

Given the significant influence of epigenetic mechanisms on lipid
metabolism (Gomez-Alonso et al. 2021) and the observation that
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calorie restriction can modulate both epigenetic drift and metabol-
ic pathways (Hahn et al. 2017; Maegawa et al. 2017), we further ex-
plored the impact of our EDS on serum lipid metabolites. We
analyzed data from 3037 individuals in the NSPT cohort, for
whom both metabolomic and methylation profiles were available.
The metabolomic data set included 351 NMR-detected lipoprotein
subfractions, comprising 176 direct measurements and 175 de-
rived values.

After adjusting for age, gender, BMI, and sampling location,
EDS_POS was significantly associated with 65 lipid metabolites fol-
lowing FDR correction (Fig. 6A-F; Supplemental Table S6). These
associations encompassed 13 high-density lipoprotein (HDL) met-
rics, 17 low-density lipoprotein (LDL) metrics, one intermediate-
density lipoprotein (IDL) metric, and three very-low-density
lipoprotein (VLDL) metrics. Among the negative associations,
EDS_POS showed the strongest correlation with phospholipids
in HDL-4 (P=4.1x1072 after FDR). Among the positive associa-
tions, EDS_POS was most significantly associated with triglycer-
ides in VLDL-S (VSTGp, P=2.3 x 1072 after FDR), consistent with
previous studies that reported reduced VLDL levels in long-lived
and younger cohorts (Lv et al. 2015). In addition to lipid metabo-
lites, we examined the association of EDS with 17 physical and
blood biochemical indicators. After adjusting for age, EDS_POS
was significantly associated with six out of 17 indicators, that is,
BMI, HDL, triglycerides (TG), uric acid (UA), indirect bilirubin
(IBIL), and creatinine (CREA) (FDR P<0.05). EDS_NEG did not
show any significant association in lipid or blood biochemical as-
sociation analyses (P>0.05 after FDR). Notably, further adjusting
for clock scores in these association analyses did not alter our find-
ings except for those related to UA (Supplemental Fig. S7).

Extending the lipid and blood biochemical association anal-
yses to other epigenetic scores, including Hannum, Horvath,
Levine, and Dunedin (Fig. 6A-F), we identified numerous signifi-
cant associations after adjusting for age. The strongest was between
the Dunedin score and ApoA2 in HDL-4 (P=1.25 x 107%). In terms
of the number of associations, the Dunedin score exhibited the
most extensive associations, with 97 metabolites and 13 blood bio-
chemical indicators, followed by EDS_POS (65 and six), Levine (16
and three), Hannum (one and two), and Horvath (zero and six).
Notably, further adjusting for clock scores in these association
analyses did not alter our findings (Supplemental Fig. S8).
Although the metabolites and biochemical indicators are strongly
intercorrelated, our results suggest that multiple epigenetic scores
play complex roles in metabolic features related to lipid metabo-
lism, kidney function, and liver function.

GWASs on EDSs identify genetic factors

We conducted separate genome-wide association studies (GWASs)
for EDS_POS and EDS_NEG, analyzing 8.6 million SNPs from mi-
croarray data after imputation in 3513 individuals. No evidence
of population substratification was observed, as indicated by the
inflation factor (A< 1.03). The SNP-based heritability was estimat-
ed to be moderate for both traits using GCTA (EDS_POS VG/VP =
0.29, se=0.07; EDS_NEG VG/VP=0.11, se=0.07).

The GWAS for EDS_POS identified a single SNP (rs7868942)
located within the ASTN2 gene on Chr 9q33.1 showing a ge-
nome-wide significant association with EDS_POS (lead SNP
157868942, B=0.02, P=4.3 x 107®) (Fig. 7A-C). The ancestral A al-
lele of rs7868942 had a frequency of 0.95 in our sample, similar
to the East Asian (EAS) population frequency of 0.94, much higher
than other continental groups in the 1000 Genomes Project (AMR

0.69, AFR 0.75, EUR 0.60, SAS 0.75). ASTN2 regulates neuronal
migration and synaptic strength by trafficking and degrading sur-
face proteins and has been repeatedly implicated in autism,
Alzheimer’s, and other neuropsychiatric disorders (Glessner et al.
2009; Ito et al. 2023). During aging, the chromatin state of
ASTNZ2 becomes more promoter-like and active, with a reduction
in H3K36me3 and an accumulation of H3K4me3 and H3K27ac
(Fig. 7D). This result is consistent with the previously proposed ag-
ing model, where reduced H3K36me3 levels within gene bodies in-
hibit the recruitment of KDMSB and DNMT3B to these regions,
resulting in the accumulation of H3K4me3 and reduced DNA
methylation, which leads to increased transcriptional noise
(McCauley et al. 2021).

The GWAS for EDS_NEG identified 20 SNPs on Chr 2p21 near
the SOCSS5 gene that showed genome-wide significant associations
with EDS_NEG (lead SNP 1576089707, p=-0.02, P=1.2x107%)
(Fig. 7E-G). The ancestral G allele of 1576089707 had a frequency
of 0.53 in our sample, closely matching the EAS population fre-
quency of 0.52 and remaining comparable to frequencies in other
continental groups from the 1000 Genomes Project (AMR 0.47,
AFR 0.61, EUR 0.65, SAS 0.56). SOCSS5, a cytokine signaling sup-
pressor, negatively regulates the JAK/STAT pathway and plays a
key role in balancing immune response and virus persistence
(Seki et al. 2002; Kedzierski et al. 2022). While aging, T cells often
experience increased activation and proliferation, leading to func-
tional exhaustion. This exhaustion is linked to sustained JAK/STAT
pathway activation, where SOCS proteins play a crucial inhibitory
role (Sharma et al. 2019). During aging, the chromatin state of
SOCSS becomes more active, with an accumulation of H3K4me3
and H3K27ac, yet without a decrease in H3K36me3 (Fig. 7H). In
exhausted T cells, specific CpG sites may become epigenetically
stable, contributing to the long-term repression or activation of
certain genes. Although these preliminary findings provide valu-
able insights, the modest effect sizes and the proximity of the re-
sults to the genome-wide significance threshold suggest a
cautious interpretation. Further validation through replication
studies and functional assays is essential to confirm and elucidate
the roles of these genomic loci in epigenetic drift.

Discussion

In this study, we present the largest EWDS to date, conducted in a
Chinese population and replicated in multiple Chinese and
European cohorts. We systematically benchmarked statistical ap-
proaches for detecting heteroscedasticity in DNA methylation
data and identified White’s test as the most robust method.
Applying this approach, we identified and functionally annotated
over 50,000 significant drift-CpGs, which segregated into positive
and negative drift categories with distinct genomic enrichments,
suggesting divergent underlying biological mechanisms. Integra-
tion with single-cell RNA sequencing revealed that drift-associated
CpGs exert direction-specific transcriptional effects and display
marked cell type specificity. We further developed and validated
composite EDS_POS and EDS_NEG to quantify individual-
level drift, both of which showed strong correlations with chrono-
logical age. Notably, a positive EDS was significantly associated
with lipidomic profiles, as well as metabolic and clinical health in-
dicators. Importantly, the population-level drift-CpGs and EDS
signatures were also validated longitudinally at the individual lev-
el. Finally, genome-wide association analyses identified genetic
loci, including ASTN2 and SOCSS5, associated with positive and
negative drift variation, respectively, underscoring a heritable
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Figure 6. Associations of EDS_POS with serum lipid metabolic profiles. Forest plots display effect sizes (with 95% confidence intervals) per unit increase of
relevant scores on various lipid metrics. The significance threshold for associations shown is set at FDR P<0.05. Four epigenetic indicators are presented:
EDS_POS (red), Dunedin (light blue), Levine (green), and Hannum (dark blue). (A) Associations with HDL-related traits. (B) Associations with LDL-related
traits. (C) Associations with IDL- and VLDL-related traits. (D) Associations with lipid ratio metrics. (E) Associations with lipid percentage metrics. (F)
Associations with other small metabolites and apolipoproteins. (ApoA1, ApoA2, ApoB) Apolipoprotein A1, Apolipoprotein A2, Apolipoprotein B, (CH)
Cholesterol, (CE) Cholesteryl Esters, (FA) Fatty Acids, (FC) Free Cholesterol, (HDL) High-Density Lipoprotein, (IDL) Intermediate-Density Lipoprotein,
(LDL) Low-Density Lipoprotein, (PL) Phospholipids, (PN) Particle Number, (TG) Triglycerides, (UFA/TFA) Unsaturated Fatty Acids/Total Fatty Acids ratio,
(VLDL) Very Low-Density Lipoprotein. Subclass numbers indicate size-based lipoprotein subfractions. A complete list of all metabolite abbreviations and

A

Total lipid in HDL-4
Total lipid in HDL-3
Total lipid in HDL-1
TG in HDL-4

TG in HDL-1

PL in HDL-4

PL in HDL-3

PL in HDL-1

PL in HDL
HDL/Total lipid

FC in HDL-4

FCin HDL-3

CH in HDL-4
CHin HDL-3

CE in HDL-4

CE in HDL-3

CE in HDL-1

CEin HDL

ApoA2 in HDL-4
ApoA2 in HDL-3
ApoA2 in HDL-1
ApoA2 in HDL
ApoA1 in HDL-4
ApoA1 in HDL-3
ApoA1 in HDL-1

ApoA1 in HDL |

Effect size (95% ClI)

Total lipid in LDL-6
Total lipid in LDL-5
Total lipid in LDL-1
Gin LDL-3

PN in LDL-6

PLin LDL-5
PLin LDL-1
PLin LDL
LDL/Total lipid
FCin LDL-6
FCin LDL-5
FCinLDL-1
FCin LDL
CHin LDL-6
CHin LDL-5
CHin LDL-1
CE in LDL-6
CEinLDL-5
CEin LDL-1
CEinLDL
ApoB in LDL-6
ApoB in LDL-5
ApoB in LDL

Effect size (95% Cl)

TG in VLDL-3
PLin ILDL
IDL/Total lipid
FCinIDL
CHin IDL
CEinVLDL-3

CEin VLDL-2

Effect size (95% Cl)

-2 -1 0 1 2
per unit increase of scores

LDL

=2 =1 0 1 2
per unit increase of scores

IDL+VLDL

-2 -1 0 1 2
per unit increase of scores

their full names is provided in Supplemental Table S6.

- EDS_POS
= Dunedin

« Levine

<+ Hannum

D Ratio
UFA/TFA -
UFA/PUFA -
TGin VLDL 5/Tota| li |d in VLDL-5 e
DL/Total lipid in LDL —-—
TGin LDL—6/TotaI I|p| in LDL- .-
TG in LDL-5/Total lipid in LDL-5
TG in LDL-4/Total lipid in LDL-4 ——
TG in LDL-3/Total lipid in LDL-3 -
TG in LDL-2/Total lipid in LDL-2
TG in LDL-1/Total lipid in LDL-1 —.—
TG in HDL-3/Total lipid in HDL-3 N
TG in HDL-2/Total lipid in HDL-2 -
SFA/TFA -
PL in VLDL-3/Total lipid in VLDL-3 —
PL in LDL-6/Total lipid in LDL-6 —
PL in HDL-1/Total lipid in HDL-1 ——
non-HDL-C/CH ——
NAG1 NAG2 ratio —
UFA/TFA -
MUFA/PUFA -
LDL-C/HDL-C —
LDL-5/LDL —
LDL-1/LDL ——
Fischer ratio
FC in HDL-4/Total lipid in HDL-4 -
FC in HDL-3/Total lipid in HDL-3 -
FC in HDL-1/Total lipid in HDL-1 —e=2
in VLDL-5 —
CH/TG in VLDL-4 -
H/TG in LDL-6 —.—
CH/TG in LDL-5 —e
CH/TG in LDL-4 -
CH/TG in LDL-3
CH/TG in LDL-1 -
CH/TG in LDL
CH/TG in HDL-2 —--
CH/HDL-C —
CH in VLDL-5/Total lipid in VLDL-5 -
CHin VLDL 4/Tota| lipid in VLDL-4 -
LDL/Total lipid in LDL
CHin LDL 5/Total lipid in LDL-5 —
CH in LDL-4/Total lipid in LDL-4 ——
CH in LDL-3/Total lipid in LDL-3
CH in LDL-1/Total lipid in LDL-1 -
H in IDL/Total lipid in IDL -
CH in HDL-: 2/Tota| lipid in HDL-2 —e-
CHin HDL 1/Total lipid in HDL-1 —
LDL/Total lipid in LDL ——
CEin LDL 5/Total lipid in LDL-5 ——
CE in LDL-1/Total lipid in LDL-1 —.-
CE in IDL/Total lipid in IDL
ApoB/HDL-C ——
& C+LDL- C;IHDL C ——
(VLDL- +IDL C+LDL C)HDL-C ——

-1 0 1 2

Effect size (95% Cl) per unit increase of scores

E
VLDL+IDL+LDL
PN in ApoB
PLin IDL, VLDL, LDL, HDL
PLin (VLDL+IDL)
non-HDL-C
LDL-C
HDL-C
FCin IDL, VLDL, LDL, HDL
FC in (VLDL+IDL+LDL)
CHin IDL, VLDL, LDL, HDL
CH in (VLDL+IDL+LDL)
ApoB in (VLDL+IDL+LDL)

Percentage

-2 -1 0 1
Effect size (95% Cl) per unit increase of scores

Trimethylamine-N-oxide
PN in ApoB
Phenylalanine

Histidine

Glutamine

Glucose

Citric acid

Cholesterol

ApoB

ApoA2

Others
—
=
—_—
-
—
——

ApoA1

-1 0 1 2

Effect size (95% Cl) per unit increase of scores

2182 Genome Research

www.genome.org



http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.280155.124/-/DC1

An epigenetic drift score of aging

A
8
6- : .
S 41 it d ok
ko ¥
0
1 7 9 11 1315171921
B Chromosome
Plotted
SNPS
10 R 100
8 08 rs7868942 0@
. I [0}
~ 06 s 8
61K 04 o 603
3 ¢ g
g 0.2 o 3
> 4 2%
=}
2] “ . ° 203
o " - "('i
0 e il ;S
SASTN2 o LOCI01928797, s
-SNORA70C L
119.8 120 120.2 120.4
Position on Chr9 (Mb)
c rs7868942
06 |
®» 05
o)
& 04
803 |
w
0.2
N N 2
‘b'(\g //'5{19 \(\//\V
¢ N
<& S \sl
&<\\ &\?‘ ?
D (119,200kb —— 119,500kb)
H3K4me3_Young 3°0|
0
H3K4me3_Old 300|
0 |
H3K27ac_Young 50 ‘
0
H3K27ac_Old 50 ] ‘
o [Lbbodoo il
H3K36me3_Young 100‘
0
H3K36me3_Old 100‘ |
0 N
ASTN2

H3K36me3_Young

g, 7576089707 (SOCS5)

6 8 10 12 1416182022
Chromosome

rs76089707

RHOQ sncss, HINCOTT9 TTC7A
- ) " ._: P/GF — ._; ’(»:____.1__.
S0 TS LNcoig

46.8 47 47.2
Position on Chr2 (Mb)

rs76089707
0.6

05
(O]
%I 0.4
Ro03
w

0.2

N ) AN

S &
N & &

O\C') 0\‘? ?X?‘

H (46,900kb —— 47,000kb)

300

H3K4me3_Young

w
oo
o

H3K4me3_Old

=
oo
o

H3K27ac_Young

H3K27ac_Old

.=
F—
|
—
b

R VRGPV WY S

=
oo
o

-
Qo
o

H3K36me3_Old

=y
[ele]
o

) kdiailie Lo th‘_h

“Tsocss

o

Figure7. GWAS results for epigenetic drift scores. (A) Manhattan plot showing SNP associations with EDS_POS. (B,C) Locus zoom plot (B) and genotype-
specific differences (C) for lead SNP rs7868942 near ASTN2. (D) Aging is associated with a more active chromatin state at ASTN2 (loss of H3K36me3; gain of
H3K4me3, H3K27ac). (E) Manhattan plot showing SNP associations with EDS_NEG. (F,G) Locus zoom plot (F) and genotype-specific differences (G) for
rs76089707 near SOCS5. (H) SOCS5 chromatin becomes more active with age in hMSCs, marked by increased H3K4me3 and H3K27ac enrichment

(McCauley et al. 2021).

component. Together, these findings offer key conceptual and
methodological advances in mapping epigenetic drift and under-
score its significance in aging biology and age-related disease
susceptibility.

Our findings reveal that both positive and negative epigenetic
drift are associated with aging, yet they likely represent distinct
biological processes with divergent regulatory consequences.
Positive drift, characterized by increased methylation variance
with age, is more prevalent genome-wide and typically occurs in

CpG island-rich regions (Slieker et al. 2016). It exhibits minimal
dependence on immune cell composition, suggesting a popula-
tion-wide, stochastic process. Functionally, positive drift is
associated with increased gene expression variability, that is, tran-
scriptional noise, particularly in genes linked to neurological and
metabolic pathways. These changes may reflect compensatory or
stress-induced transcriptional activation and contribute to system-
ic dysregulation observed in aging, including altered lipid metab-
olism and blood biomarkers. Despite having a smaller effect size
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than traditional epigenetic clocks, we show that a subset of ~200
key drift-CpGs can effectively summarize genome-wide stochastic
methylation variability. These results support the notion that pos-
itive drift captures nonprogrammatic, nonlinear aspects of aging,
potentially serving as a mechanistic substrate for the emergence
of epigenetic clocks themselves through cumulative stochastic
changes. In contrast, negative drift, although less common, is
enriched in enhancer regions and exhibits strong CD4* T cell-
specific patterns. It is associated with reduced transcriptional
noise in aged individuals and appears to reflect immune-specific
regulatory stabilization, rather than general epigenomic entropy.
Mechanistically, negative drift is enriched for binding sites of tran-
scription factors such as AHR and may participate in fine-tuning
immune gene regulation during aging (Salminen 2022). This is
consistent with prior observations of age-associated T cell deple-
tion, immune remodeling, and skewing of CD4* T cells toward ex-
treme regulatory and effector phenotypes (Dorshkind et al. 2009;
Elyahu et al. 2019). Specifically, aging might reduce CD4* T cell
numbers and reshape their composition, potentially driving the
emergence of distinct DNA methylation patterns linked to nega-
tive drift. Thus, whereas positive drift may reflect stochastic cellu-
lar deterioration, negative drift may represent an adaptive or
programmed component of immune aging. These distinct pat-
terns suggest that epigenetic drift is not a monolithic process but
rather a bifurcated aging mechanism—stochastic (positive) versus
programmed (negative)—with far-reaching implications for iden-
tifying aging biomarkers and designing targeted interventions.

Whereas some previous studies have proposed that epigenetic
drift may contribute to the generation of epigenetic clocks (Meyer
and Schumacher 2024), our findings suggest that epigenetic drift
appears to represent a distinct dimension of epigenetic aging, pri-
marily reflecting the accumulation of stochastic, nonprogram-
matic changes over time. In contrast, epigenetic clocks are
typically derived from CpGs whose methylation levels change in
a coordinated and directional manner with age, likely reflecting
functional, environmentally responsive, or developmentally regu-
lated processes. This distinction is supported by the only moderate
correlations we observed between the EDS and established epige-
netic age estimators (Hannum et al. 2013; Horvath 2013; Levine
et al. 2018; Belsky et al. 2020). Unlike clocks, which are trained
to predict chronological or biological age, the EDS captures ge-
nome-wide epigenomic instability irrespective of directionality.
We therefore interpret positive drift as a signature of cumulative
random damage or loss of epigenetic maintenance fidelity, rather
than a direct mechanistic contributor to clock formation.

Our study demonstrates that drift-CpGs and the EDS capture
cumulative, age-related epigenetic variability at the individual lev-
el. Validated examples—such as positive drift at FBXO2 and
LINCO02716 and negative drift at FOXKI and TCF12—highlight
their relevance to transcriptional regulation and disease.
Interindividual differences in EDS further support its utility in
quantifying genome-wide drift and predicting aging-related traits.
Notably, we found significant associations between EDS and lipid
metabolism, particularly with subclasses of LDL and HDL, under-
scoring a potential regulatory link. These results align with prior
studies on DNA methylation and lipoproteins (Gomez-Alonso
et al. 2021) and suggest the need for further functional investiga-
tion into the causal role of epigenetic drift in lipid regulation.
Our study suggests potential sex-specific differences in epigenetic
aging, with females exhibiting a slower accumulation of positive
epigenetic drift compared to males. This observation may reflect
greater epigenomic stability in females against age-associated sto-

chastic changes, potentially influenced by hormonal or chroma-
tin-related factors. Whereas these findings may offer a partial
explanation for the observed female longevity advantage, they
also highlight the importance of considering sex as a biological
variable in the development of aging biomarkers and potential
interventions.

Our analysis focused on identifying drift-CpGs using popula-
tion-level, cross-sectional DNA methylation array data. In con-
trast, some other studies have proposed metrics such as Shannon
entropy or the proportion of intermediately methylated sites to
quantify methylation heterogeneity within individual samples
(Scherer et al. 2020). These entropy-based measures typically re-
quire deep bisulfite sequencing (e.g., WGBS) to resolve single-mol-
ecule differences. Although we also calculated individual-level
entropy from array data, our primary objective was to model
changes in methylation variance with age across the population,
enabling the identification of drift-CpGs that reflect systemic epi-
genetic variability rather than within-sample noise. This focus is
partly driven by data availability: whereas WGBS offers near-com-
plete CpG coverage and can assess cell-intrinsic variability, the
EPIC array surveys a fixed subset of CpGs and reflects averaged
methylation signals across heterogeneous cell populations.
Importantly, we validated the drift-CpGs identified at the popula-
tion level using independent longitudinal data sets, supporting
their temporal robustness. Furthermore, the EDS derived from
drift-CpGs showed a strong correlation with entropy-based mea-
sures, suggesting that these two approaches, although methodo-
logically distinct, converge on capturing common aspects of
epigenetic aging.

Nevertheless, we acknowledge several limitations. First, our
study lacks multitissue or large-scale longitudinal data spanning
broader age ranges, which are necessary to evaluate drift dynamics
across developmental and aging trajectories. Second, our analysis
is based on array-derived methylation data rather than whole-ge-
nome bisulfite sequencing, potentially limiting the detection of
drift in non-CpG sites and distal regulatory elements. Third, we
did not integrate matched transcriptomic or additional epige-
nomic layers, which constrains our ability to systematically assess
the downstream regulatory consequences of drift. Future studies
employing multiomic, single-cell, and longitudinal designs across
diverse tissues and larger cohorts will be critical to further refine
and validate our model of epigenetic drift in human aging.

Methods

Study cohorts, DNA methylation, serum metabolomics, SNP
microarray, and phenotyping

NSPT (Peng et al. 2024), CAS (Peng et al. 2024), and Changfeng (Li
et al. 2024) cohorts have been described in detail previously and
related data access information is provided in the Supplemental
Notes. No new participants were recruited. In brief, all cohorts
consisted of Chinese individuals, and genome-wide DNA methyl-
ation was measured using the Illumina Infinium MethylationEPIC
BeadChip. Written informed consent was obtained from all partic-
ipants, and each study was approved by the respective institutional
review board.

Genome-wide DNA methylation in all three cohorts was pro-
filed using Illumina MethylationEPIC BeadChips. DNA extraction
and bisulfite conversion followed published protocols (Peng et al.
2024; Xia et al. 2024). Raw IDAT files were processed using minfi
(NSPT) or CHAMP (CAS and Changfeng) without background cor-
rection. Quality control excluded samples with unclear gender and
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probes with SNPs, sex chromosome location, or high missingness.
Missing values were imputed (impute.knn), Type-2 bias corrected
(BMIQ), and batch effects adjusted (ComBat on M-values).

The NSPT cohort included detailed phenotypic data (e.g.,
height, weight, blood pressure) and 13 blood biochemical traits.
Serum metabolomics on a subset was performed using a 600
MHz NMR platform (Bruker), analyzed with B.LLISA and
B.I.Quant-PS software (Wu et al. 2021). Genotyping was conduct-
ed using the Illumina Global Screening Array, followed by stan-
dard QC in PLINK and imputation with 1000 Genomes
(SHAPEIT3 and IMPUTE2). After QC, 8,603,582 SNPs remained
for analysis.

Statistical analyses

White method for detecting epigenetic drift-CpGs

To identify epigenetic drift-CpGs, defined as CpG sites exhibiting
age-related heteroscedasticity, we employed an improved two-step
regression method based on White’s heteroscedasticity test (White
1980).

In the first step, we constructed a linear regression model (Eq.
1) using beta values of each CpG and age, calculating the squared
residuals from the least squares regression while also correcting for
potential confounding factors such as gender, BMI, and cell com-
position that may affect DNA methylation levels. Cell type propor-
tions were estimated using the EpiDISH algorithm (Zheng et al.
2018)

Bi = a1iy + api + ¢, 1)

where «;; and ag; denote the estimated effect and bias of the ith
CpG site, respectively. y=(y1, ¥z, ..., ¥n), €=(c1, C2, ..., Cy), and Bi =
(Bii) Baiy - -, Bni) represent the age, covariates (gender, BMI, and
cell composition), and estimated beta values of the ith CpG site
for all samples, respectively, with n denoting the sample size.
The deviation d; = (B; — E,-)Z between the true beta value §; and
the estimated value B; reflects the degree of epigenetic drift at
CpG site i under a given age.

In the second step, we regressed d; on age using the following:

di = vy + vaV* + Yoir )

where yy;, y2i, and yo; denote the estimated age effect, age square ef-
fect, and bias of the ith CpG site. To assess whether Equation 2 sig-
nificantly differs from the null model with no variables, we
performed a hypothesis test on the model in Equation 2 compared
with a model without age effect using a % statistic, and obtained
the corresponding P-value.

Simulation benchmarking for heteroscedasticity testing of drift-CpGs

To evaluate the performance of existing heteroscedasticity testing
methods in detecting epigenetic drift-CpGs, we conducted a com-
prehensive simulation study. We generated four distinct types of
synthetic DNA methylation data sets: (1) a baseline data set with
no heteroscedasticity or outliers (to assess Type-I error); (2) a data
set with outliers but no heteroscedasticity (to evaluate robustness
to outliers); (3) a data set exhibiting linear age-related heterosce-
dasticity; and (4) a data set demonstrating nonlinear age-related
heteroscedasticity.

We then compared the Type-I error and statistical power of
four methods: Liu et al. (2023) (Method A, double generalized lin-
ear model using dglm R package); Bergstedt et al. (2022) (Method
B, heteroscedastic likelihood ratio test using gamlss R package);
Slieker et al. (2016) (Method C, Breusch-Pagan test); and our im-
proved White method (Method D). Performance was evaluated

based on false positive rates for Data set 1, impact of outliers in
Data set 2, and statistical power for linear (Data set 3) and nonlin-
ear (Data set 4) drift-CpGs. Detailed simulation parameters and
method implementations are provided in Supplemental Notes.

Epigenome-wide drift study

Prior to epigenome-wide drift analysis, we removed 342,815 CpGs
from a total of 811,876 CpGs in the discovery NSPT data set, in-
cluding 284,128 DNA methylation CpGs, that is, those signifi-
cantly affected by mQTLs in Chinese populations (Peng et al.
2024), 57,691 CpGs with no variation (variance<1 x 107°), and
996 CpGs failing the multimodal distribution test (R-diptest, P<
1x107%), resulting in a total of 469,061 CpGs. Then, we conducted
epigenome-wide drift identification using the White method on
these 469,061 CpGs and further investigated and compared the
performance of the other three methods. P values smaller than 1
x 1077 (Bonferroni P<0.05) were considered as epigenome-wide
significant. Significant drift-CpGs were categorized into positive
drift (age-increasing interindividual variability) and negative drift
(age-decreasing variability). Beyond identifying drift-CpGs, our
analysis comprehensively characterized their properties and regu-
lation through exploring correlations between DNA methylation
variation and initial/terminal levels (details in Supplemental
Notes).

Epigenome-wide association study (EWAS) for chronological age

To identify the age-associated CpGs, termed here as clock-CpGs,
we used a linear model to perform epigenome-wide association
analysis based on 469,061 CpGs in the NSPT cohort with the
same starting amount as the EWDS. P values smaller than 1 x
1077 (Bonferroni P<0.05) were considered as epigenome-wide sig-
nificant. Covariates included gender, BMI, cell composition, ex-
periment batch, the first five genetic principal components, and
the first five epigenetic principal components. Genomic principal
components (genomic PCs) were calculated using PLINK 1.9 based
on all genome-wide SNPs. For methylation principal components
(methylation PCs), we applied the prcomp function in R to the
values of 810,000 CpG sites across the genome.

Cell type—specific and single-cell RNA-seq integration

To assess cell type-specific contributions to methylation drift, we
adapted the CellDMC framework (Zheng et al. 2018), modeling
the interaction between age and estimated cell type proportion (es-
timated using EpiDISH) (Zheng et al. 2018), for significant drift-
CpGs. For each CpG, age-dependent methylation drift specificity
across cell types was assessed, with Bonferroni-adjusted P-values
<0.05 considered significant. To elucidate the contribution of
age-related methylation drift to interindividual immune variation,
we integrated population-scale epigenetic drift profiles with sin-
gle-cell transcriptomic data from peripheral blood mononuclear
cells in the OneK1K cohort (Yazar et al. 2022). We compared tran-
scriptional dynamics between individuals at the extremes of the
age spectrum. The BASICS algorithm (Vallejos et al. 2015) was
used to estimate age-associated changes in both transcriptional
levels and noise, stratified by methylation drift direction.

Biological annotations

CpGs were mapped to the hg19 build for genomic annotations
(e.g., Enhancer, TSS1500, TSS200, UTRS, 1stExon, ExonBnd,
Body, UTR3, Promoter) and CpG island annotations (N_Shelf,
N_Shore, Island, S_Shore, S_Shelf). Relative enrichment analysis
of chromosome states and gene regions was conducted separately
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for positive/negative drift and clock CpGs. Significance was as-
sessed using a hypergeometric test (P<0.05). The formula for
odds ratio calculation and detailed annotation categories are in
Supplemental Notes. Transcription factor binding site (TFBS)
enrichment analysis on drift-CpGs was performed using the
TFmotifView web tool (https://bardet.u-strasbg.fr/tfmotifview/),
extracting 10-bp sequence windows centered on each CpG site.
Statistical significance was assessed using Bonferroni correction
(adjusted P<0.05). We tested drift-CpGs for enrichment of gene
ontologies and KEGG pathways using the gometh function using
R package “missmethyl” (v1.28.0). Using the online analysis plat-
form EWAS atlas, we performed phenotype enrichment analysis
on successfully validated drift-CpGs. To explore the distinct bio-
logical functions associated with positive and negative drift, we
performed enrichment analyses separately for the sets of positive
drift-CpGs and negative drift-CpGs, applying a significance
threshold of 0.05 after FDR adjustment.

Replication analysis

Drift-CpGs significant in the NSPT discovery analysis (P<1x 1077)
were followed up with a replication analysis in the CAS cohort us-
ing the White method. Further validation was performed in the
mixed Caucasian and Hispanic population assessed with a 450K
beadchip, obtained from the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession
number GSE40279 (Hannum et al. 2013). In the longitudinal
Changfeng population, CpG drift values between two time points
were calculated and analyzed using paired t-tests. The stability of
drift was also investigated in the twin cohort, obtained from
GEO under accession number GSE61496 (Tan et al. 2014). We cat-
egorized the twins into two age groups (e.g., Age < 50 and Age > 50)
and used a t-test to examine if the absolute methylation level dis-
crepancies between twin pairs differed significantly between the
two groups.

Construction of epigenetic drift score

To quantify an individual’s epigenetic drift burden, we developed
the epigenetic drift score. This score aggregates individual-level
methylation variability at robustly selected CpGs, reflecting an in-
dividual’s overall drift status. First, we selected highly robust drift-
CpGs, defined as those significantly associated with age-related
variability in the NSPT discovery cohort and consistently replicat-
ed in both CAS and Hannum cohorts. To ensure independence,
CpGs within 500-kb proximity of a more significant CpG were re-
moved. Specific filtering criteria and the final number of indepen-
dent CpGs are detailed in Supplemental Notes.

For each individual i and selected drift site j, we computed the
site-specific drift magnitude (dj) as the squared deviation of meth-
ylation level from the mean, scaled by the site’s standard devia-
tion: dj = (Bij — B,)Z/SD,-, where d;; denotes the drift magnitude
for individual i at site j, 8; is the methylation level for individual
iatsitej, B; is the mean methylation level at site j, and SD; is the
standard deviation of methylation at site j. To derive weights for
aggregation, a nonnegative least squares regression between each
site’s drift score d;; and the age of the individual y; was then per-
formed, y;=a+v;d;;, where « is the intercept term, and y; is the re-
gression coefficient reflecting the correlation between drift score
and age. The overall positive epigenetic drift score EDS_POS; for in-
dividual i was then calculated by summing across selected sites (K),
weighted by their respective nonnegative regression coefficients
(1): EDS_POS; = Y%, vdj.

These weighting factors, derived from the NSPT and Hannum
cohorts, serve as a standard reference. EDS_POS scores were subse-

quently range-normalized to a 0-1 scale using reference popula-
tions to project minimum and maximum possible scores. The
negative epigenetic drift score (EDS_NEG) was constructed follow-
ing a similar approach. This involved using significant negative
drift-CpGs from the NSPT cohort and then range-standardizing
the scores to a 0-1 scale (details on site selection and final number
of sites in Supplemental Notes). As a validation, we also imple-
mented an entropy-based approach (Scherer et al. 2020) to mea-
sure individual-level DNA methylation variability. Genome-wide
Shannon entropy was computed for positive and negative drift-
CpGs, and its concordance with EDS values was assessed (details
and formula in Supplemental Notes).

Association of EDS with age, metabolome, and genetic variants

We evaluated correlations between EDS and chronological age in
the NSPT and CAS cohorts and assessed EDS distributions across
gender groups. In the NSPT cohort, we used linear regression to
test associations between EDS and NMR-derived lipoprotein sub-
fractions and small metabolites, adjusting for covariates (see
Supplemental Notes). Significance was determined using FDR-ad-
justed P<0.05. GWAS of EDS in NSPT was conducted using linear
regression models in PLINK, adjusting for relevant covariates. EDS
heritability was estimated using GCTA. Age-associated chromatin
state changes at key loci were visualized using the Integrative
Genomics Viewer (IGV) (Robinson et al. 2011) with hMSC ChIP-
seq data from GEO wunder accession number GSE156409
(McCauley et al. 2021).

Published software and resources

Publicly available software and R packages utilized in this
study include: R (V4.4.0) (R Core Team 2024), ggplot2 (Wickham
2016), diptest (https://cran.r-project.org/web/packages/diptest/
index.html), missMethyl (Phipson et al. 2016), poolr (Cinar and
Viechtbauer 2022), corrplot (https://github.com/taiyun/corrplot),
forestplot  (https://github.com/gforge/forestplot), ~ SHAPEIT3
(O’Connell et al. 2016), IMPUTE2 (Howie et al. 2009), PLINK2.0
(Purcell et al. 2007), GCTA (Yang et al. 2011), and IGV (URLs in
Supplemental Notes).

Software availability

The source codes used in this study to identify and quantify epige-
netic drift and to generate corresponding graphs are available at
GitHub (https://github.com/Fun-Gene/EpigeneticDriftScore) and
as Supplemental Code.
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