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A B S T R A C T

Fingerprint morphology, while evolutionary conserved yet individually distinct, emerges as a pivotal biometric 
identifier in anthropological research and forensic investigation. Current methodologies for precise identification 
and quantification of complex morphological features—particularly ridge counting and mean ridge-furrow pairs 
ridge breadth—remain constrained by labor-intensive and monolithic pattern recognition systems. This study 
presents FPQuant (Fingerprint Phenomics Quantification), a multi-task deep learning framework integrating the 
most comprehensive fingerprint pattern classification, singularity detection, and quantification of 12 morpho
metric phenotypes to date. Leveraging NSPT database of 28,867 expert-curated fingerprints, FPQuant achieved 
state-of-the-art performance with 97.18 % (6-class), 98.62 % (5-class), and 98.67 % (4-class) pattern classifi
cation accuracy; 98.63 % precision in topological singularity detection through optimized discrete keypoint 
localization; and expert-level precision in critical quantitative measurements including ridge counting. Cross- 
database validation demonstrated extraordinary generalizability with 96.20 % of 5-class accuracy on NIST-4 
and 97.75 % of singularity precision on FVC2002 DB1. Notably, FPQuant’s integrated phenotypic capability 
revealed uncharacterized geographic variation in six morphometric traits, establishing novel fingerprint 
morphometric biomarkers for anthropological research. This study creates a scalable technical paradigm that 
bridging fingerprint phenomics with large-scale population study, while providing potential new research ave
nues across anthropology, forensics and biometric authentication.

1. Introduction

Fingerprints, characterized by parallel furrows and ridges on fin
gertips, exhibit phenotypic diversity shaped by both genetic de
terminants and early prenatal environmental factors [1,2]. These 
regular configurations form three principal pattern types: arch, loop, 
and whorl, which can be further sub-classified into three, four, five and 
six categories (Fig. 1A). These primary patterns are highly distinctive 
and persistent, forming a stable basis for individual identification and 

population studies [3]. Morphometric features such as ridge count, ridge 
density and major axis angle capture heritable variations linked to sex 
[4], geographic distance, racial and ethnic variations [5], and devel
opmental asymmetry [6]. However, the identification and quantifica
tion of fingerprint phenotypes remain a challenge in large-scale 
population studies. In particular, measuring fingerprints—especially 
regarding morphometric phenotypes (e.g., ridge counts, breadth, and 
density; Table 1)—predominantly relies on manual methods or 
low-precision techniques, thereby severely limiting reproducibility and 
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hindering a comprehensive, multidimensional analysis of fingerprint 
phenotypic heterogeneity across extensive populations.

Current fingerprint pattern classification methods primarily encom
pass conventional approaches based on syntax, singularity, and struc
ture, as well as deep learning methods utilizing convolutional neural 
networks (CNNs) [7,8]. Syntax-based methods rely on grammar classi
fication, singularity-based methods extract flow-line traces from singu
lar regions, and structure-based methods use inexact graph matching to 
construct relational graphs from directional image segmentation. 
Despite achieving a maximum accuracy of 91.60 % on the NIST-4 
database, these methods are labor-intensive, require extensive pre
processing, and suffer from reduced testing efficiency and model opti
mization. In recent years, machine learning, notably CNN-based 
approaches, has emerged as a well-established paradigm in image 
recognition, streamlining preprocessing and enhancing classification 
performance [9,10]. Shallow networks, such as CaffeNet and VGG, 
achieved accuracies ranging from 90.73 % to 95.05 % for five-category 
classification, while their limited depth constrains their performance in 
fine-grained fingerprint classification [11,12]. Conversely, deeper net
works, such as ResNet, offer greater representational capacity, pre
senting the potential for more advanced and effective approaches to 
fingerprint classification [13].

Beyond the first-level primary pattern classification, quantifying 

more morphometric characteristics offers a more comprehensive un
derstanding of a fingerprint, thereby speeding up recognition processes 
and revealing population phenotypic heterogeneity. These morpho
metric attributes include metrics such as fingerprint ridge count (RC), 
which measures the number of ridges that lie between the core and delta 
points, and the ridge-valley thickness ratio, among others, as presented 
in Table 1. These morphometric attributes critically rely on the precise 
singularity detection in the first phase. Over the past decades, various 
methodologies have been proposed to detect singularities. For instance, 
Poincaré Index-based approaches attain a singularity detection accuracy 
of 97.75 % via closed-loop orientation analysis; however, they are prone 
to a high false positive rate and poor adaptability to diverse ridge 
structures [14]. Additionally, manual feature extraction incurs sub
stantial computational burdens and lacks scalability for large datasets. 
Although deep learning models exhibit progressive improvements in 
accuracy on singular points detection, such as FCN with 95.39 % accu
racy [15], Faster R-CNN with 96.03 % [16], and CP-Net with 96.50 % 
[17], their functional limitations remain: CP-Net employing multi-level 
(MLN) and multi-resolution (MRN) networks is confined to core point 
detection, while the bounding-box paradigm of Faster R-CNN constrains 
scalability for fine-grained ridge texture measurement. These con
straints result in limited subpixel localization precision and hinder 
robust morphometric analysis. Recent efforts on morphometric 

Fig. 1. Illustration of fingerprint pattern classification. (A) Types of fingerprint patterns. Fingerprints can be classified into three major categories: Arch, Loop, and 
Whorl, based on the presence of deltas, cores, and the direction of ridges. These shapes and contours can be further subdivided into various combinations, such as 
four classes (without distinguishing between Arch and Whorl), five classes (excluding the separation of Whorl), and six classes. Core and delta points are indicated in 
orange and green, respectively. (B) Examples of fingerprint images from the private National Survey of Physical Traits (NSPT) dataset, as well as public datasets: 
Fingerprint Verification Competition 2002 Database 1 (FVC2002 DB1) and NIST Special Database 4 (NIST-4). These include rolled fingerprints, flat fingerprints, and 
prints obtained by photographing after flat-ink printing, respectively.

Z. Han et al.                                                                                                                                                                                                                                     Pattern Recognition 173 (2026) 112808 

2 



phenotypes quantification achieves 96.6 % exact-match accuracy and 
1.1 % EER on FVC2002 plain fingerprints [18], but generalize poorly to 
rolled or cross-sensor fingerprint data and support only short-range 
ridge counts (< 15), which are inadequate for capturing full 
core-to-delta spans required in many biomedical applications. Conse
quently, a critical gap remains in the absence of an end-to-end, scalable 
framework capable of high-accuracy multi-dimensional morphometric 
quantification.

This paper proposes an integrated deep learning framework, 
FPQuant, for the precise quantification of 12 fingerprint phenotypes. 

The framework, built on deep neural networks, first classifies fingerprint 
patterns and then uses the CSPNeXt backbone network to detect singular 
points with high precision, converting the task into a subpixel classifi
cation of horizontal and vertical coordinates [19]. Furthermore, a 
Depth-First Search (DFS)-based connected component detection algo
rithm is incorporated to accurately quantify morphometric features such 
as ridge count and ridge density. FPQuant is applied to quantify 
fingerprint phenotypes in 28,867 fingerprint images from 3078 Han 
Chinese individuals, revealing significant population heterogeneity 
across six phenotypes. This advancement enhances the efficiency of 
biometric applications for identity verification using large-scale finger
print databases and provides a scalable infrastructure for biological 
anthropology, population genetics, and medical research.

2. Material and methods

2.1. Model-construction datasets

In the model-construction phase, this study utilizes a self-built Chi
nese fingerprint dataset from the National Survey of Physical Traits 
(NSPT), a subject of The National Science & Technology Basic Research 
Project. The dataset comprises cross-sectional fingerprint images 
collected from three geographically distinct regions of China, from north 
to south: Zhengzhou (NSPT-ZZ, n = 10,246), Taizhou (NSPT-TZ, n =
4937), and Nanning (NSPT-NN, n = 13,684), with all images captured 
using standardized DactyScan40i rolled fingerprint scanner at 800×750 
pixel resolution. Each fingerprint image contains four annotation layers 
(six-, five-, four- and three-class taxonomies; Fig. 1A), independently 
labeled by two trained dermatoglyphics experts and subsequently veri
fied by a third expert, with all decisions documented to ensure anno
tation reliability and reproducibility. This established consensus-based 
protocol was also applied to ensure the consistency of ridge counting in 
50 samples, as detailed in Section 4.3. A subsample of 1000 NSPT-ZZ 
images underwent additional annotation for precise coordinate map
ping of singular points using Labelme software [20], thereby to estimate 
morphometric phenotypes of fingerprints (Table 1). For neural network 
optimization, we implemented a stratified sampling strategy allocating 
6976 NSPT-ZZ samples to training/validation (7:3 split), while reserving 
the remaining 21,891 samples (comprising NSPT-NN, NSPT-TZ, and the 
remaining NSPT-ZZ samples) for comprehensive algorithm validation 
through cross-regional testing.

2.2. Cross-validation datasets

To rigorously assess algorithm generalization, we established a dual 
verification protocol using benchmark fingerprint databases: a) finger
print classification validation: the NIST Special Database 4 (NIST-4; n =
4000) [24] with five-class taxonomy (arch, left loop, right loop, tented 
arch and whorl) served as the primary benchmark. This database 
maintains strict class balance through dual-label assignments, where 
ambiguous patterns receive complementary classifications. Following 
contemporary computational fingerprinting practices, we prioritized 
primary labels during model training while accepting either annotated 
class as valid during performance evaluation; b) singular point detection 
validation: the Fingerprint Verification Competition 2002 Database 1 
(FVC2002 DB1; n = 800) [25], containing annotated singular points in 
flat impressions, provided validation for singularities region detection. 
This stratified validation architecture explicitly separates classification 
accuracy assessment from feature detection robustness evaluation. The 
implementation details of cross-database validation protocols and cor
responding data distribution are systematically outlined in Table 2.

3. Proposed architecture

The proposed model architecture consists of three distinct modules: 
the Fingerprint Pattern Classification Module (FPCM), the Singularity 

Table 1 
Morphometric phenotypes of fingerprints (i.e., ridge parameters).

Full Name Abbreviation Definition Schematic 
Diagram

Ridge count 
[18]

RC Measured by counting the 
intervening ridges between 
the core and delta of a 
fingerprint, the ridge count 
is zero for an arch.

Ridge density 
[4]

RD Calculated by dividing the 
number of ridges counted in 
a predefined 5 × 5 mm2 
area by the area’s size.

Ridge breadth 
[21]

RB Defined as the 
measurement from the 
center of one furrow across 
the ridge to the center of the 
next furrow.

Mean ridge 
breadth [21]

MRB Two measurement 
techniques for Mean Ridge 
Breadth (MRB): Mean 
Individual Ridge Breadth 
(MIRB) and Mean Ridge - 
Furrow Pairs Ridge Breadth 
(MPRB).

/

Mean Individual 
Ridge Breadth 
[21]

MIRB Calculated as the average 
distance from the center of 
one furrow, across multiple 
ridges, to the center of an 
adjacent furrow.

Mean Ridge- 
Furrow Pairs 
Ridge Breadth 
[21]

MPRB Measured by taking prints 
perpendicularly across 
multiple ridge breadths 
simultaneously, then 
dividing by the number of 
ridge - furrow pairs

Ridge thickness 
[22]

RT Measured as the width of 
the high gray level value 
obtained in the direction 
normal to ridge flow.

Valley thickness 
[22]

VT Measured as the width of 
the low gray level value 
obtained in the direction 
normal to valley flow.

Ridge-Valley 
Thickness 
Ratio [22]

RVTR Defined as the ratio of 
Ridge Thickness (RT) to 
Valley Thickness (VT).

/

Major angle [6] MA Formed by two deltas and 
the core, the triangle 
creates the major angle 
(MA) on either side and 
defines a perpendicular axis 
through the core.

Bisector [23] Bisector Angle bisectors of the 
triangle formed by two 
deltas and the core 
intersect. A perpendicular 
from this intersection to the 
line joining the deltas 
determines if it passes 
through the core or deviates 
right or left.
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Point Detection Module (SPDM), and the Morphometric Phenotype 
Quantification Module (MPQM) (Fig. 2). The FPCM employs a ResNet18 
deep residual neural network as a feature extractor to perform a multi- 
class classification of fingerprint pattern modalities, enabling the 
quantification of fingerprint phenotypes. The output of the FPCM, which 
represents the fingerprint pattern modality class, serves as an adjustable 
threshold input for the SPDM. The SPDM uses CSPNeXt [26] as its 
backbone network for feature extraction and transforms the coordinate 
prediction task into a sub-pixel classification problem, thus enhancing 
the accuracy of singularity point detection [27]. Finally, the MPQM 
module takes the singular point detection results from the SPDM as input 
and applies a DFS-based connected components detection algorithm to 
automate the quantification of fingerprint morphometric phenotypes. 
The system, given an input fingerprint scan image, is capable of gener
ating at least 12 distinct fingerprint phenotypes in a unified and efficient 
process.

3.1. Fingerprint pattern classification module (FPCM)

This paper proposes a deep learning classification framework using 
residual convolutional neural networks, in contrast to traditional 
fingerprint classification methods based on handcrafted features. This 
framework enables the automatic, joint learning of discriminative fea
tures and fingerprint classification from the original images. To hierar
chically learn the features of fingerprint images for classification, the 
ResNet18 network was employed (Figure S1), with its architecture and 
parameters detailed in Fig. 2.

A novel loss function is introduced to address class imbalance among 
fingerprint categories. By assigning higher weights to minority classes (i. 
e., those with fewer samples), the model’s performance in recognizing 
these classes is improved. The following focal-loss function is employed 
for fingerprint image classification: 

FL =
1
N
∑

i
Li = −

1
N

∑

i = 1

∑M

c = 1
yicαc(1 − pic)

γlog(pic) (1) 

where N was the number of samples, M was the number of classes, pic 
was the predicted probability that the observed sample i belongs to the 
category c, and yic was the ground truth. If the real class of sample i was 
equal to c, yic was equal to 1; otherwise, it equaled to 0, αcrepresents the 
weight for class c, defined as: αc = N

M×ni
, where ni is the number of 

samples in class i. The modulation factor γ was set to the empirical value 
of 2 in the experiments [28].

In training the proposed network, the learning rate is initialized set 
to 1 × 10− 3 for all layers and is reduced by a factor of 10 when the loss 
plateaus after 5 epochs. The Adam optimizer, with momentum set to 0.9 
and weight decay set to 1 × 10− 4, is used. The network is trained for 100 
epochs, and the best model is selected based on performance on the 
validation set.

Additionally, the fingerprint classification is sensitive to image 

rotation. Most of existing methods computed the image rotation for 
fingerprint alignment, followed by classification. Instead of directly 
computing image rotation, random rotations between − 10 and 10 de
grees are applied as data augmentation during training to enhance the 
model’s robustness to rotational variations.

3.2. Singular point detection module (SPDM)

This section proposes a Fingerprint Singular Point Detection (Fin
gerSPD) algorithm, which utilizes CSPNeXt [8] as the backbone network 
for feature extraction due to the complexity of fingerprint images. 
CSPNeXt integrates Cross-Stage Partial (CSP) feature fusion with Next
Net’s grouped convolutions and channel-wise attention mechanisms 
[26]. This design enables the network to focus on regions around sin
gularities, enhancing the representation of key features. Grouped con
volutions optimize feature extraction and computational efficiency 
while maintaining a lightweight structure that reduces memory usage 
and inference time.

Traditional keypoint detection methods often frame the problem as 
regression or heatmap-based classification, which can lead to lower 
accuracy, high computational cost, and complex post-processing. To 
address these issues, we discretize the continuous coordinate values by 
dividing the horizontal and vertical axes into equally spaced bins, 
transforming keypoint localization into a classification task. The model 
is trained to predict the bin containing the keypoint. By increasing the 
number of bins, we reduce quantization error to a sub-pixel level, thus 
improving localization accuracy [27]. In this module, we employ 1 × 1 
convolutional layers to convert the features extracted by the backbone 
network into a vectorized representation of keypoints, followed by two 
fully connected layers for classification. This results in a streamlined 
algorithm structure.

In the coordinate encoding phase, the x and y coordinates of the 
keypoints are represented as two independent one-dimensional vectors, 
with the length of each vector determined by a scaling factor λ (≥ 1). For 
the k-th keypoint, the encoded coordinates are represented as follows: 

kʹ = (xʹ, yʹ) =
(
round

(
xk ∗ λ

)
, round

(
yk ∗ λ

))
(2) 

The scaling factor λ refines the localization accuracy to a level finer 
than a single pixel, and the value is adaptively determined by the input 
image. Its value needs to be determined based on the actual image 
conditions. In the decoding phase, the model outputs two one- 
dimensional vectors. The predicted coordinates of the keypoint are 
computed as: 

ôx = argmaxi(ox(i))
/

λ, ôy = argmaxj
(
oy(j)

) /
λ (3) 

Thus, the position of the maximum value along each one- 
dimensional vector is divided by the scaling factor λ to revert to the 
image scale. Finally, the two decoded values are concatenated to obtain 
the keypoint’s position.

The experimental setup utilizes two NVIDIA RTX 3090 graphics 

Table 2 
Distribution of fingerprint patterns in different datasets.

Datasets Sample 
size

Image size 
(pixel)

Experiment scheme (% of total 
samples)

As At Lu Lr Ws Wd Singular 
points

Our datasets NSPT-ZZ 10,246 800×750 Train: Val = 60 %: 10 % 88 55 1788 1810 2896 339 800
​ ​ ​ ​ Test (30 %) 23 26 822 794 1426 179 200

​ NSPT-TZ 4937 800×750 Test (100 %) 79 40 1344 1353 1812 309 /

​ NSPT-NN 13,684 800×750 Test (100 %) 297 48 3748 3770 5072 749 /

Public 
datasets

NIST-4 4000 512×512 Train: Val = 37.5 %:12.5 % 394 388 221 603 394 /

​ ​ ​ ​ Test (50 %) 406 412 579 197 406 ​

​ FVC2002 
DB1A

800 388×374 Test (100 %) / / / / / / 800
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cards, equipped with CUDA v11.2 for efficient GPU-accelerated 
computing. The deep learning framework employed is PyTorch v1.10. 
During training, a batch size of 8 is used to balance computational ef
ficiency and memory consumption. The model is trained for a maximum 
of 250 epochs to ensure the learning of relevant features. The initial 

learning rate is set to 1 × 10− 3, which is dynamically adjusted 
throughout training to improve convergence speed and stability. Addi
tionally, input images are resized to 800×750 pixels, with necessary 
scaling and cropping operations performed during preprocessing.

Several evaluation metrics are employed to assess the performance of 

Fig. 2. General framework of fingerprint phenomics quantification.
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the fingerprint singularity detection algorithm: 

• AP (Average Precision): This metric measures the average prediction 
accuracy across multiple categories, with a higher AP indicating 
better prediction performance. It is calculated as: 

AP =

∫0

1

Precision(Recall)d(Recall) (4) 

• TDR (True Detection Rate): A predicted point is considered correct if 
it falls within a circle with a radius of k pixels centered on the true 
location. The predicted location is considered a true core point if it 
lies within k pixels of the actual location. The formula for this is: 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Cpx − Cax

)2
+
(
Cpy − Cay

)2
√

≤ k pixels (5) 

Where Cp and Ca refer to predicted and ground truth coordinates, 
respectively. In this study, the evaluation radius was set to 20 pixels. 
This value was determined based on the average ridge width in our 
600 dpi NSPT dataset (Figure S2), ensuring that the evaluation area 
does not extend beyond a single ridge. This setting is also consistent 

Fig. 3. Performance and visual feature attribution of the fingerprint pattern classification module (FPCM). (A)-(E) The accuracy, precision and recall rates of six- 
class, five-class, four-class, and three-class classification tasks in the NSPT databases. The classification criteria are detailed in Fig. 1A. (F) Salient fingerprint fea
tures identified by the network using Grad-CAM (top) and Grad-CAM++ (bottom) for pattern classes A, L, Ws and Wd. Warmer colors indicate greater contribution to 
classification.
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with the parameter used in a prior benchmark study [17].

3.3. Morphometric phenotypes quantification module (MPQM)

The quantification of morphometric phenotypes in fingerprints ini
tiates with the computation of the ridge count (Table 1). This process 
begins by initializing a labeled image along with a statistical information 
array. We then traverse each pixel, commencing from the top-left corner 
of the image, to determine if connected component analysis is required 
based on the pixel’s labeling status and value. For unlabeled pixels 
indicating a foreground (i.e., representing a ridge), we initiate a new 
connected region and assign a distinct label. Utilizing the Depth-First 
Search (DFS) algorithm, we label all connected foreground pixels 
within that region while concurrently computing and storing statistical 
information along with the centroid coordinates. Labeled pixels or those 
representing the background (i.e., exhibiting values indicative of non- 
ridges) are excluded from this analysis. Upon completion of the pixel 
traversal, we compile the total number of connected regions, the labeled 
image, the statistical information array, and the centroid coordinates 
array, which are critical for the subsequent calculations of additional 
morphometric fingerprint phenotypes.

The statistical analysis in this study was conducted using ANCOVA. 
Initially, normality and homogeneity of variance tests were performed 
on the dataset, followed by covariance analysis. A model was established 
with RD and MPRB as the dependent variables, group as the independent 
variable, and Sex and Age as covariates. The analysis was carried out 
using the statsmodels package in Python.

4. Experiments and results

4.1. Fingerprint pattern classification

To assess the performance Resnet-18 in fingerprint pattern classifi
cation module (FPCM), we evaluated the accuracy, precision and recall 
metrics across four testing datasets from various fingerprint databases. 
On three self-constructed test sets for 6-class classification, the FPCM 
achieved accuracies of 97.18 %, 95.59 %, and 95.24 %, respectively. In 
the five-, four- and three-class classification scenarios, the accuracy rates 
gradually improved, and the NSPT-ZZ dataset, which was the data 
source for model training, exhibited the highest accuracy at 98.78 %. 
The accuracies rates of the other two datasets also remained at above 
97.24 %, highlighting the generalizability of the proposed algorithm 
across different distributions without the need for transfer learning 
(Fig. 3A). Further analysis of precision and recall rates of each subclass 
revealed that, compared with other categories, the simple arch (As), 
tented arch (At), and double whorl (Wd) types with lower prevalence 
exhibited lower precision and recall rates (Fig. 3B-E), which could be 
attributed to the various class imbalances in the dataset (Table 2). 
Comprehensive confusion matrices for all datasets and tasks are pro
vided in Supplementary Data. Importantly, visual explanations from 
Grad-CAM/Grad-CAM++ (Fig. 3F) demonstrate that the model’s de
cisions are grounded in well-established fingerprint structures (core, 
delta regions and ridge direction flow)—anatomically meaningful areas 
critical for fingerprint classification—thereby validating the biological 
plausibility of the learned features.

The NIST-4 database, a standard reference in fingerprint image 
analysis, features non-rolling scanned image types and balanced distri
bution of five-class fingerprint patterns, which is different from the 
samples used to construct model in this study (Fig. 1B, Table 2). Initial 
direct evaluation of FPCM algorithm on NIST-4 yielded 83.70 % clas
sification accuracy (Table 3), revealing domain shift limitations. 
Therefore, we implemented a transfer learning framework with partial 
domain adaptation, fine-tuning the pre-trained deep network of FPCM 
on 50 % of the NIST-4 database samples. This strategic retraining ach
ieved the highest five-class classification accuracy of 96.20 %, out
performing existing methods (Table 3), demonstrating the effectiveness 

of the proposed algorithm in leveraging multi-level features to achieve 
superior classification performance.

4.2. Fingerprint singular point detection

This section employed a triple-metric evaluation framework 
encompassing average precision (AP), true detection rate (TDR) and 
cross-dataset benchmarking to assess the phenotyping capabilities of the 
proposed FingerSPD algorithm in Singular Points Detection Module 
(SPDM). At epoch 200, the training loss value tended to be stable at 0.01 
and the validation Average Prevision (AP) at 98.63 %, indicating robust 
convergence of the model (Fig. 4A). The TDR values of the four finger
print patterns (i.e., arch, loop, simple whorl, and double whorl) were all 
greater than 98.00 %, highlighting the robust generalization perfor
mance of the FingerSPD algorithm in singularity point detection 
(Fig. 4B).

Notably, our proposed FingerSPD incorporates a discretization factor 
λ to regulate the number of bins per pixel in its sub-pixel classification 
stage, with λ = 2 determined as optimal for balancing precision and 
complexity (Section 3.2; Fig. 4C). Unlike Faster R-CNN, FingerSPD’s 
subpixel singularity detection eliminates the need for complex 
anchor‑based computation or post-processing steps such as non- 
maximum suppression, which substantially improves localization ac
curacy, yielding a subpixel error of <0.5 px.

To interpret the learned representations, we visualized activations 
from the final convolutional layer via heatmapping, which served as a 
tool for assessing the model’s interpretability and rationality of its 
learned representations. The resulting attention maps reveal that the 
model, guided by CSPNeXt’s channel-attention mechanism, selectively 
focuses on ridge textures while avoiding redundant feature extraction. 
Notably, activations are predominantly concentrated around singular 
points (Fig. 4D), confirming that the network leverages structurally 
meaningful regions for decision-making.

The proposed FingerSPD achieved an impressive 97.75 % TDR on the 
public database FVC2002 DB1, demonstrating its competitiveness with 
existing methods (Table 4). Furthermore, by integrating the prior 
knowledge from the FPCM results, our method not only enables 

Table 3 
The accuracy of five-class pattern classification in NIST-4 reference database.

Studies Method Training Test Accuracy of 
five-classes 
(%)

Zhang and 
Yan [29]

Singularity 
-based

/ NIST-4 84.30

Yao et al. [30] Structure- 
based

/ NIST-4 89.30

Tan et al. [31] Structure- 
based

/ NIST-4 91.60

Daniel et al. 
[32]

CNN: 
CaffeNet

SfinGedatabases (n 
= 10,000),  
NIST-4 (n = 1650)

NIST-4  
(n =

2350)

90.73

Michelsanti 
et al. [11]

CNN:VGG-F NIST-4 (n = 3900) NIST-4  
(n =

100)

94.40

Michelsanti 
et al. [11]

CNN:VGG-S NIST-4 (n = 3900) NIST-4  
(n =

100)

95.05

Akhila et al. 
[12]

Lightweight 
CNN

NIST-4 (n = 3600) NIST-4  
(n =

400)

93.75

Proposed Resnet-18 
Classifier

NSPT-ZZ (n =
6976)

NIST-4  
(n =

4000)

54.05(without 
preprocess)

NSPT-ZZ (n =
6976)

NIST-4  
(n =

4000)

83.70

NSPT-ZZ (n =
6976), 
NIST-4 (n = 2000)

NIST-4  
(n =

2000)

96.20
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Fig. 4. The singularity detection precision in NSPT databases. (A) Model performance during the training process, illustrating the changes in the loss function for the 
training set in relation to the training steps, and the variations in Average Precision (AP) for the validation set. (B) The True Detection Rate (TDR) of the model on the 
validation set from the self-constructed Chinese database. The Arch patterns do not contain delta singularity. (C) Ablation study of the discretization factor λ in 
FingerSPD. λ controls the number of bins per pixel in sub-pixel classification. Model performance increases initially and then decreases as λ grows, with an optimal 
value at λ = 2. (D) Visualization of FingerSPD’s fingerprint singularity detection region.

Table 4 
Performance of fingerprint singularity detection of different algorithms.

Studies Methods Training set Test set Output on FVC2002 dataset

Core Delta

TDR 
(%)

FAR 
(%)

TDR 
(%)

FAR 
(%)

Zhou et al. [33] Differences of the 
ORlentation

/ FVC2002 
DB1 
(n = 800)

95.78 2.27 96.98 9.97

Qin et al. [15] Fully Convolutional 
Networks

Private dataset 
(n = 15,000)

FVC2002 
DB1 
(n = 800)

95.39 1.03 98.26 4.10

Liu et al. [16] Faster R-CNN FVC2002 (n = 400), 
NIST sd04 (n = 2000), 
Ten-Finger Card (n = 50,124)

FVC2002 
DB1 
(n = 400)

96.03 0.92 98.33 3.88

G. Arora et al. 
[17]

CP-Net (MLN and MRN) FVC2002 (n = 600), FVC2004 (n = 600), FVC2006 (n =
1260)

FVC2002 
DB1 
(n = 200)

96.50 0 / /

Proposed FingerSPD NSPT-ZZ (n = 800), 
FVC2002 (n = 400)

FVC2002 
DB1 
(n = 400)

97.75 0 95.00 0

NSPT-ZZ  
(n = 200)

98.50 0 98.79 0
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simultaneous detection of core and delta points but also eliminates the 
false acceptance rate (FAR) entirely. This significant enhancement ex
pands the potential applications of our approach in fingerprint 
recognition.

4.3. Fingerprint morphometric phenotypes quantification

The Morphometric Phenotype Quantification Module (MPQM) 
implemented a rigorous evaluation framework to assess the reliability of 
our Depth-First Search (DFS)-based connected components detection 
algorithm for ridge counting between singularities. A triple-blind 
comparative analysis involving three experts (denoted as M) and the 
algorithmic system (denoted as P) was performed on 50 representative 
samples. Statistical analysis revealed no significant inter-rater discrep
ancies among experts (p = 0.50; Intraclass Correlation Coefficient, ICC =
0.95) nor differences between experts (P) and computational evaluation 
(M) (p = 0.72; ICC = 0.94) in ridge count quantification (Fig. 5A). 
Notably, 46 % of samples (23/50) demonstrated perfect concordance in 
error patterns between manual and automated counts, exceeding the 
incidence of larger (24 %; 12/50) or smaller (30 %; 15/50) discrepancies 
in human annotations (Fig. 5B). The maximum observed deviation be
tween modalities was constrained to 3 ridge lines (Mean Absolute Dif
ference: MAD = 1.24), establishing operational feasibility for 
population-level analyses. The framework could also be extended to 
ridge density, breadth, and thickness quantification with sub-pixel 
precision (Table 1).

The proposed unified deep learning framework achieves enhanced 
computational efficiency compared to traditional methods that rely on 
rules, handcrafted features, or isolated models. Although the training of 
the network may demand more time, the testing process with the trained 
model is remarkably swift. As shown in Table 5, the framework dem
onstrates order-of-magnitude improvements across all processing stages 
compared to conventional approaches. Specifically, the FPCM on 
pattern classification executes in 6.30 ms, which is 10 times faster than 
rule-based (100.20 ms) and handcrafted-features (39.00 ms) ap
proaches. The SPDM on singular point detection achieves 95.00 ms, 
surpassing CP-Net (165.00 ms) and BC (253.00 ms). The MPQM on 
quantification takes just 10.40 ms per image. The proposed framework 
integrating FPCM, SPDM, and MPQM, takes 118.00 ms per image, 
making it ideally suited for rapid and accurate fingerprint analysis in 
real-time and large-scale tasks.

4.4. Population-specific fingerprint profiling using multi-dimensional 
phenotypes

Employing the FPQuant computational framework, we conducted 
systematic biometric profiling of Han Chinese populations across three 
geographically distinct cohorts from north to south of China (NSPT-ZZ: n 
= 1039; NSPT-TZ: n = 521; NSPT-NN: n = 1518 participants). The 
framework’s multivariate analysis pipeline simultaneously quantifies 
phenotypic parameters, such as Pattern classification, Ridge Count (RC), 
Ridge Density (RD), Mean Ridge-Furrow Pairs Ridge Breadth (MPRB), 
Major angle (MA), and Bisector (Table 1).

Cross-population analysis revealed significant biogeographic diver
gence in fingerprint characteristics (Fig. 6; Table S1). Specifically, sub
stantial inter-regional differences emerged in whorl patterns, with 
NSPT-ZZ demonstrating elevated prevalence of simple whorls (Ws: 
42.18 % vs. NSPT-NN 37.07 %, p = 4.00×10− 12; vs. NSPT-TZ 36.7 %, p 
= 2.62×10− 16), while NSPT-NN exhibited unique simple arch predom
inance (As: 2.17 % vs. other regions, p = 1.36×10− 15). In addition, 
highly bilateral symmetry in digits with the same name (left-right con
sistency > 0.05, Figure. S3) contrasted with marked digit-specific 

Fig. 5. The measurement of ridge counts in 50 fingerprints of NSPT dataset. (A) Box plot comparison of ridge count results between the three experts-level (P) and 
algorithm-based (M) model. The differences between groups were analyzed by Analysis of Variance (ANOVA); (B) Visualization of ridge count errors between the 
machine and expert counts across 50 test images. P1-P3 represent the ridge count results of the three experts, P&P denotes the average ridge count error among the 
three experts, and P&M indicates the average ridge count error between the model and the three experts.

Table 5 
Time consuming comparison.

Modules Methods Hardware 
Configuration

Time 
Consumption 
(ms)

FPCM CNN: 
CaffeNet 
[32]

NVIDIA GTX 
TITAN GPU

100.20

​ CNN: VGG-F 
[11]

NVIDIA GTX 950 
M GPU

39.00

​ CNN: VGG-S 
[11]

NVIDIA GTX 950 
M GPU

77.00

​ Proposed NVIDIA GTX 3090 6.30

SPDM CP - Net [17] NVIDIA GTX 1080 
Ti

165.00

​ Proposed NVIDIA GTX 3090 95.00

MPQM Proposed NVIDIA GTX 3090 10.40

End - to - end of the 
proposed 
framework

Proposed NVIDIA GTX 3090 118.00
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Fig. 6. Comparison of fingerprint morphometric phenotypes across three NSPT datasets. (A) Ridge count (RC), (B) Ridge density (RD), (C) Mean ridge-furrow pair 
ridge breadth (MPRB) distributions shown as box plots. Blue, red, and gray indicate NSPT-ZZ, NSPT-TZ, and NSPT-NN, respectively. (D) Heatmap showing pairwise 
population differences for fingerprint pattern types, RC, RD, MPRB, and major angle (MA) phenotypes. Color scale represents -log(p) values; asterisks denote sta
tistical significance (*p < 0.01, **p < 0.001, ***p < 0.0001).
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patterning, e.g., the Ws pattern dominated on ring fingers (29.95 %), Lr 
prevailed on the index finger (74.31 %), and Lu was predominant on the 
middle finger and little fingers (79.55 %, Figure. S4).

Quantitative analyses of morphometric characteristics uncovered 
unreported biogeographic variation of fingerprints cross populations. 
NSPT-ZZ - NSPT-NN comparisons revealed obvious ridge count (RC) 
divergence in ulnar loop patterns (ΔRC = 1.59; p = 1.88×10− 65 - 
9.54×10− 17). The ridge density (RD) was the highest in NSPT-ZZ with 
decreasing among three populations from north to south (NSPT-ZZ 
15.34 > NSPT-TZ 14.62 > NSPT-NN 14.23; p = 3.50×10− 25), while 
MPRB showed the increased regional trends (NSPT-ZZ: 0.51 < NSPT-TZ: 
0.55 < NSPT-NN: 0.57; p = 2.75×10− 9). Notably, significant differences 
were observed in the MA (ΔMA = 1.8◦; p = 1.18×10− 14) and Bisector 
positional offsets (p = 2.05×10− 6), exposing previously undocumented 
whorl imbalance gradients in large-scale population study.

5. Discussion

This study proposes FPQuant, a unified and automated framework 
for fingerprint phenotyping that integrates three core modules: finger
print pattern classification (FPCM), the singular point detection (SPDM), 
and the morphometric phenotype quantification (MPQM). By leveraging 
a data-driven manner, the framework takes fingerprint images as input 
and outputs corresponding fingerprint phenotypes, including fingerprint 
patterns and eleven morphometric phenotypes. It demonstrates excel
lent accuracy, generalization performance and integration capability, 
marking substantial advancements in multiple quantification of finger
print phenotypes. Its strong performance and scalability have enabled 
the first large-scale analysis of fingerprint morphometric heterogeneity 
in a Han Chinese cohort. These quantitative traits may reflect underlying 

genetic regulation, as evidenced by prior genome-wide association 
studies (GWAS) and developmental studies implicating WNT, EDAR, 
and BMP signaling pathways in ridge patterning, spacing and size [2,
34]. These findings reinforce the potential of FPQuant as a powerful tool 
for bridging morphological fingerprints with genetic underpinnings and 
facilitating future biomarker discovery.

The principal methodological innovation of FPQuant lies in its 
subpixel-level singularity detection capability. The dedicated FingerSPD 
module achieves precise singularity localization at the subpixel level 
without relying on anchor-based detection or additional post-processing 
steps, by reformulating the task as two independent classification 
problems for horizontal and vertical coordinates and uniformly dividing 
each pixel into multiple bins [27]. This approach not only ensures high 
localization accuracy (with a mean error of <0.5 pixels) but also reduces 
computational overhead.

A specific challenge in ridge counting measurement lies in ridge 
thinning [35], a necessary step for obtaining direction information but 
potentially leading to ridge deformations, such as cuts, twigs or cross 
ridges absent in original images. To address this issue, we implemented a 
DFS-based connected component detection algorithm, which effectively 
identifies and groups connected pixels in the image, thereby enhancing 
the precision of ridge representation. However, errors in detecting 
strongly connected components may occur if ridges touch due to unclear 
images or uneven pressure during acquisition (Fig. 7C).

Three main limitations should be noted. First, data generalizability 
and reproducibility: The model was trained predominantly on a Han 
Chinese cohort, which may limit its generalizability to other populations 
with distinct morphometric traits. Furthermore, the use of a private 
dataset hinders reproducibility and impedes independent, large-scale 
external validation by the research community.

Fig. 7. Scenarios that potentially lead to quantification bias. (A) Low-quality fingerprint acquisition with issues such as blurriness and missing parts; (B) Inaccurate 
detection of singular points due to unclear scanning in the core or delta region of the image; (C) The ridge counting deviation may be affected by ridge breaks or 
overlaps; (D) Unclear or undistinctive classification. The left image could be interpreted as either a loop or a simple whorl, while the right fingerprint might be 
classified as an arch or a loop; (E) Traditional image-processing-based preprocessing pipeline for domain adaptation, incorporating background removal, adaptive 
binarization, and ridge enhancement. In this study, the pipeline was applied exclusively to NIST-4 to alleviate domain shift from NSPT.
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Second, sensitivity to image quality and domain shift: FPQuant’s 
performance is susceptible to fingerprint image quality and cross- 
domain discrepancies. Artifacts such as excessive darkness from sweat
ing, incomplete singular points, or pressure distortions (Fig. 7A-C) can 
adversely affect pattern classification, singularity detection, and ridge 
counting. Although these low-quality images only constituted 1 % of the 
total entire private test dataset, they account for approximately 4 % of 
all misclassifications. This not only highlights their disproportionate and 
non-negligible impact on model errors but also suggests that the ma
jority of misclassifications likely stem from other, more complex factors, 
such as techniques or potential data imbalance.

To mitigate both image-quality limitations and domain shift between 
rolled-scanned images in NSPT and flat-scanned inked pression in NIST- 
4, we implemented and evaluated a traditional image-processing pipe
line incorporating background removal [36], adaptive binarization, and 
ridge enhancement (Fig. 7E). While this approach exhibits progressive 
improvements in cross-domain classification accuracy on NIST-4 from 
54.05 % to 83.7 %, future work may explore even more lightweight 
processing—such as denoising and contrast adjustment—to better 
handle acquisition noise and suboptimal contrast, offering a promising 
direction for further robustness and applicability gains in diverse chal
lenging real-world environments. It is also noteworthy that the suc
cessful efforts made by fine-tuning in model training stage, achieving the 
highest five-class classification accuracy of 96.20 %, demonstrating it 
offers a superior solution when sufficient target-domain data are avail
able. Whereas, in data-limited scenarios where fine-tuning is infeasible, 
the preprocessing pipeline serves as an effective alternative for domain 
adaptation, significantly improving cross-dataset performance.

Third, inherent class ambiguity and imbalance: classification errors 
also arise from two other reasons: the one is distinguishing between fine- 
grained subclasses, such As versus At and Ws versus Wd, proves 
exceedingly challenging, even for experienced human experts (Fig. 7D), 
as documented in benchmark datasets such as NIST-4 [24]. These 
ambiguous cases accounted for 52.5 % of all misclassifications in our 
dataset. The other one reason is the substantial class imbalance in types, 
with only approximately 6 % of patterns belonging to the simple arch 
and tented arch types. Although we employed transfer learning, focal 
loss, and rotation-based data augmentation to alleviate this, perfor
mance on under-represented classes (e.g., Wd) remains suboptimal. The 
potential future strategies—such as synthetic data generation via 
generative models (e.g., GANs or diffusion models), virtual sample 
creation, and advanced ensemble learning [37,38] or multi-objective 
optimization approaches [39]—may help address severe class imbal
ance and improve overall robustness across all categories.

6. Conclusion

This study has introduced FPQuant, a unified multi-task deep 
learning framework for automated and comprehensive fingerprint 
phenomics quantification like biologically stable features extraction. 
FPQuant integrates high-accuracy multiple-class fingerprint pattern 
classification (>98 %), high-precision singular point detection (98.63 
%), and fine-grained and expert-comparable morphometric analysis 
within a single architecture, achieving state-of-the-art performance 
across multiple benchmarks. Notably, FPQuant integrates a subpixel- 
level singularity detection module within a unified multi-task architec
ture, delivering higher localization precision, faster computation, and 
integrated morphometric analysis compared to existing methods. The 
framework demonstrates strong cross-database generalizability, main
taining 96.20 % accuracy on NIST-4 and 97.75 % singularity precision 
on FVC2002 DB1. Critically, FPQuant has uncovered previously 
uncharacterized geographic variations in fingerprint morphology 
through its precise quantification of 12 morphometric traits, establish
ing novel morphometric biomarkers for population genetics and 
anthropological research.

While the framework incorporates adaptive preprocessing and a 

strategically designed architecture to enhance robustness, it remains 
sensitive to image quality, dataset class imbalance, and challenging 
capture conditions. Its generalizability across diverse ethnic populations 
also requires further validation. Addressing these aspects including 
cross-domain adaptation, generative model-based synthetic data gen
eration for rare classes, and expansion to multi-ethnic cohorts remain 
technical focus for future work to improve generalizability under real- 
world conditions. In parallel, FPQuant bridges computational pattern 
recognition and dermatoglyphic science, enabling large-scale repro
ducible analysis. This paves the way for scientific inquiries into the 
genetics and development of fingerprint morphology, and supports 
advanced applications in forensics and precision biometrics.
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[23] N. Rivaldería, A. Moreno-Piedra, A. Álvarez, E. Gutiérrez-Redomero, Study of the 
fingerprints of a Spanish sample for the determination of the hand and finger, Sci. 
Justice 64 (2024) 216–231.

[24] C.I. Watson, C.L. Wilson, NIST Special Database 4, (1992).
[25] D. Maio, D. Maltoni, R. Cappelli, J.L. Wayman, A.K. Jain, FVC2002: second 

fingerprint verification competition, in: Proceedings of the 16 th International 
Conference on Pattern Recognition (ICPR’02) Volume 3 - Volume 3, 2002.

[26] X. Chen, C. Yang, J. Mo, Y. Sun, H. Karmouni, Y. Jiang, Z. Zheng, CSPNeXt: a new 
efficient token hybrid backbone, Eng. Appl. Artif. Intell. 132 (2024) 107886.

[27] Y. Li, S. Yang, P. Liu, S. Zhang, Y. Wang, Z. Wang, W. Yang, S.-T. Xia, SimCC: a 
simple coordinate classification perspective for Human pose estimation, Eds., in: 
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