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Fingerprint morphology, while evolutionary conserved yet individually distinct, emerges as a pivotal biometric
identifier in anthropological research and forensic investigation. Current methodologies for precise identification
and quantification of complex morphological features—particularly ridge counting and mean ridge-furrow pairs
ridge breadth—remain constrained by labor-intensive and monolithic pattern recognition systems. This study
presents FPQuant (Fingerprint Phenomics Quantification), a multi-task deep learning framework integrating the
most comprehensive fingerprint pattern classification, singularity detection, and quantification of 12 morpho-
metric phenotypes to date. Leveraging NSPT database of 28,867 expert-curated fingerprints, FPQuant achieved
state-of-the-art performance with 97.18 % (6-class), 98.62 % (5-class), and 98.67 % (4-class) pattern classifi-
cation accuracy; 98.63 % precision in topological singularity detection through optimized discrete keypoint
localization; and expert-level precision in critical quantitative measurements including ridge counting. Cross-
database validation demonstrated extraordinary generalizability with 96.20 % of 5-class accuracy on NIST-4
and 97.75 % of singularity precision on FVC2002 DB1. Notably, FPQuant’s integrated phenotypic capability
revealed uncharacterized geographic variation in six morphometric traits, establishing novel fingerprint
morphometric biomarkers for anthropological research. This study creates a scalable technical paradigm that
bridging fingerprint phenomics with large-scale population study, while providing potential new research ave-
nues across anthropology, forensics and biometric authentication.

1. Introduction population studies [3]. Morphometric features such as ridge count, ridge

density and major axis angle capture heritable variations linked to sex

Fingerprints, characterized by parallel furrows and ridges on fin-
gertips, exhibit phenotypic diversity shaped by both genetic de-
terminants and early prenatal environmental factors [1,2]. These
regular configurations form three principal pattern types: arch, loop,
and whorl, which can be further sub-classified into three, four, five and
six categories (Fig. 1A). These primary patterns are highly distinctive
and persistent, forming a stable basis for individual identification and
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[4], geographic distance, racial and ethnic variations [5], and devel-
opmental asymmetry [6]. However, the identification and quantifica-
tion of fingerprint phenotypes remain a challenge in large-scale
population studies. In particular, measuring fingerprints—especially
regarding morphometric phenotypes (e.g., ridge counts, breadth, and
density; Table 1)—predominantly relies on manual methods or
low-precision techniques, thereby severely limiting reproducibility and
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hindering a comprehensive, multidimensional analysis of fingerprint
phenotypic heterogeneity across extensive populations.

Current fingerprint pattern classification methods primarily encom-
pass conventional approaches based on syntax, singularity, and struc-
ture, as well as deep learning methods utilizing convolutional neural
networks (CNNs) [7,8]. Syntax-based methods rely on grammar classi-
fication, singularity-based methods extract flow-line traces from singu-
lar regions, and structure-based methods use inexact graph matching to
construct relational graphs from directional image segmentation.
Despite achieving a maximum accuracy of 91.60 % on the NIST-4
database, these methods are labor-intensive, require extensive pre-
processing, and suffer from reduced testing efficiency and model opti-
mization. In recent years, machine learning, notably CNN-based
approaches, has emerged as a well-established paradigm in image
recognition, streamlining preprocessing and enhancing classification
performance [9,10]. Shallow networks, such as CaffeNet and VGG,
achieved accuracies ranging from 90.73 % to 95.05 % for five-category
classification, while their limited depth constrains their performance in
fine-grained fingerprint classification [11,12]. Conversely, deeper net-
works, such as ResNet, offer greater representational capacity, pre-
senting the potential for more advanced and effective approaches to
fingerprint classification [13].

Beyond the first-level primary pattern classification, quantifying
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more morphometric characteristics offers a more comprehensive un-
derstanding of a fingerprint, thereby speeding up recognition processes
and revealing population phenotypic heterogeneity. These morpho-
metric attributes include metrics such as fingerprint ridge count (RC),
which measures the number of ridges that lie between the core and delta
points, and the ridge-valley thickness ratio, among others, as presented
in Table 1. These morphometric attributes critically rely on the precise
singularity detection in the first phase. Over the past decades, various
methodologies have been proposed to detect singularities. For instance,
Poincaré Index-based approaches attain a singularity detection accuracy
of 97.75 % via closed-loop orientation analysis; however, they are prone
to a high false positive rate and poor adaptability to diverse ridge
structures [14]. Additionally, manual feature extraction incurs sub-
stantial computational burdens and lacks scalability for large datasets.
Although deep learning models exhibit progressive improvements in
accuracy on singular points detection, such as FCN with 95.39 % accu-
racy [15], Faster R-CNN with 96.03 % [16], and CP-Net with 96.50 %
[17], their functional limitations remain: CP-Net employing multi-level
(MLN) and multi-resolution (MRN) networks is confined to core point
detection, while the bounding-box paradigm of Faster R-CNN constrains
scalability for fine-grained ridge texture measurement. These con-
straints result in limited subpixel localization precision and hinder
robust morphometric analysis. Recent efforts on morphometric
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Fig. 1. Illustration of fingerprint pattern classification. (A) Types of fingerprint patterns. Fingerprints can be classified into three major categories: Arch, Loop, and
Whorl, based on the presence of deltas, cores, and the direction of ridges. These shapes and contours can be further subdivided into various combinations, such as
four classes (without distinguishing between Arch and Whorl), five classes (excluding the separation of Whorl), and six classes. Core and delta points are indicated in
orange and green, respectively. (B) Examples of fingerprint images from the private National Survey of Physical Traits (NSPT) dataset, as well as public datasets:
Fingerprint Verification Competition 2002 Database 1 (FVC2002 DB1) and NIST Special Database 4 (NIST-4). These include rolled fingerprints, flat fingerprints, and
prints obtained by photographing after flat-ink printing, respectively.
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Table 1
Morphometric phenotypes of fingerprints (i.e., ridge parameters).
Full Name Abbreviation  Definition Schematic
Diagram
Ridge count RC Measured by counting the Valley

[18] intervening ridges between
the core and delta of a
fingerprint, the ridge count -
is zero for an arch.

Ridge density RD Calculated by dividing the '
[4] number of ridges counted in
a predefined 5 x 5 mm2
area by the area’s size.

Ridge breadth RB Defined as the

[21] measurement from the
center of one furrow across
the ridge to the center of the
next furrow.
Two measurement /
techniques for Mean Ridge
Breadth (MRB): Mean
Individual Ridge Breadth
(MIRB) and Mean Ridge -
Furrow Pairs Ridge Breadth

Mean ridge MRB
breadth [21]

(MPRB).
Mean Individual ~ MIRB Calculated as the average -
Ridge Breadth distance from the center of
[21] one furrow, across multiple 1
ridges, to the center of an f
adjacent furrow.
Mean Ridge- MPRB Measured by taking prints ¥
Furrow Pairs perpendicularly across
Ridge Breadth multiple ridge breadths

[21] simultaneously, then
dividing by the number of
ridge - furrow pairs

Ridge thickness RT Measured as the width of ¥

[22] the high gray level value
obtained in the direction
normal to ridge flow.

Valley thickness VT Measured as the width of
[22] the low gray level value
obtained in the direction
normal to valley flow.

Ridge-Valley RVTR Defined as the ratio of /
Thickness Ridge Thickness (RT) to
Ratio [22] Valley Thickness (VT).

Major angle [6] MA Formed by two deltas and
the core, the triangle
creates the major angle
(MA) on either side and
defines a perpendicular axis
through the core.

Angle bisectors of the P
triangle formed by two .
deltas and the core
intersect. A perpendicular
from this intersection to the
line joining the deltas
determines if it passes
through the core or deviates
right or left.

Bisector [23] Bisector

phenotypes quantification achieves 96.6 % exact-match accuracy and
1.1 % EER on FVC2002 plain fingerprints [18], but generalize poorly to
rolled or cross-sensor fingerprint data and support only short-range
ridge counts (< 15), which are inadequate for capturing full
core-to-delta spans required in many biomedical applications. Conse-
quently, a critical gap remains in the absence of an end-to-end, scalable
framework capable of high-accuracy multi-dimensional morphometric
quantification.

This paper proposes an integrated deep learning framework,
FPQuant, for the precise quantification of 12 fingerprint phenotypes.
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The framework, built on deep neural networks, first classifies fingerprint
patterns and then uses the CSPNeXt backbone network to detect singular
points with high precision, converting the task into a subpixel classifi-
cation of horizontal and vertical coordinates [19]. Furthermore, a
Depth-First Search (DFS)-based connected component detection algo-
rithm is incorporated to accurately quantify morphometric features such
as ridge count and ridge density. FPQuant is applied to quantify
fingerprint phenotypes in 28,867 fingerprint images from 3078 Han
Chinese individuals, revealing significant population heterogeneity
across six phenotypes. This advancement enhances the efficiency of
biometric applications for identity verification using large-scale finger-
print databases and provides a scalable infrastructure for biological
anthropology, population genetics, and medical research.

2. Material and methods
2.1. Model-construction datasets

In the model-construction phase, this study utilizes a self-built Chi-
nese fingerprint dataset from the National Survey of Physical Traits
(NSPT), a subject of The National Science & Technology Basic Research
Project. The dataset comprises cross-sectional fingerprint images
collected from three geographically distinct regions of China, from north
to south: Zhengzhou (NSPT-ZZ, n = 10,246), Taizhou (NSPT-TZ, n =
4937), and Nanning (NSPT-NN, n = 13,684), with all images captured
using standardized DactyScan40i rolled fingerprint scanner at 800x750
pixel resolution. Each fingerprint image contains four annotation layers
(six-, five-, four- and three-class taxonomies; Fig. 1A), independently
labeled by two trained dermatoglyphics experts and subsequently veri-
fied by a third expert, with all decisions documented to ensure anno-
tation reliability and reproducibility. This established consensus-based
protocol was also applied to ensure the consistency of ridge counting in
50 samples, as detailed in Section 4.3. A subsample of 1000 NSPT-ZZ
images underwent additional annotation for precise coordinate map-
ping of singular points using Labelme software [20], thereby to estimate
morphometric phenotypes of fingerprints (Table 1). For neural network
optimization, we implemented a stratified sampling strategy allocating
6976 NSPT-ZZ samples to training/validation (7:3 split), while reserving
the remaining 21,891 samples (comprising NSPT-NN, NSPT-TZ, and the
remaining NSPT-ZZ samples) for comprehensive algorithm validation
through cross-regional testing.

2.2. Cross-validation datasets

To rigorously assess algorithm generalization, we established a dual
verification protocol using benchmark fingerprint databases: a) finger-
print classification validation: the NIST Special Database 4 (NIST-4; n =
4000) [24] with five-class taxonomy (arch, left loop, right loop, tented
arch and whorl) served as the primary benchmark. This database
maintains strict class balance through dual-label assignments, where
ambiguous patterns receive complementary classifications. Following
contemporary computational fingerprinting practices, we prioritized
primary labels during model training while accepting either annotated
class as valid during performance evaluation; b) singular point detection
validation: the Fingerprint Verification Competition 2002 Database 1
(FVC2002 DB1; n = 800) [25], containing annotated singular points in
flat impressions, provided validation for singularities region detection.
This stratified validation architecture explicitly separates classification
accuracy assessment from feature detection robustness evaluation. The
implementation details of cross-database validation protocols and cor-
responding data distribution are systematically outlined in Table 2.

3. Proposed architecture

The proposed model architecture consists of three distinct modules:
the Fingerprint Pattern Classification Module (FPCM), the Singularity
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Table 2
Distribution of fingerprint patterns in different datasets.
Datasets Sample Image size Experiment scheme (% of total As At Lu Lr Ws wd Singular
size (pixel) samples) points
Our datasets NSPT-ZZ 10,246 800x750 Train: Val = 60 %: 10 % 88 55 1788 1810 2896 339 800
Test (30 %) 23 26 822 794 1426 179 200
NSPT-TZ 4937 800x750 Test (100 %) 79 40 1344 1353 1812 309 /
NSPT-NN 13,684 800x750 Test (100 %) 297 48 3748 3770 5072 749 /
Public NIST-4 4000 512x512 Train: Val = 37.5 %:12.5 % 394 388 221 603 394 /
datasets
Test (50 %) 406 412 579 197 406
FvC2002 800 388x374 Test (100 %) / / / / / / 800
DBI1A

Point Detection Module (SPDM), and the Morphometric Phenotype
Quantification Module (MPQM) (Fig. 2). The FPCM employs a ResNet18
deep residual neural network as a feature extractor to perform a multi-
class classification of fingerprint pattern modalities, enabling the
quantification of fingerprint phenotypes. The output of the FPCM, which
represents the fingerprint pattern modality class, serves as an adjustable
threshold input for the SPDM. The SPDM uses CSPNeXt [26] as its
backbone network for feature extraction and transforms the coordinate
prediction task into a sub-pixel classification problem, thus enhancing
the accuracy of singularity point detection [27]. Finally, the MPQM
module takes the singular point detection results from the SPDM as input
and applies a DFS-based connected components detection algorithm to
automate the quantification of fingerprint morphometric phenotypes.
The system, given an input fingerprint scan image, is capable of gener-
ating at least 12 distinct fingerprint phenotypes in a unified and efficient
process.

3.1. Fingerprint pattern classification module (FPCM)

This paper proposes a deep learning classification framework using
residual convolutional neural networks, in contrast to traditional
fingerprint classification methods based on handcrafted features. This
framework enables the automatic, joint learning of discriminative fea-
tures and fingerprint classification from the original images. To hierar-
chically learn the features of fingerprint images for classification, the
ResNet18 network was employed (Figure S1), with its architecture and
parameters detailed in Fig. 2.

A novel loss function is introduced to address class imbalance among
fingerprint categories. By assigning higher weights to minority classes (i.
e., those with fewer samples), the model’s performance in recognizing
these classes is improved. The following focal-loss function is employed
for fingerprint image classification:

1 1 M
FL = NZL" = =5 30D vl — p)log(pe) W

i=1c=1

where N was the number of samples, M was the number of classes, p;c
was the predicted probability that the observed sample i belongs to the
category c, and y;. was the ground truth. If the real class of sample i was
equal to ¢, y; was equal to 1; otherwise, it equaled to 0, a.represents the
weight for class c, defined as: a, = M%m, where n; is the number of
samples in class i. The modulation factor y was set to the empirical value
of 2 in the experiments [28].

In training the proposed network, the learning rate is initialized set
to 1 x 1072 for all layers and is reduced by a factor of 10 when the loss
plateaus after 5 epochs. The Adam optimizer, with momentum set to 0.9
and weight decay set to 1 x 10~%, is used. The network is trained for 100
epochs, and the best model is selected based on performance on the
validation set.

Additionally, the fingerprint classification is sensitive to image

rotation. Most of existing methods computed the image rotation for
fingerprint alignment, followed by classification. Instead of directly
computing image rotation, random rotations between —10 and 10 de-
grees are applied as data augmentation during training to enhance the
model’s robustness to rotational variations.

3.2. Singular point detection module (SPDM)

This section proposes a Fingerprint Singular Point Detection (Fin-
gerSPD) algorithm, which utilizes CSPNeXt [8] as the backbone network
for feature extraction due to the complexity of fingerprint images.
CSPNeXt integrates Cross-Stage Partial (CSP) feature fusion with Next-
Net’s grouped convolutions and channel-wise attention mechanisms
[26]. This design enables the network to focus on regions around sin-
gularities, enhancing the representation of key features. Grouped con-
volutions optimize feature extraction and computational efficiency
while maintaining a lightweight structure that reduces memory usage
and inference time.

Traditional keypoint detection methods often frame the problem as
regression or heatmap-based classification, which can lead to lower
accuracy, high computational cost, and complex post-processing. To
address these issues, we discretize the continuous coordinate values by
dividing the horizontal and vertical axes into equally spaced bins,
transforming keypoint localization into a classification task. The model
is trained to predict the bin containing the keypoint. By increasing the
number of bins, we reduce quantization error to a sub-pixel level, thus
improving localization accuracy [27]. In this module, we employ 1 x 1
convolutional layers to convert the features extracted by the backbone
network into a vectorized representation of keypoints, followed by two
fully connected layers for classification. This results in a streamlined
algorithm structure.

In the coordinate encoding phase, the x and y coordinates of the
keypoints are represented as two independent one-dimensional vectors,
with the length of each vector determined by a scaling factor 4 (> 1). For
the k-th keypoint, the encoded coordinates are represented as follows:

kK = (x,y) = (round(x*=2),round(y* x 1)) 2

The scaling factor A refines the localization accuracy to a level finer
than a single pixel, and the value is adaptively determined by the input
image. Its value needs to be determined based on the actual image
conditions. In the decoding phase, the model outputs two one-
dimensional vectors. The predicted coordinates of the keypoint are
computed as:

0; = argmaxi(ox(i)) / 2,0, = argmax;(oy(j)) / 4 @)

Thus, the position of the maximum value along each one-
dimensional vector is divided by the scaling factor 1 to revert to the
image scale. Finally, the two decoded values are concatenated to obtain
the keypoint’s position.

The experimental setup utilizes two NVIDIA RTX 3090 graphics
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Bisector 1 Left

Fig. 2. General framework of fingerprint phenomics quantification.

cards, equipped with CUDA v11.2 for efficient GPU-accelerated
computing. The deep learning framework employed is PyTorch v1.10.
During training, a batch size of 8 is used to balance computational ef-
ficiency and memory consumption. The model is trained for a maximum
of 250 epochs to ensure the learning of relevant features. The initial

learning rate is set to 1 x 10> which is dynamically adjusted
throughout training to improve convergence speed and stability. Addi-
tionally, input images are resized to 800x750 pixels, with necessary
scaling and cropping operations performed during preprocessing.
Several evaluation metrics are employed to assess the performance of
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the fingerprint singularity detection algorithm:
e AP (Average Precision): This metric measures the average prediction

accuracy across multiple categories, with a higher AP indicating
better prediction performance. It is calculated as:

0
AP = / Precision(Recall)d(Recall) ©)]
1

—o— NSPT-ZZ

Six Classifications c
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e TDR (True Detection Rate): A predicted point is considered correct if
it falls within a circle with a radius of k pixels centered on the true
location. The predicted location is considered a true core point if it
lies within k pixels of the actual location. The formula for this is:

\/ (Cpx — Cax)” + (Coy — Cay)* < k pixels ®)

Where C, and C, refer to predicted and ground truth coordinates,
respectively. In this study, the evaluation radius was set to 20 pixels.
This value was determined based on the average ridge width in our
600 dpi NSPT dataset (Figure S2), ensuring that the evaluation area
does not extend beyond a single ridge. This setting is also consistent

Five Classifications

—@— NSPT-TZ
—@— NSPT-NN

99 1

98.78

D Four Classifications E

Lr  Ws Wd As At Lu Lr w

Accuracy(%)

Precision(%)

50 - T

95

clsd ds3  — NSPT-zZ

GradCAM

GradCAM ++

Datasets
— NSPT-TZ

T — 50 50 - T — 50
Lr W A L W

Evaluation Parameters
—o— Precision -#- Recall

wd

Fig. 3. Performance and visual feature attribution of the fingerprint pattern classification module (FPCM). (A)-(E) The accuracy, precision and recall rates of six-
class, five-class, four-class, and three-class classification tasks in the NSPT databases. The classification criteria are detailed in Fig. 1A. (F) Salient fingerprint fea-
tures identified by the network using Grad-CAM (top) and Grad-CAM++ (bottom) for pattern classes A, L, Ws and Wd. Warmer colors indicate greater contribution to

classification.
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with the parameter used in a prior benchmark study [17].
3.3. Morphometric phenotypes quantification module (MPQM)

The quantification of morphometric phenotypes in fingerprints ini-
tiates with the computation of the ridge count (Table 1). This process
begins by initializing a labeled image along with a statistical information
array. We then traverse each pixel, commencing from the top-left corner
of the image, to determine if connected component analysis is required
based on the pixel’s labeling status and value. For unlabeled pixels
indicating a foreground (i.e., representing a ridge), we initiate a new
connected region and assign a distinct label. Utilizing the Depth-First
Search (DFS) algorithm, we label all connected foreground pixels
within that region while concurrently computing and storing statistical
information along with the centroid coordinates. Labeled pixels or those
representing the background (i.e., exhibiting values indicative of non-
ridges) are excluded from this analysis. Upon completion of the pixel
traversal, we compile the total number of connected regions, the labeled
image, the statistical information array, and the centroid coordinates
array, which are critical for the subsequent calculations of additional
morphometric fingerprint phenotypes.

The statistical analysis in this study was conducted using ANCOVA.
Initially, normality and homogeneity of variance tests were performed
on the dataset, followed by covariance analysis. A model was established
with RD and MPRB as the dependent variables, group as the independent
variable, and Sex and Age as covariates. The analysis was carried out
using the statsmodels package in Python.

4. Experiments and results
4.1. Fingerprint pattern classification

To assess the performance Resnet-18 in fingerprint pattern classifi-
cation module (FPCM), we evaluated the accuracy, precision and recall
metrics across four testing datasets from various fingerprint databases.
On three self-constructed test sets for 6-class classification, the FPCM
achieved accuracies of 97.18 %, 95.59 %, and 95.24 %, respectively. In
the five-, four- and three-class classification scenarios, the accuracy rates
gradually improved, and the NSPT-ZZ dataset, which was the data
source for model training, exhibited the highest accuracy at 98.78 %.
The accuracies rates of the other two datasets also remained at above
97.24 %, highlighting the generalizability of the proposed algorithm
across different distributions without the need for transfer learning
(Fig. 3A). Further analysis of precision and recall rates of each subclass
revealed that, compared with other categories, the simple arch (As),
tented arch (At), and double whorl (Wd) types with lower prevalence
exhibited lower precision and recall rates (Fig. 3B-E), which could be
attributed to the various class imbalances in the dataset (Table 2).
Comprehensive confusion matrices for all datasets and tasks are pro-
vided in Supplementary Data. Importantly, visual explanations from
Grad-CAM/Grad-CAM++ (Fig. 3F) demonstrate that the model’s de-
cisions are grounded in well-established fingerprint structures (core,
delta regions and ridge direction flow)—anatomically meaningful areas
critical for fingerprint classification—thereby validating the biological
plausibility of the learned features.

The NIST-4 database, a standard reference in fingerprint image
analysis, features non-rolling scanned image types and balanced distri-
bution of five-class fingerprint patterns, which is different from the
samples used to construct model in this study (Fig. 1B, Table 2). Initial
direct evaluation of FPCM algorithm on NIST-4 yielded 83.70 % clas-
sification accuracy (Table 3), revealing domain shift limitations.
Therefore, we implemented a transfer learning framework with partial
domain adaptation, fine-tuning the pre-trained deep network of FPCM
on 50 % of the NIST-4 database samples. This strategic retraining ach-
ieved the highest five-class classification accuracy of 96.20 %, out-
performing existing methods (Table 3), demonstrating the effectiveness
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Table 3
The accuracy of five-class pattern classification in NIST-4 reference database.

Studies Method Training Test Accuracy of
five-classes
(%)
Zhang and Singularity / NIST-4  84.30
Yan [29] -based
Yaoetal. [30] Structure- / NIST-4 89.30
based
Tanetal. [31]  Structure- / NIST-4  91.60
based
Daniel et al. CNN: SfinGedatabases (n NIST-4 90.73
[32] CaffeNet = 10,000), (n=
NIST-4 (n = 1650)  2350)
Michelsanti CNN:VGG-F NIST-4 (n = 3900) NIST-4  94.40
etal. [11] (n=
100)
Michelsanti CNN:VGG-S NIST-4 (n = 3900) NIST-4 95.05
etal. [11] (n=
100)
Akhila et al. Lightweight NIST-4 (n = 3600) NIST-4  93.75
[12] CNN (n=
400)
Proposed Resnet-18 NSPT-ZZ (n = NIST-4 54.05(without
Classifier 6976) (n= preprocess)
4000)
NSPT-ZZ (n = NIST-4  83.70
6976) (n=
4000)
NSPT-ZZ (n = NIST-4  96.20
6976), (n=

NIST-4 (n = 2000) 2000)

of the proposed algorithm in leveraging multi-level features to achieve
superior classification performance.

4.2. Fingerprint singular point detection

This section employed a triple-metric evaluation framework
encompassing average precision (AP), true detection rate (TDR) and
cross-dataset benchmarking to assess the phenotyping capabilities of the
proposed FingerSPD algorithm in Singular Points Detection Module
(SPDM). At epoch 200, the training loss value tended to be stable at 0.01
and the validation Average Prevision (AP) at 98.63 %, indicating robust
convergence of the model (Fig. 4A). The TDR values of the four finger-
print patterns (i.e., arch, loop, simple whorl, and double whorl) were all
greater than 98.00 %, highlighting the robust generalization perfor-
mance of the FingerSPD algorithm in singularity point detection
(Fig. 4B).

Notably, our proposed FingerSPD incorporates a discretization factor
4 to regulate the number of bins per pixel in its sub-pixel classification
stage, with A = 2 determined as optimal for balancing precision and
complexity (Section 3.2; Fig. 4C). Unlike Faster R-CNN, FingerSPD’s
subpixel singularity detection eliminates the need for complex
anchor-based computation or post-processing steps such as non-
maximum suppression, which substantially improves localization ac-
curacy, yielding a subpixel error of <0.5 px.

To interpret the learned representations, we visualized activations
from the final convolutional layer via heatmapping, which served as a
tool for assessing the model’s interpretability and rationality of its
learned representations. The resulting attention maps reveal that the
model, guided by CSPNeXt’s channel-attention mechanism, selectively
focuses on ridge textures while avoiding redundant feature extraction.
Notably, activations are predominantly concentrated around singular
points (Fig. 4D), confirming that the network leverages structurally
meaningful regions for decision-making.

The proposed FingerSPD achieved an impressive 97.75 % TDR on the
public database FVC2002 DB1, demonstrating its competitiveness with
existing methods (Table 4). Furthermore, by integrating the prior
knowledge from the FPCM results, our method not only enables
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Fig. 4. The singularity detection precision in NSPT databases. (A) Model performance during the training process, illustrating the changes in the loss function for the
training set in relation to the training steps, and the variations in Average Precision (AP) for the validation set. (B) The True Detection Rate (TDR) of the model on the
validation set from the self-constructed Chinese database. The Arch patterns do not contain delta singularity. (C) Ablation study of the discretization factor A in
FingerSPD. A controls the number of bins per pixel in sub-pixel classification. Model performance increases initially and then decreases as A grows, with an optimal
value at A = 2. (D) Visualization of FingerSPD’s fingerprint singularity detection region.

Table 4

Performance of fingerprint singularity detection of different algorithms.

Studies Methods Training set Test set Output on FVC2002 dataset
Core Delta
TDR FAR TDR FAR
(%) (%) (%) (%)
Zhou et al. [33] Differences of the / FVC2002 95.78 2.27 96.98 9.97
ORlentation DB1
(n = 800)
Qin et al. [15] Fully Convolutional Private dataset FVC2002 95.39 1.03 98.26 4.10
Networks (n = 15,000) DB1
(n = 800)
Liu et al. [16] Faster R-CNN FVC2002 (n = 400), FVC2002 96.03 0.92 98.33 3.88
NIST sd04 (n = 2000), DB1
Ten-Finger Card (n = 50,124) (n = 400)
G. Arora et al. CP-Net (MLN and MRN) FVC2002 (n = 600), FVC2004 (n = 600), FVC2006 (n = FVC2002 96.50 0 / /
[17] 1260) DB1
(n = 200)
Proposed FingerSPD NSPT-ZZ (n = 800), FVC2002 97.75 0 95.00 0
FVC2002 (n = 400) DB1
(n = 400)
NSPT-ZZ 98.50 0 98.79 0
(n = 200)
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simultaneous detection of core and delta points but also eliminates the
false acceptance rate (FAR) entirely. This significant enhancement ex-
pands the potential applications of our approach in fingerprint
recognition.

4.3. Fingerprint morphometric phenotypes quantification

The Morphometric Phenotype Quantification Module (MPQM)
implemented a rigorous evaluation framework to assess the reliability of
our Depth-First Search (DFS)-based connected components detection
algorithm for ridge counting between singularities. A triple-blind
comparative analysis involving three experts (denoted as M) and the
algorithmic system (denoted as P) was performed on 50 representative
samples. Statistical analysis revealed no significant inter-rater discrep-
ancies among experts (p = 0.50; Intraclass Correlation Coefficient, ICC =
0.95) nor differences between experts (P) and computational evaluation
(M) (p = 0.72; ICC = 0.94) in ridge count quantification (Fig. 5A).
Notably, 46 % of samples (23/50) demonstrated perfect concordance in
error patterns between manual and automated counts, exceeding the
incidence of larger (24 %; 12/50) or smaller (30 %; 15/50) discrepancies
in human annotations (Fig. 5B). The maximum observed deviation be-
tween modalities was constrained to 3 ridge lines (Mean Absolute Dif-
ference: MAD = 1.24), establishing operational feasibility for
population-level analyses. The framework could also be extended to
ridge density, breadth, and thickness quantification with sub-pixel
precision (Table 1).

The proposed unified deep learning framework achieves enhanced
computational efficiency compared to traditional methods that rely on
rules, handcrafted features, or isolated models. Although the training of
the network may demand more time, the testing process with the trained
model is remarkably swift. As shown in Table 5, the framework dem-
onstrates order-of-magnitude improvements across all processing stages
compared to conventional approaches. Specifically, the FPCM on
pattern classification executes in 6.30 ms, which is 10 times faster than
rule-based (100.20 ms) and handcrafted-features (39.00 ms) ap-
proaches. The SPDM on singular point detection achieves 95.00 ms,
surpassing CP-Net (165.00 ms) and BC (253.00 ms). The MPQM on
quantification takes just 10.40 ms per image. The proposed framework
integrating FPCM, SPDM, and MPQM, takes 118.00 ms per image,
making it ideally suited for rapid and accurate fingerprint analysis in
real-time and large-scale tasks.
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Table 5
Time consuming comparison.
Modules Methods Hardware Time
Configuration Consumption
(ms)
FPCM CNN: NVIDIA GTX 100.20
CaffeNet TITAN GPU
[32]
CNN: VGG-F NVIDIA GTX 950 39.00
[11] M GPU
CNN: VGG-S NVIDIA GTX 950 77.00
[11] M GPU
Proposed NVIDIA GTX 3090 6.30
SPDM CP - Net [17] NVIDIA GTX 1080 165.00
Ti
Proposed NVIDIA GTX 3090 95.00
MPQM Proposed NVIDIA GTX 3090 10.40
End - to - end of the Proposed NVIDIA GTX 3090 118.00
proposed
framework

4.4. Population-specific fingerprint profiling using multi-dimensional
phenotypes

Employing the FPQuant computational framework, we conducted
systematic biometric profiling of Han Chinese populations across three
geographically distinct cohorts from north to south of China (NSPT-ZZ: n
= 1039; NSPT-TZ: n = 521; NSPT-NN: n = 1518 participants). The
framework’s multivariate analysis pipeline simultaneously quantifies
phenotypic parameters, such as Pattern classification, Ridge Count (RC),
Ridge Density (RD), Mean Ridge-Furrow Pairs Ridge Breadth (MPRB),
Major angle (MA), and Bisector (Table 1).

Cross-population analysis revealed significant biogeographic diver-
gence in fingerprint characteristics (Fig. 6; Table S1). Specifically, sub-
stantial inter-regional differences emerged in whorl patterns, with
NSPT-ZZ demonstrating elevated prevalence of simple whorls (Ws:
42.18 % vs. NSPT-NN 37.07 %, p = 4.00x10'% vs. NSPT-TZ 36.7 %, p
= 2.62x10716), while NSPT-NN exhibited unique simple arch predom-
inance (As: 2.17 % vs. other regions, p = 1.36x1071%). In addition,
highly bilateral symmetry in digits with the same name (left-right con-
sistency > 0.05, Figure. S3) contrasted with marked digit-specific
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Fig. 5. The measurement of ridge counts in 50 fingerprints of NSPT dataset. (A) Box plot comparison of ridge count results between the three experts-level (P) and
algorithm-based (M) model. The differences between groups were analyzed by Analysis of Variance (ANOVA); (B) Visualization of ridge count errors between the
machine and expert counts across 50 test images. P1-P3 represent the ridge count results of the three experts, P&P denotes the average ridge count error among the
three experts, and P&M indicates the average ridge count error between the model and the three experts.
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patterning, e.g., the Ws pattern dominated on ring fingers (29.95 %), Lr
prevailed on the index finger (74.31 %), and Lu was predominant on the
middle finger and little fingers (79.55 %, Figure. S4).

Quantitative analyses of morphometric characteristics uncovered
unreported biogeographic variation of fingerprints cross populations.
NSPT-ZZ - NSPT-NN comparisons revealed obvious ridge count (RC)
divergence in ulnar loop patterns (ARC = 1.59; p = 1.88x107%° -
9.54x10~ 7). The ridge density (RD) was the highest in NSPT-ZZ with
decreasing among three populations from north to south (NSPT-ZZ
15.34 > NSPT-TZ 14.62 > NSPT-NN 14.23; p = 3.50><10725), while
MPRB showed the increased regional trends (NSPT-ZZ: 0.51 < NSPT-TZ:
0.55 < NSPT-NN: 0.57; p = 2.75x10~°). Notably, significant differences
were observed in the MA (AMA = 1.8°;p = 1.18x10~ % and Bisector
positional offsets (p = 2.05x107%), exposing previously undocumented
whorl imbalance gradients in large-scale population study.

5. Discussion

This study proposes FPQuant, a unified and automated framework
for fingerprint phenotyping that integrates three core modules: finger-
print pattern classification (FPCM), the singular point detection (SPDM),
and the morphometric phenotype quantification (MPQM). By leveraging
a data-driven manner, the framework takes fingerprint images as input
and outputs corresponding fingerprint phenotypes, including fingerprint
patterns and eleven morphometric phenotypes. It demonstrates excel-
lent accuracy, generalization performance and integration capability,
marking substantial advancements in multiple quantification of finger-
print phenotypes. Its strong performance and scalability have enabled
the first large-scale analysis of fingerprint morphometric heterogeneity
in a Han Chinese cohort. These quantitative traits may reflect underlying
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genetic regulation, as evidenced by prior genome-wide association
studies (GWAS) and developmental studies implicating WNT, EDAR,
and BMP signaling pathways in ridge patterning, spacing and size [2,
34]. These findings reinforce the potential of FPQuant as a powerful tool
for bridging morphological fingerprints with genetic underpinnings and
facilitating future biomarker discovery.

The principal methodological innovation of FPQuant lies in its
subpixel-level singularity detection capability. The dedicated FingerSPD
module achieves precise singularity localization at the subpixel level
without relying on anchor-based detection or additional post-processing
steps, by reformulating the task as two independent classification
problems for horizontal and vertical coordinates and uniformly dividing
each pixel into multiple bins [27]. This approach not only ensures high
localization accuracy (with a mean error of <0.5 pixels) but also reduces
computational overhead.

A specific challenge in ridge counting measurement lies in ridge
thinning [35], a necessary step for obtaining direction information but
potentially leading to ridge deformations, such as cuts, twigs or cross
ridges absent in original images. To address this issue, we implemented a
DFS-based connected component detection algorithm, which effectively
identifies and groups connected pixels in the image, thereby enhancing
the precision of ridge representation. However, errors in detecting
strongly connected components may occur if ridges touch due to unclear
images or uneven pressure during acquisition (Fig. 7C).

Three main limitations should be noted. First, data generalizability
and reproducibility: The model was trained predominantly on a Han
Chinese cohort, which may limit its generalizability to other populations
with distinct morphometric traits. Furthermore, the use of a private
dataset hinders reproducibility and impedes independent, large-scale
external validation by the research community.

»

(D (FPCM) Expert-challenging phenotypes |

- >

T

Segment anything model
(Sam)

|
3
%

- o

Fig. 7. Scenarios that potentially lead to quantification bias. (A) Low-quality fingerprint acquisition with issues such as blurriness and missing parts; (B) Inaccurate
detection of singular points due to unclear scanning in the core or delta region of the image; (C) The ridge counting deviation may be affected by ridge breaks or
overlaps; (D) Unclear or undistinctive classification. The left image could be interpreted as either a loop or a simple whorl, while the right fingerprint might be
classified as an arch or a loop; (E) Traditional image-processing-based preprocessing pipeline for domain adaptation, incorporating background removal, adaptive
binarization, and ridge enhancement. In this study, the pipeline was applied exclusively to NIST-4 to alleviate domain shift from NSPT.
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Second, sensitivity to image quality and domain shift: FPQuant’s
performance is susceptible to fingerprint image quality and cross-
domain discrepancies. Artifacts such as excessive darkness from sweat-
ing, incomplete singular points, or pressure distortions (Fig. 7A-C) can
adversely affect pattern classification, singularity detection, and ridge
counting. Although these low-quality images only constituted 1 % of the
total entire private test dataset, they account for approximately 4 % of
all misclassifications. This not only highlights their disproportionate and
non-negligible impact on model errors but also suggests that the ma-
jority of misclassifications likely stem from other, more complex factors,
such as techniques or potential data imbalance.

To mitigate both image-quality limitations and domain shift between
rolled-scanned images in NSPT and flat-scanned inked pression in NIST-
4, we implemented and evaluated a traditional image-processing pipe-
line incorporating background removal [36], adaptive binarization, and
ridge enhancement (Fig. 7E). While this approach exhibits progressive
improvements in cross-domain classification accuracy on NIST-4 from
54.05 % to 83.7 %, future work may explore even more lightweight
processing—such as denoising and contrast adjustment—to better
handle acquisition noise and suboptimal contrast, offering a promising
direction for further robustness and applicability gains in diverse chal-
lenging real-world environments. It is also noteworthy that the suc-
cessful efforts made by fine-tuning in model training stage, achieving the
highest five-class classification accuracy of 96.20 %, demonstrating it
offers a superior solution when sufficient target-domain data are avail-
able. Whereas, in data-limited scenarios where fine-tuning is infeasible,
the preprocessing pipeline serves as an effective alternative for domain
adaptation, significantly improving cross-dataset performance.

Third, inherent class ambiguity and imbalance: classification errors
also arise from two other reasons: the one is distinguishing between fine-
grained subclasses, such As versus At and Ws versus Wd, proves
exceedingly challenging, even for experienced human experts (Fig. 7D),
as documented in benchmark datasets such as NIST-4 [24]. These
ambiguous cases accounted for 52.5 % of all misclassifications in our
dataset. The other one reason is the substantial class imbalance in types,
with only approximately 6 % of patterns belonging to the simple arch
and tented arch types. Although we employed transfer learning, focal
loss, and rotation-based data augmentation to alleviate this, perfor-
mance on under-represented classes (e.g., Wd) remains suboptimal. The
potential future strategies—such as synthetic data generation via
generative models (e.g., GANs or diffusion models), virtual sample
creation, and advanced ensemble learning [37,38] or multi-objective
optimization approaches [39]—may help address severe class imbal-
ance and improve overall robustness across all categories.

6. Conclusion

This study has introduced FPQuant, a unified multi-task deep
learning framework for automated and comprehensive fingerprint
phenomics quantification like biologically stable features extraction.
FPQuant integrates high-accuracy multiple-class fingerprint pattern
classification (>98 %), high-precision singular point detection (98.63
%), and fine-grained and expert-comparable morphometric analysis
within a single architecture, achieving state-of-the-art performance
across multiple benchmarks. Notably, FPQuant integrates a subpixel-
level singularity detection module within a unified multi-task architec-
ture, delivering higher localization precision, faster computation, and
integrated morphometric analysis compared to existing methods. The
framework demonstrates strong cross-database generalizability, main-
taining 96.20 % accuracy on NIST-4 and 97.75 % singularity precision
on FVC2002 DBI1. Critically, FPQuant has uncovered previously
uncharacterized geographic variations in fingerprint morphology
through its precise quantification of 12 morphometric traits, establish-
ing novel morphometric biomarkers for population genetics and
anthropological research.

While the framework incorporates adaptive preprocessing and a
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strategically designed architecture to enhance robustness, it remains
sensitive to image quality, dataset class imbalance, and challenging
capture conditions. Its generalizability across diverse ethnic populations
also requires further validation. Addressing these aspects including
cross-domain adaptation, generative model-based synthetic data gen-
eration for rare classes, and expansion to multi-ethnic cohorts remain
technical focus for future work to improve generalizability under real-
world conditions. In parallel, FPQuant bridges computational pattern
recognition and dermatoglyphic science, enabling large-scale repro-
ducible analysis. This paves the way for scientific inquiries into the
genetics and development of fingerprint morphology, and supports
advanced applications in forensics and precision biometrics.
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