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Analysis of blood methylation 
quantitative trait loci in East Asians reveals 
ancestry-specific impacts on complex traits

Qianqian Peng    1,17, Xinxuan Liu    2,3,17, Wenran Li1,17, Han Jing    1,17, Jiarui Li    1, 
Xingjian Gao    2, Qi Luo1, Charles E. Breeze    4, Siyu Pan2, Qiwen Zheng2, 
Guochao Li    2, Jiaqiang Qian1, Liyun Yuan    1, Na Yuan2, Chenglong You1, 
Siyuan Du    1, Yuanting Zheng5,6, Ziyu Yuan7, Jingze Tan6, Peilin Jia2, 
Jiucun Wang    5,7,8, Guoqing Zhang1,7, Xianping Lu9, Leming Shi    5,6,7, 
Shicheng Guo10,11, Yun Liu    12, Ting Ni    13, Bo Wen    5,14, Changqing Zeng    2, 
Li Jin    5,7,8, Andrew E. Teschendorff    1 , Fan Liu    2,3,15  & Sijia Wang    1,7,16 

Methylation quantitative trait loci (mQTLs) are essential for understanding 
the role of DNA methylation changes in genetic predisposition, yet they 
have not been fully characterized in East Asians (EAs). Here we identified 
mQTLs in whole blood from 3,523 Chinese individuals and replicated 
them in additional 1,858 Chinese individuals from two cohorts. Over 9% 
of mQTLs displayed specificity to EAs, facilitating the fine-mapping of 
EA-specific genetic associations, as shown for variants associated with 
height. Trans-mQTL hotspots revealed biological pathways contributing 
to EA-specific genetic associations, including an ERG-mediated 233 
trans-mCpG network, implicated in hematopoietic cell differentiation, 
which likely reflects binding efficiency modulation of the ERG protein 
complex. More than 90% of mQTLs were shared between different blood 
cell lineages, with a smaller fraction of lineage-specific mQTLs displaying 
preferential hypomethylation in the respective lineages. Our study provides 
new insights into the mQTL landscape across genetic ancestries and their 
downstream effects on cellular processes and diseases/traits.

Methylation quantitative trait loci (mQTLs) are genetic variants that 
affect DNA methylation (DNAm) levels at CpG sites. Identifying and 
characterizing mQTLs is crucial to elucidating (1) the function of GWAS 
loci, (2) the role of DNAm as a potential causal mediator of genetic sus-
ceptibility and (3) the synergistic effect of genetic and environmental 
factors on disease risk.

MQTLs are abundant throughout the genome and they account 
for a substantial proportion of DNAm variation1–15. Current mechanistic 
hypotheses suggest that alterations in DNAm patterns can influence the 
three-dimensional structure of chromatin, thereby affecting the acces-
sibility of regulatory regions to transcriptional machinery and other 

regulatory elements (REs)11. Additionally, DNAm changes may hinder 
or facilitate transcription factor (TF) binding, consequently influenc-
ing gene expression patterns. Furthermore, modifications to histone 
levels, induced by DNAm alterations, can lead to changes in chromatin 
structure and gene expression. It has also been proposed that the for-
mation of trans-mQTL hotspots may be mediated by cis-eGenes2, which 
are genes located in close proximity to the mQTL region. However, our 
understanding of mQTLs is far from complete. First, well-sized mQTL 
studies have been conducted mainly in Europeans, with a few excep-
tions (for example, South Asians15). Second, methylomes have been 
primarily derived from whole blood DNA, or in only small numbers 
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mQTL formation and their impact on human complex traits at the 
population level are still not fully understood. In particular, a complete 
chain of evidence linking the molecular players in the path from DNA 
variation to human complex traits at the population level is still lacking.

of purified cell subtypes; therefore, to which extent mQTLs are blood 
cell-subtype-specific remains unclear7,15. Third, while several mechanis-
tic hypotheses provide potential insights into the relationship between 
DNAm and molecular processes, the precise mechanisms underlying 
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Here we report a comprehensive identification and analysis of 
mQTLs in Chinese cohorts to address the above-mentioned questions.

Results
mQTL mapping, annotation and replication
We define mQTLs as single-nucleotide polymorphisms (SNPs) that 
can affect CpG DNAm levels, mCpGs as CpGs affected by mQTLs and 
associations as pairs of mQTLs and mCpGs. During the discovery phase, 
we examined 6.14 trillion associations between 7.58 million SNPs and 
811,876 CpGs in the whole blood of 3,523 Han Chinese from the National 
Survey of Physical Traits (NSPT) cohort (Fig. 1a). This revealed 62.9 
million study-wide significant associations (Fig. 1b), including 89.5% 
cis (P < 1.06 × 10−11), 3.6% long-rance cis (lcis) (P < 2.86 × 10−12) and 6.9% 
trans (P < 8.16 × 10−15) according to the previously proposed definitions 
(cis <1 Mbp, lcis 1–5 Mbp and trans >5 Mbp)2,5,10. Two-thirds (5.56 million) 
of all tested SNPs were identified as mQTLs (5.48 million cis, 271,994 
lcis and 1.14 million trans), while one-third (284,128) of all tested CpGs 
were identified as mCpGs (267,891 cis, 7,746 lcis and 26,415 trans). After 
linkage disequilibrium (LD) pruning (r2 > 0.2), we obtained 859,089 cis-, 
23,906 lcis- and 60,490 trans-mQTLs, which were more than double 
the numbers (394 K cis and 21 K trans) found using the 450 K array in 
4,170 individuals of European ancestry from the Framingham Heart 
Study (FHS)2.

The mQTL–mCpG pairs tend to be more enriched for TF binding 
sites, promoters and CTCF binding sites (Fig. 1c and Extended Data 
Fig. 1a– c) than distance-matched random pairs. The mQTLs showed 
significant enrichment of hematological traits in GWAS Catalog16 and 
mCpGs showed enrichment of various traits in EWAS Atlas17 (Fig. 1d 
and Supplementary Figs. 1– 4).

Trans-mQTLs may have more direct biological significance than 
cis-mQTLs. This was supported by (1) the majority of trans-mQTLs 
(52.8% of 60,490 clumped trans-mQTLs) also being cis-mQTLs but 
not vice versa (3.7% of 859,089 clumped cis-mQTLs; Supplementary 
Fig. 5a); (2) a substantially higher proportion of trans-mCpGs also 
being cis-mCpGs (41.2% of 26,415) than vice versa (4.1% of 267,891; 
Supplementary Fig. 5b); (3) the explainable variance of mCpG DNAm 
decreased with LD (Supplementary Fig. 6); (4) trans-mQTLs showed a 
profound enrichment in promoters and exons compared to cis-mQTLs 
(Fig. 1e) and (5) trans-mCpGs showed a profound enrichment in TSS200 

and CpG islands compared to cis-mCpGs (Fig. 1e). Interestingly, genes 
in the vicinity of cis-mQTLs or cis-mCpGs were more enriched for basic 
functional processes, whereas genes in the vicinity of trans-mQTLs or 
trans-mCpGs were more enriched for immune-related ontologies and 
pathways (Supplementary Figs. 7 and 8). Otherwise, no noticeable dif-
ferences in methylation levels, methylation variance and heritability 
were observed among cis-, lcis- and trans-mCpGs (Supplementary 
Fig. 9).

We replicated the 62.9 million study-wide significant associations 
in two independent Han Chinese cohorts (Chinese Academy of Sciences 
(CAS) cohort, n = 1,060 and clinical trials of chiglitazar (CGZ), n = 798). 
Replication rates were high in both CAS (93.8%) and CGZ (87.1%, false 
discovery rate (FDR) < 0.05), with high levels of directional consistency 
(99.7% in CAS and 99.8% in CGZ) and highly consistent allele effect sizes 
(Spearman correlation, r = 0.97 in CAS and r = 0.98 in CGZ; Fig. 1f,g).

East Asian mQTLs
We compared our mQTLs with those reported in the recent 
meta-analysis of European cohorts from the Genetics of DNA Methyla-
tion Consortium (GoDMC)8 and found that 64.7% were shared between 
the two datasets. The larger number of mQTLs found in GoDMC (3.46 
million in GoDMC versus 2.65 million in NSPT; Methods) is likely due to 
its larger sample size. The mQTLs identified in the two studies showed 
similar minor allele frequency (MAF) distributions in their respective 
populations (Fig. 2a and Supplementary Tables 1 and 2). However, the 
likelihood of an mQTL in one study being significant in another study 
heavily depended on its MAF in the other study, with low MAF values 
being substantially less likely (Fig. 2a). We identified 248,173 East Asian 
(EA)-specific mQTLs that were skewed toward lower MAFs in Europe-
ans and had higher MAFs in EAs (Supplementary Fig. 10a). Most of the 
EA-specific mQTLs were replicated in the CAS cohort, but only a small 
percentage (12.8%) was observed in FHS (Supplementary Table 3).

Of the 2.65 million mQTLs in NSPT, 39,162 overlapped with sig-
nals in the GWAS Catalog (P < 5 × 10−8), accounting for 47.5% of the 
total 82,392 GWAS signals examined (Supplementary Table 4). The 
EA-specific mQTLs accounted for 3.0% and 0.94% signals in Biobank 
Japan (BBJ) and UK Biobank (UKBB), respectively (Supplementary Fig. 
10b and Supplementary Table 4). EA-specific mQTLs showed a stronger 
overlap with EA-specific GWAS signals, explaining 4.8% BBJ-specific 

Fig. 1 | Identification and validation of mQTLs in East Asians. a, Diagram 
illustrating the overall study design. b, Plot showing all study-wide significant 
mQTL associations in NSPT: cis (<1 Mbp, P < 1.06 × 10−11, n = 56,289,777, red 
dots); lcis (1–5 Mbp, P < 2.86 × 10−12, n = 2,270,491, gray dots); trans (>5 Mbp or 
on different chromosomes, P < 8.16 × 10−15, n = 4,357,250, blue dots). All cis- and 
lcis- associations fall around the diagonal and so are hard to make out. SNP 
positions and background SNP number/Mbp (total = 7,576,990) are annotated 
on the x axis. CpG positions and background CpG number/Mbp (total = 811,876) 
are annotated on the y axis to make the variation in most of the background 
number/Mbp clearer. We restricted the y axes to lower values (10,000 for SNP 
and 1,900 for CpG) to avoid the domination by the human leukocyte antigen 
locus. c, Enrichment of mQTLs and their associated CpGs in functional elements 
(CTCF, E, P, PF and TFBS). Heatmap shows the fold changes of mQTLs and their 
associated CpGs compared with randomly selected (Methods) SNP–CpG pairs 

in all combinations of functional categories. One-tailed hypergeometric test is 
applied. The fold changes are labeled within each box. d, Enrichment of mQTLs 
and mCpGs in trait-associated sites in GWAS Catalog and EWAS Atlas compared 
with the randomly sampled sets (n = 104) from background. The x axis shows 
the proportion of trait-associated sites covered by mQTLs/mCpGs (blue lines), 
and randomly sampled sets (red histograms). e, Enrichment of mQTLs/mCpGs 
in different genomic regions compared with background. P values are from 
two-tailed hypergeometric tests and corrected by the Bonferroni method. 
Bonferroni-corrected *P < 0.05, **P < 10−10 and ***P < 10−50. f,g, Comparison of 
scaled effect sizes from study-wide significant mQTLs in NSPT and significant at 
FDR < 0.05 in CAS (f) or CGZ (g). ‘Cor’ is two-tailed Spearman’s rank correlation 
(both P < 1 × 10−323). ‘Dir’ means the proportion of allele effects in a consistent 
direction. CTCF, CTCF-enriched elements; E, enhancers; P, promoters;  
PF, promoter flanking regions; TFBS, TF binding sites.

Fig. 2 | The characteristics and potential applications of EA-specific 
mQTLs. a, The left and right panels show the replication rates (redness) and 
numbers (square size) of study-wide significant mQTLs in GoDMC and NSPT 
within different SNP MAF bins, respectively. The dependence on MAF in the 
latter is particularly evident in the low MAF bins (middle panels). b, Scatter 
plot showing 541 EA-specific trans-colocalizations (36 loci and 15 traits). The x 
axis indicates the SNP position; the y axis indicates the position of colocalized 
mCpGs in the locus. Points represent the 541 trans-colocalizations. The color 
of points indicates different traits, with the size indicating the significance of 
SMR test (−log10 of SMR P values). c, A schematic diagram of hematopoietic 

differentiation showing the regulation of different genes during hematopoietic 
cell differentiation by the heptad complex comprising ERG, TAL1, RUNX1, LYL1, 
LMO2, GATA2 and FLI1. d, A protein–protein interaction network (STRING 
V11.5; Cytoscape V3.9) of ERG and the 62 TFs for whose motifs the 233 CpGs 
trans-colocalized at chr21q22.2 loci were substantially enriched. e, Enrichment 
of the chr21q22.2 trans-colocalization-related genes (ERG, 62 TFs and 195 
annotated genes of trans-colocalized CpGs) in biological pathways and processes 
(Metascape v3.5). X axis indicates −log10(Q value) that was obtained from a one-
tailed hypergeometric test.
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GWAS signals compared to only 0.81% UKBB-specific GWAS signals, 
with representing a 6.16-fold improvement in efficiency (95% confi-
dence interval (CI): 5.90–6.43; Supplementary Fig. 10c and Supple-
mentary Table 5). This is again largely explained by allele frequency 
differences (Supplementary Fig. 10d).

A colocalization analysis of 248K EA-specific mQTLs and all 230 
GWASs in BBJ identified 152 mQTLs in 44 distinct loci (>1 Mbp) show-
ing significant (PSMR < 3.7 × 10−9 and PHEIDI > 0.05) evidence of colo-
calizations involving 33 traits (Supplementary Table 6). Only three of 
these loci could be further supported by eQTLs in peripheral blood 

a

b

d

Basophil Eosinophil Neutrophil

Granulocytes Monocytes

HSCs

CMPs

GMPs

RUNX1
CEBPA
LMO4

CEBPE
NFE2L1
HLF

GFI1
NFIC
JDP2

RUNX1
CEBPA
SPI1
NFIL3
JUND
FOSL2

RUNX1
GATA2
ERG

RUNX1
TAL1/
LYL1

FLI1/
ERG

GATA2

LMO2

Protein complex

1

2

3

4

5

6

7
8
9

10
11
12
13
14
15
16
17
18
19
21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16171819 21

Chromosome (SNP)

C
hr

om
os

om
e 

(C
pG

)

EA-specific colocalizations between trans-mQTLs in NSPT and GWASs in BBJ

(0.01, 0.05]

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 300,00000

400,000

GoDMC

0

300,000

NSPT

400,000

NSPT GoDMC(0
.01, 0

.05]

(0.05, 0.1]

(0.1, 0.15]

(0.15, 0.2]

(0.2, 0.25]

(0.25, 0.3]

(0.3, 0.35]

(0.35, 0.4]

(0.4, 0.45]

(0.45, 0.5]

(0.01, 0.05]

(0.05, 0.1]

(0.1, 0.15]

(0.15, 0.2]

(0.2, 0.25]

(0.25, 0.3]

(0.3, 0.35]

(0.35, 0.4]

(0.4, 0.45]

(0.45, 0.5]

(0
.05, 0

.1]

(0
.0

1, 
0.

02
]

(0
.0

2,
 0

.0
3]

(0
.0

3,
 0

.0
4]

(0
.0

4,
 0

.0
5]

(0
.0

1, 
0.

02
]

(0
.0

2,
 0

.0
3]

(0
.0

3,
 0

.0
4]

(0
.0

4,
 0

.0
5]

(0.01, 0.02]

(0.02, 0.03]

(0.03, 0.04]

(0.04, 0.05]

(0.01, 0.02]

(0.02, 0.03]

(0.03, 0.04]

(0.04, 0.05]

(0
.1, 

0.15
]

(0
.15

, 0
.2]

(0
.2,

 0.25
]

(0
.25

, 0
.3]

(0
.3, 0

.35]

(0
.35, 0

.4]

(0
.4, 0

.45]

(0
.45, 0

.5]

(0
.01, 0

.05]

(0
.05, 0

.1]

(0
.1, 

0.15
]

(0
.15

, 0
.2]

(0
.2,

 0.25
]

(0
.25

, 0
.3]

(0
.3, 0

.35]

(0
.35, 0

.4]

(0
.4, 0

.45]

(0
.45, 0

.5]

e

c

NFE2L1

ERG

CEBPA

SOX4

JUN

MNX1

BACH1

NKX3-1

MAFK

GRHL2

MAFF

FOXE1

MAFG

NEUROG2

BACH2

OLIG1

BATF3

FOXL1

GATA3 HLF

FOXP3
HOXB8

SPI1

PBX2

TWIST1

HOXD4

JUND

HOXD8

TCF3

PKNOX1

NFIL3

JUNB

CDX1

MEIS1

FOXI1

DBP

ATF4

FOXA1
CEBPE

TAL1

FOSL2

RUNX1

CEBPG

FOXG1

BATF

PBX1

CEBPB

FOSB

FOS

MXI1

FOSL1

NKX2-5

MAF

JDP2

NFE2

NFIC

CEBPD

TEF

Positive regulation of hemopoiesis
Positive regulation of leukocyte di¡erentiation

Regulation of T cell di¡erentiation
Positive regulation of cytokine production

Positive regulation of miRNA metabolic process
Regulation of myeloid cell di¡erentiation
Regulation of lymphocyte di¡erentiation

T cell di¡erentiation
Response to lipopolysaccharide

Regulation of CD4-+, alpha−beta T cell di¡erentiation
Lymphocyte activation

Embryo development ending in birth or egg hatching
Positive regulation of miRNA transcription

Skeletal system development
Negative regulation of cell di¡erentiation

Leukocyte activation
Bone development

Myeloid leukocyte di¡erentiation
Cell activation

Lymphocyte di¡erentiation
Transcription by RNA polymerase II

RNA biosynthetic process
Nucleic acid-templated transcription

DNA-templated transcription
Regulation of leukocyte di¡erentiation

Myeloid cell di¡erentiation
Mononuclear cell di¡erentiation

Zregulation of hemopoiesis
Leukocyte di¡erentiation

Hemopoiesis
Integrated stress response signaling

4 8 12 16

−log10(Q value)

GO enrichment

50K
100K
150K
200K

SMR −log10(P)

10
20
30

Trait
Alanine aminotransferase
Asthma
Basophil count
Body weight
Eosinophil count
Height
Mean corpuscular volume
Monocyte count
Myocardial infarction
Neutrophil count
Platelet count
Prostate cancer
Red blood cell count
Total cholesterol
White blood cell count

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | May 2024 | 846–860 850

Article https://doi.org/10.1038/s41588-023-01494-9

of 298 Japanese individuals in Human Genetic Variation Database 
(HGVD)18,19 (PeQTL < 1 × 10−5). Eight loci showed significant colocaliza-
tions with 20 CpGs in NSPT and adult height in BBJ (PSMR < 1.25 × 10−10, 
PHEIDI > 0.05). One locus located in the intron of ELF1 (13q14.11; Extended 
Data Fig. 2a) showed significant associations with seven cis-mCpGs 
in NSPT (PmQTL < 8.81 × 10−110), adult height in BBJ (PGWAS = 2.1 × 10−11, 
PSMR < 1.25 × 10−10 and PHEIDI > 0.05), and the expression of ELF1 in the 
peripheral blood of the Japanese sample (eQTL PSMR = 5.88 × 10−13), sug-
gesting a role of CpGs in mediating genetic association of adult height. 
ELF1 variants have been shown to have a large effect on adult height in 
EA populations20,21 with rs7335629 being an EA-specific signal in the 
latest human stature study21. This SNP and one of its associated CpG 
(cg21067652) are predicted to be in co-opening regions with binding 
sites from the same TFs (Extended Data Fig. 2b,c). A two-sample MR 
analysis revealed a causal effect of cg21067652 on ELF1 expression and 
adult height (Extended Data Fig. 2d,e). Therefore, the colocalization 
of EA-specific mQTLs and trait GWASs enhances our understanding of 
trait associations at the epigenetic level.

EA-specific cis-colocalizations. Cis- and trans-mQTLs were separately 
analyzed for colocalization with 107 overlapping GWASs between BBJ 
and UKBB. The cis-analysis identified 216 distinct loci (>1 Mbp) showing 

significant colocalizations (PSMR < 3.5 × 10−9 and PHEIDI > 0.05) between 
cis-mQTLs in NSPT and 45 GWASs in BBJ. Among these, 96 loci were colo-
calized with 38 GWASs exclusively in EAs (Supplementary Table 7 and 
Supplementary Fig. 11a). The most frequently associated phenotypes 
were cardiometabolic phenotypes (13/38), followed by hematological 
phenotypes (8/38). The most significant colocalization was identified 
for an intergenic variant at 12q24.13 (rs4534647, PSMR = 7.0 × 10−32; Sup-
plementary Fig. 11b), which was cis-associated with a CpG in the first 
intron of MAPKAPK5 (cg22778180, PmQTL = 2.2 × 10−110) in NSPT and was 
associated with mean corpuscular volume (PGWAS = 1.9 × 10−43), red 
blood cell count (PGWAS = 4.4 × 10−25) and alanine aminotransferase 
(PGWAS = 4.8 × 10−23) in BBJ. The T allele of rs4534647 is common in EAs 
(f = 0.62) but low frequent in Europeans (f = 0.01; Supplementary  
Fig. 11c), explaining the lack of mQTL, genetic association and colo-
calization in Europeans.

EA-specific trans-colocalizations. The trans-analysis identified 46 
loci showing significant trans-colocalizations with 23 distinct GWASs in 
BBJ. Of these loci, 36 exhibited EA-specific trans-colocalizations involv-
ing 486 independent mCpGs and 15 GWASs of primarily hematological 
traits (8 of 15; Supplementary Table 8 and Fig. 2b). Compared to non-
specific colocalizations, EA-specific ones were significantly enriched 

Table 1 | Sixteen trans-mQTL hotspots (>100 independent trans-mCpGs)

Hotspot Chr Start End Index mQTL EA/
OA

N trans N Ind 
trans

Direction % TF TFmotifView PWMEnrich

N 
mCpGs

Fold P value N 
mCpGs

P value

H1 1 61.5 62.3 rs78823853 A/G 140 122 − 100.0 NFIA 
(MA0670.1)

49 
(35.0%)

3.8 2.1 × 10−16 46 
(32.9%)

1.2 × 10−11

H2 2 28.4 29.2 rs4666078 G/A 232 204 − 100.0 FOSL2 
(MA0478.1)

178 
(76.7%)

17.5 2.5 × 10−177 183 
(78.9%)

1.3 × 10−136

H3 2 173.3 174.3 rs62175733 T/C 1056 692 + 100.0 SP9 
(MA1564.1)

162 
(15.3%)

0.5 1.00 8 
(0.8%)

1.00

H4 4 57.0 57.9 rs58408429 C/T 455 308 + 84.6 REST 
(MA0138.2)

90 
(19.8%)

180.0 3.5 × 10−113 110 
(24.2%)

7.8 × 10−253

H5 4 103.1 104.0 rs3774937 C/T 448 336 − 99.3 NFKB1 
(MA0105.4)

21 
(4.7%)

241.5 1.5 × 10−27 255 
(56.9%)

2.8 × 10−281

H6 6 43.3 44.3 rs651297 T/C 180 150 − 99.4 / / / / / /

H7 7 21.5 22.9 rs4473920 G/A 192 156 − 100.0 / / / / / /

H8 7 114.7 116.6 rs143396005 T/C 682 486 − 98.5 TFEC 
(MA0871.2)

79 
(11.6%)

5.6 2.1 × 10−30 276 
(40.5%)

4.3 × 10−163

H9 8 60.8 62.6 rs1038353 G/A 242 207 − 80.6 / / / / / /

H10 10 100.3 102.1 rs10883359 G/A 592 403 − 73.8 NKX2_3 
(MA0672.1)

149 
(25.2%)

1.3 2.4 × 10−3 52 
(8.8%)

5.8 × 10−5

H11 16 29.1 31.1 rs3809627 C/A 195 118 − 80.0 TBX6 
(MA1567.1)

173 
(88.7%)

1.4 1.3 × 10−15 74 
(37.9%)

5.1 × 10−64

H12 17 53.0 53.6 rs17818238 A/G 187 101 + 65.8 HLF 
(MA0043.3)

18 
(9.6%)

2.9 8.3 × 10−5 20 
(10.7%)

2.7 × 10−3

H13 18 41.2 42.9 rs11082385 T/C 218 125 − 56.9 / / / / / /

H14 19 45.4 47.1 rs10409222 T/C 126 108 + 100.0 FOXA3 
(MA1683.1)

86 
(68.3%)

2.5 2.8 × 10−21 43 
(34.1%)

2.1 × 10−37

H15 20 30.3 31.5 rs28789846 A/G 402 259 + 100.0 PLAGL2 
(MA1548.1)

101 
(25.1%)

1.5 4.6 × 10−5 35 
(8.7%)

6.3 × 10−6

H16 21 38.9 40.9 rs77106233 G/T 1149 677 + 80.0 ERG 
(MA0474.2)

143 
(12.4%)

1.1 0.07 57 
(5.0%)

0.71

All hotspots with more than 100 independent trans-mCpGs are listed with chromosome, starting and ending position (Mbp); Index mQTL, the mQTL associated with the largest number of 
independent trans-mCpGs in a hotspot; EA/OA, the effect allele and other allele of the index mQTL; N trans, the number of trans-mCpGs associated with the index mQTL; N Ind trans, the 
number of independent trans-mCpGs apart at least 500 Kbp with each other; Direction, the direction of the EA effects is tended toward increased (+) or reduced (−) DNAm; %, the percentage 
of trans-mCpGs with allelic effect on the same direction; TF, the trans-mCpGs are most significantly enriched for the motif of the TF (<1 Mbp with the index mQTL) according to TFmotifView; 
/ means no TF motif data from JASPAR 2020 database; N mCpGs, the number of trans-mCpGs within ±100 bp of the motif; Fold, the ratio of the number of trans-mCpGs over the expected 
number from genomic background; P values for TFmotifView are based on one-tailed hypergeometric tests to evaluate whether the flanking regions (±100 bp) of the trans-mCpGs enriched for 
the TF motifs, and P values for PWMEnrich are based on the enrichment analyses performed by using the log-normal threshold-free approach (Methods).
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for trans (Fisher’s exact test, odds ratio (OR) = 4.48, 95% CI (2.05,10.65); 
Extended Data Fig. 3a, b) and EA-specific trans-colocalization were 
significantly enriched in predicted transcriptional and enhancer 
regions (P < 5 × 10−8; Extended Data Fig. 3c, d), emphasizing their 
population-specific and functional significance.

The most significant EA-specific trans-colocalization was located 
in the intron of ERG on chr21q22.2 (rs80109907, in complete link-
age with rs77106233 in hotspot H16, PSMR = 7.9 × 10−35; Table 1 and 
Supplementary Fig. 11d), where the A allele was primarily positively 
(97%) trans-associated with 233 independent mCpGs and posi-
tively associated with basophil count in BBJ (PGWAS = 1.1 × 10−59). The 
A allele is common in EA populations (f = 0.11) but rare in European 
populations (f = 0.01; Extended Data Fig. 4a). rs80109907 was sig-
nificantly associated with eosinophils, monocytes, red blood cells, 
neutrophils and platelets (Supplementary Table 9 and Extended Data 
Fig. 4b). A summary-data-based mendelian randomization (SMR) 
analysis revealed weaker (compared to basophil count) but signif-
icant trans-colocalizations involving several blood cell count and 
immune-related diseases, including monocytes, eosinophils, white 
blood cells, urticaria, pericarditis and asthma (Supplementary Table 10  
and Extended Data Fig. 4c). A two-sample MR analysis further iden-
tified 39 causal CpGs for these traits (Extended Data Fig. 4d). The 
trans-mCpGs were significantly enriched in motifs of 62 TFs (Supple-
mentary Table 11), with 13 also appearing in blood cell TF ChIP–seq data 
(Supplementary Table 12). TAL1 and RUNX1, two of these TFs, interact 
directly with ERG and, together with ERG and four other proteins, form 
a TF heptad complex that has an important role in the transcriptional 
regulation of hematopoietic stem cells22,23 (Fig. 2c). Protein interaction 
analysis revealed that these 62 TFs and ERG formed a large protein inter-
action network (Fig. 2d). GO analysis showed that these TFs, together 
with the genes in the vicinity of the mCpGs, were significantly enriched 
in hematopoiesis and regulation of leukocyte differentiation (Fig. 2e). 
These results support that trans-regulated DNAm changes affect the 
binding efficiency of multiple TFs in the ERG protein complex, further 
regulating the process of hematopoietic cell differentiation.

Most mQTLs are not cell-type or cell lineage specific
An important yet unresolved question relates to whether mQTLs are 
present in all underlying blood cell types or only in specific subsets. 
While addressing this in a mixed cell-type tissue like blood is sub-
ject to limitations, we nevertheless applied CellDMC24, an algorithm 
designed to detect cell-type-specific differential DNAm, to identify 
cell-type-specific mQTLs among the mQTLs detected in NSPT (Meth-
ods). Running CellDMC at the resolution of lymphoid and myeloid 
lineages, and separately again at the higher resolution of six cell types, 

we identified many lineage- and cell-type-specific mQTLs (Supple-
mentary Fig. 12a,b). We verified using Monte-Carlo analysis that the 
number of lineage and cell-type-specific mQTLs identified on random 
SNP–CpG pairs using CellDMC is negligible (Supplementary Table 13).  
We observed that many mQTLs significant in one lineage also dis-
played associations in the other, suggesting that most mQTLs are 
lineage-independent. To independently confirm this, we extended 
previous simulation models25 to estimate the sensitivity of detect-
ing lineage-independent mQTLs simultaneously in the myeloid and 
lymphoid lineages (Methods). We estimated approximately 93% 
shared mQTLs between lineages (Fig. 3a,b), consistent with previ-
ous lower bound (that is, 70%) from BLUEPRINT7,26. Cell-lineage/
cell-type-specific mQTLs were validated in the independent Han Chi-
nese cohort (CGZ; Fig. 3c,d), as well as in sorted immune-cell subsets 
from BLUEPRINT (Fig. 3e). Scatterplots of DNAm versus myeloid or 
lymphoid fraction, stratified by genotype, provided visual confirma-
tion of myeloid-specific, lymphoid-specific and lineage-independent 
mQTLs (Fig. 3f). The effect size of myeloid-mQTLs was significantly 
larger than that of lymphoid mQTLs for both cis- and trans-mQTL cat-
egories (Supplementary Fig. 12c,d), consistent with myeloid cells being 
the dominant component in blood. mQTLs were then stratified into 
four groups (lineage-independent, myeloid-specific, lymphoid-specific 
and rest) and tested separately for enrichment of myeloid- and 
lymphoid-specific hypomethylated differentially methylated CpGs 
(DMCs; Methods). Myeloid-specific and lymphoid-specific mQTLs were 
strongly enriched for corresponding myeloid-hypomethylated DMCs 
and lymphoid-hypomethylated DMCs (Fig. 3g). Interestingly, using 
eFORGE2, which tests for enrichment of DNase hypersensitive sites 
(DHSs) in myeloid and lymphoid cell types from ENCODE, BLUEPRINT 
and the Epigenomic Roadmap, lineage specificity was only observed 
for myeloid-mCpGs (Methods; Fig. 3h and Supplementary Fig. 13), 
probably because DHS displays lower cell lineage specificity than dif-
ferential DNAm.

Regulatory network explains >40% cis-mQTLs
We then investigated the proportion of mQTLs explained by chromatin 
interaction regions and to what extent they contribute to gene regula-
tion. The results showed that 72.3% of cis-mQTLs and their mCpGs were 
located within the same topologically associating domains (TADs), 
representing a 1.6-fold enrichment over distance-matched SNP–CpG 
pairs (Methods; Fig. 4a and Extended Data Fig. 1d). The cis-mQTLs and 
their mCpGs were also more prominent in PCHi-C loops, HiChIP loops 
(Fig. 4b and Extended Data Fig. 1e), co-opening region and co-active 
region (Fig. 4c). An OpenCausal database27 analysis showed signifi-
cant enrichment of our cis/lcis-mQTLs in blood-specific SNPs linked 

Fig. 3 | Cell-type- and cell-lineage-specific mQTLs and validation. a, Flowchart 
describing the procedure for estimating the fraction of lineage-independent 
mQTLs (fShared_mQTLs). The sensitivity to detect a shared mQTL in the 
myeloid and lymphoid lineages is estimated via a mathematical integration of 
the observed effect sizes and the corresponding sensitivities as derived from 
a simulation model (Methods). b, Plots of sensitivity (SE) to detect a shared 
mQTL in each of the myeloid and lymphoid lineages versus variance-adjusted 
effect size (top, cumulative SE), as inferred from a realistic simulation model. 
Bottom: variance-adjusted effect size distribution. c,d, Scatterplots display 
the t-statistics of association between genotype and DNAm in six cell types (c) 
and two cell lineages (d) in the discovery cohort (NSPT, n = 3,523, x axis) versus 
the corresponding statistics in the validation cohort (CGZ, n = 798, y axis). 
Fisher’s exact test OR and two-tailed P value are given. e, Scatterplots display the 
signed −log10(P) of myeloid or lymphoid mQTLs (NSPT, n = 3,523, x axis) versus 
the corresponding values in the purified samples from BLUEPRINT (n = 197, 
y axis). The best fit (red lines) and 95% CI (gray bands) are given, with P values 
from linear regressions. Barplots indicate the overlap of myeloid/lymphoid 
mQTLs with those identified in BLUEPRINT against the expected number under 
the null with error bar indicating 95% CI. One-tailed binomial P value is given. 

f, Scatterplots of DNAm (β; y axis) versus cell-type fraction F (x axis) for four 
mQTLs with samples colored by genotype. The top two mQTLs are examples of 
myeloid- and lymphoid-specific mQTL, with the x axis labeling the myeloid and 
lymphoid fraction, respectively. The bottom two mQTLs are examples of two 
cell-lineage-independent mQTLs, with the left mQTL being equally dominant 
in myeloid and lymphoid subsets and the right mQTL being more dominant in 
the myeloid subset. g, Enrichment analysis of all myeloid and lymphoid-specific 
mCpGs among myeloid and lymphoid-specific hypomethylated DMCs. ORs 
and P values derive from one-tailed Fisher’s exact tests. h, eFORGE analysis 
of top 1,000 myeloid and lymphoid mCpGs. Y axis indicates −log10(P) from 
one-tailed hypergeometric test of myeloid and lymphoid mCpGs for DHSs as 
derived in lymphoid and myeloid cell types (x axis) from BLUEPRINT, ENCODE, 
consolidated Roadmap (ERC) and original Roadmap (ERC2012). The color of  
the cell type indicates its source. Overall results are very similar when using  
the top-10,000 myeloid and lymphoid mCpGs. Th1: type 1 T helper cell; Th2:  
type 2 T helper cell; macrophage LPS: lipopolysaccharide-induced macrophage; 
Neut, neutrophil; Mono, monocytes; CD4T, CD4+ T cells; NK, natural killer;  
Mye, myeloid lineage; Lym, lymphoid lineage.
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to chromatin accessibility (Fig. 4d). Next, we considered two possible 
mechanistic models (M1 and M2; Methods; Fig. 4e,f). M1 assumes that 
a mQTL in a RE alters chromatin accessibility, for example, by affecting 
pioneer factor binding. This could further influence DNAm of distal 
CpGs through 3D interactions (Fig. 4e). In M2, a RE does not necessarily 

change chromatin accessibility but influences DNAm at a distal mCpG 
by disturbing the binding affinity of cofactors or nonpioneer TFs  
(Fig. 4f). The analysis showed that a total of 40.4% cis/lcis-mQTLs could 
be explained by our proposed models (38.1% M1 only, 7.9% M2 only, 
40.4% M1 + M2; Fig. 4g).
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mQTL hotspots are mediated by TFs
Our 1.14 million trans-mQTL SNPs were assigned to 1,727 distinct loci with 
a minimum distance of at least 1 Mbp between them (Methods). Of these, 
959 (55.5%) were considered mQTL hotspots, which contained mQTLs 

trans-associated with multiple independent mCpGs, ranging from 776 
(44.9%) with two independent mCpGs, 16 (0.9%) with >100 independent 
mCpGs (H1–H16), up to with 692 independent mCpGs (Fig. 5a and Sup-
plementary Table 14). Of the 16 hotspots, 16 were replicated in CAS, and 
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eight were found in the 22 hottest hotspots in FHS2. Except for H9, all 16 
hotspots contained TF genes, and 10 had significant evidence for their 
trans-mCpGs being enriched in the motifs of corresponding TFs (Table 1).  
Defining an index mQTL as the mQTL having the largest number of 
independent trans-mCpGs in a hotspot, we found that its allelic effect 

on trans-mCpGs tended to be in the same direction (Table 1). In 12/16 
hotspots, we found the index mQTLs or their high LD SNPs (r2 > 0.6; Sup-
plementary Table 15) in GWAS Catalog loci. The associated traits were pre-
dominantly hematological (10/12) and inflammatory traits (8/12), further 
supporting the role of trans-mQTLs in maintaining blood cell identity.

700

a

b

e

f

c d

H3

H1

*H2 *H9

*H10

*H11 H14

H15

H16

*H12
H13

*H5

Cor: 0.45
P < 1.00 × 10–323

P = 5.59 × 10–10 P = 9.33 × 10–15 P = 1.33 × 10–15 P = 0.002

OR: 1.53
P < 1.00 × 10–323

*H4

*H6 H7

H8500

300

N
um

be
r o

f i
nd

ep
en

de
nt

 tr
an

s-
m

C
pG

s
N

um
be

r o
f i

nd
ep

en
de

nt
 tr

an
s-

m
C

pG
s

N
um

be
r o

f h
ot

sp
ot

s

Tr
an

s-
m

Q
TL

s 
ne

ar
 a

 T
F 

(<
1 M

bp
) (

%
)

(<
1M

bp
)

N
 TFs (<1 M

bp)

Tr
an

s-
m

Q
TL

s 
(%

)

100

100

20

15

10

5

0
Hotspots Background Hotspots Background Hotspots

Similarity
1.0

0.8

0.6

0.4

0.2

0

Background Hotspots Background

100%
20.0%

17.5%

15.0%

12.5%

SNPs not near a TF
(<1 Mbp)

SNPs near a TF
(<1 Mbp)

90%

80%

70%

60%

0 20 40

Chr19 (Mbp)

58 GO terms clustered by ‘binary_cut’

Signaling 

Transport

Morphogenesis Cell Projection Neuron

Stimulus Response

Development Organization Di�erentiation Plasma Membrane Bounded

ion Regulation Transmembrane Cation

Regulation Communication Cell

Super_enhancer TAD HiChIP_Prom–Prom HiChIP_Prom–other

Number of independent trans-mCpGs
60 1 2–10 11–20 21–40 41–100 >100

50%

60

40

20

0

75

50

25

0

1
1 2 3 4 5 6 7 8

Chromosome (SNP)
9 10 11 12 13 14 15 16 17 18 19 21

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | May 2024 | 846–860 855

Article https://doi.org/10.1038/s41588-023-01494-9

Chr19 had the highest density of mQTL hotspots (0.58/Mbp) and TF 
gene density (5.6 TFs/Mbp) among all chromosomes, followed by chr17 
with the second highest density of mQTL hotspots (0.43/Mbp) and the 
second highest TF gene density (0.9 TFs/Mbp; Supplementary Table 16).  
Notably, the hotspots on chr19 were predominantly located in the 
high-density TF regions (Fig. 5b). The hotspot density was significantly 
correlated with the TF density across all chromosomes, with (Spearman 
correlation, r = 0.71, P = 1.23 × 10−4) or without (r = 0.66, P = 5.52 × 10−4) 
chr19 (Supplementary Table 16). Trans-mQTLs were more likely to be 
located near a TF gene than a random SNP in the genome (OR = 1.53; 
Fig. 5c,d). These findings underscore the significant role of TFs in the 
formation of trans-mQTLs and mQTL hotspots throughout the genome.

Trans-mQTL hotspots marked with super enhancers
We found all 16 hotspots identified in our data contained super 
enhancers but not all had TF genes (Supplementary Tables 17–19). 
Super enhancers are characterized as a cluster of tightly connected 
enhancers located in a relatively larger chromatin region that bind by 
key TFs and mediators, to drive high expressions of their associated 
genes28,29. Trans-mQTL hotspots were also enriched with chromatin 
interactions (promoter–promoter and promoter–other interaction 
defined using PCHi-C and HiChIP) and accessibility-associated variants 
(Fig. 5e and Supplementary Table 20), which was consistent with the 
association of super enhancers with high histone modification levels, 
DNase I hypersensitivity and chromatin interactions28,29. Additionally, 
trans-mQTL hotspots and their associated CpGs were enriched within 
genes that are involved in cellular processes (for example, transport, 
signaling, cell communication, adhesion and morphogenesis) and 
cell components (for example, plasma membrane, cell periphery, cell 
junction and projection; Fig. 5f), which was in concordance with the 
role of super enhancers and their associated genes in maintaining cell 
identity28,29. These findings suggested that super enhancers have key 
roles in the formation of trans-mQTL hotspots.

A FOSL2 hotspot influences eosinophil count
We observed a significant enrichment of trans-mCpGs in the binding 
sites of the TFs located near their respective trans-mQTLs (Table 1).  

These TFs are often known susceptibility loci of human traits and 
diseases (Supplementary Fig. 14), suggesting a functional role of 
trans-mCpGs as a potential causal mediator of genetic susceptibility. 
To further investigate this, we used H2 (the most significant from TFmo-
tifView) and H5 (the most significant from PWMEnrich) as examples 
(Table 1). The G allele of the index mQTL rs4666078 at H2 was nominally 
significantly (P = 4.3 × 10−3) associated with a reduced eosinophil count 
in a recent GWAS of eosinophil count in EA30 and led to a decreased 
DNAm at all its 232 trans-mCpGs from 204 distinct loci throughout 
the genome (Fig. 6a). The trans-mCpGs were significantly enriched for 
FOSL2 motifs (76.7%, P = 2.50 × 10−177; Table 1) and FOSL2 ChIP–seq bind-
ing sites (78.0%, P = 1.25 × 10−101; Fig. 6a). The 151 genes in the vicinity of 
the 232 trans-mCpGs were significantly enriched in eosinophil count in 
DisGeNET (Fig. 6b). Additionally, these trans-mCpGs were significantly 
enriched in genome-wide significant CpGs identified by the to-date only 
EWAS of tissue eosinophilia (P = 2.19 × 10−24; Fig. 6c), in which 46/232 
(19.8%) were genome-wide significant, and for 39/46 (84.8%), the G 
allele-induced decrease in DNAm was associated with a reduced risk 
of tissue eosinophilia (Supplementary Fig. 15). SMR and heterogene-
ity in dependent instrument test (HEIDI) analysis showed nominally 
significant colocalization between most of the 232 trans-mCpGs and 
eosinophil count (100% PSMR < 0.05, 99% PHEIDI > 0.05). Two-sample MR 
analysis identified 21/232 CpGs as putative causal factors of blood 
eosinophil count (Fig. 6d and Supplementary Table 21), and for all 21 
CpGs, G-induced decrease in DNAm led to a reduced eosinophil count. 
These included cg22652934 at RUNX1, which encodes a TF well-known 
to be functionally involved in the specification of myeloid and lymphoid 
cell lineages from hematopoietic stem cells31. These results suggest 
that the FOSL2-hotspot may modulate eosinophil count via DNAm at 
multiple trans-mCpGs.

An NFKB1 hotspot may mediate the risk of obesity
H5 on chr4 represents our most significant finding from PWMEnrich 
(Table 1). The index mQTL rs3774937 at H5 was significantly associated 
with ulcerative colitis in GWAS Catalog (P = 5.0 × 10−8). Relative to the 
T allele, the C allele of rs3774937 led to a decreased DNAm at 99.1% 
of its 448 study-wide significant (P < 8.16 × 10−15) trans-mCpGs from 

Fig. 6 | A FOSL2-mediated mQTL hotspot influences eosinophil count. 
 a, Circos plot displaying the enrichment of the 232 trans-mCpGs associated with 
the index SNP rs4666078 (at the hotspot H2) for FOSL2 ChIP–seq binding sites. 
The inner (orange/gray) link lines show the 232 trans-mCpGs, and the orange 
ones represent those overlapped with FOSL2 binding sites. The inner red barplots 
show −log10(Q) of peak-caller MACS2 indicating ChIP–seq signals score (all 
Q < 1 × 10−5). The outer blue barplots show −log10(P) of trans-mQTL associations. 
Outer track represents the directionality of DNAm change (rs4666078-G allele) 
of the trans-mCpGs: cyan (hypermethylation) and magenta (hypomethylation). 
b, Enrichment of the 151 genes annotated to the 232 trans-mCpGs for human 
diseases and traits based on DisGeNET knowledgebase compared with all 
human genes (according to the NCBI). Only significant results are shown 
(one-tailed Fisher’s exact test, FDR < 0.05). c, Top: the enrichment (one-tailed 

hypergeometric test) of the 232 trans-mCpGs in 24,114 genome-wide significant 
CpGs associated with tissue eosinophilia (850 K array, Korean population, 
n = 147; Supplementary Protocols) compared to background. Bottom: the 
association significance with tissue eosinophilia (y axis) of the 46/232 mCpGs 
(red) and background (blue). P value from one-tailed Kolmogorov–Smirnov test 
is given. d, Two-sample MR results showing 21 CpGs are causal for eosinophil 
count in whole blood (FDR < 0.05). The left and right y axes indicate the CpGs and 
their genomic annotations. Each point and the error bar indicate the causal effect 
(β from two-tailed MR–IVW test) and its 95% CI. Tissue eosinophilia (+) means 
that CpG methylation is positively associated with the risk of tissue eosinophilia, 
DisGeNET means that CpG-annotated gene is related with eosinophil count in 
DisGeNET and other means that the CpG or its annotated gene is not reported in 
either dataset.

Fig. 5 | mQTL hotspots mediated by TFs and super enhancers. a, The number 
of independent trans-mCpGs associated with each trans-mQTL identified in 
NSPT (y axis). The 16 mQTL hotspots (>100 independent trans-mCpGs) are 
labeled by ‘H1’–‘H16’. Single asterisk indicates the hotspots also reported in the 
FHS cohort. b, The number of independent trans-mCpGs associated with each 
trans-mQTL (red points, left y axis) and the number of TFs near each trans-
mQTL (<1 Mbp, blue points, right y axis) for each trans-mQTL on chr19 (x axis 
indicates the position of each trans-mQTL on chr19). Correlation and P value 
from two-tailed Spearman’s rank correlation test between the two numbers are 
given. c, Relationship between the proportion of trans-mQTLs located near a TF 
(<1 Mbp) and the number of associated independent trans-mCpGs. d, OR and 
P value from two-tailed Fisher’s exact test showing the likelihood of being trans-
mQTLs for the SNPs near a TF (<1 Mbp) versus that not near a TF. e, Plot indicates 

trans-mQTL hotspots enrichment in super enhancer, TAD, HiChIP promoter–
promoter interaction (HiChIP Prom–Prom) and promoter–other interaction 
(HiChIP Prom–other). P values from one-tailed hypergeometric tests are given. 
f, Enrichment of annotated genes of trans-mCpGs associated with 16 hotspot 
index mQTLs in biological processes. The enrichment results of annotated genes 
of trans-mCpGs associated with the index mQTLs in biological processes are 
compared with all trans-mCpGs. There were in total 58 significant (FDR < 0.05) 
terms, simplified by clustering on semantic similarity. Left is the heatmap of the 
similarity matrix of the 58 terms, and the word cloud annotations that summarize 
the functions with keywords in every cluster are shown on the right side of 
the heatmap. The font size of the keywords corresponds to the enrichment 
significance of the keywords compared to the background (biological process) 
vocabulary. Only the clusters of word cloud with a size of at least 5 are shown.
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336 distinct loci throughout the genome (Table 1), which is largely 
consistent with the findings in 3,841 Dutch Europeans1. The rs3774937 
in the first intron of NFKB1 is a cis-eQTL of NFKB1 (P = 7.6 × 10−53, eQTL-
Gen whole blood). Under a more relaxed significance threshold 
(P < 1 × 10−8), rs3774937 had 856 trans-mCpGs, which were signifi-
cantly enriched for NFKB1 motifs (63%) and NFKB1 ChIP–seq binding 

sites (36.6%; Fig. 7a,b). Given that a recent EWAS for body mass index 
(BMI) has revealed a strong enrichment for the NFKB-pathway32, we 
hypothesized that some of the NFKB1 trans-mQTLs may be associated 
with BMI. To test this in our Han Chinese cohort, we first established 
that of 364 CpGs known to be associated with BMI32–35, 267 did so also 
in our Asian cohort (Fig. 7c). We observed that 15 of the 364 BMI CpGs 
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were NFKB1 trans-mQTLs (Fisher’s exact test, P = 2.7 × 10−19), and that 
NFKB1 trans-mQTLs displayed a very strong association with BMI in 
our Chinese cohort, as well as in an independent European cohort36 
(Fig. 7d,e). Although SMR–HEIDI analysis of the NFKB1 hotspot was 
nonsignificant, due to the lack of association between the index SNP 
and BMI, this is complicated by the trait’s high polygenicity and the 
high degree of the index SNP’s pleiotropy. Hence, we asked if NFKB1 

trans-mQTLs enriched for NFKB1 binding motifs/sites, which are also 
associated with BMI in our cohort, displayed any evidence of being 
causal mediators of BMI. Using a two-step MR strategy (Methods), we 
observed stronger evidence for DNAm levels at NFKB1 trans-mQTLs 
being causal mediators for BMI, as opposed to being a consequence 
of BMI (Fig. 7f and Supplementary Table 22). In contrast, when con-
sidering the BMI-associated CpGs (excluding the subset of NFKB1 
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trans-mQTLs), we observed stronger evidence for DNAm at these sites 
being a consequence of BMI (Fig. 7g and Supplementary Table 23), 
consistent with previous observations32. This suggests that DNAm at 
a subset of NFKB1 binding targets may be causal for high BMI, with a 
component of variation at these loci being under genetic influence. We 
next reasoned that if DNAm at these loci mediates the risk of obesity, 
these loci may also display a significant interaction between genotype 
and BMI that better models their DNAm variation. We were able to 
confirm a number of NFKB1 trans-mQTLs that displayed a significant 
interaction between genotype and BMI (Fig. 7h). Of note, among the 
three CpGs exhibiting both causal and interaction effects, one anno-
tated to PTPN3, a protein-tyrosine-phosphatase gene that has been 
linked causally to obesity37, and another to NOD2, an intracellular 
innate immunity protein gene that has been shown to be protective 
of diet-induced obesity and colitis38–40, which also has polymorphisms 
associated with inflammatory bowel disease41. Other genes highlighted 
by our interaction analysis have also been previously implicated in 
obesity, inflammatory bowel disease or type 2 diabetes, including 
FOXP1 (ref. 42), CDKAL1 (refs. 43–45), HSD17B12 (ref. 46), ALAS1  
(ref. 47), COL15A1 (ref. 48) and DNAH10 (ref. 49).

Discussion
This work advances our understanding of mQTLs in several ways. 
First, using the 850 K beadarray, we identified more than double the 
number of mQTLs than previous studies and integrated them into a 
pan-ancestry mQTL database that also includes published European 
and South Asian data (https://www.biosino.org/panmqtl/). While the 
majority of mQTLs are shared between EA and European populations, a 
significant proportion are specific to EAs, improving functional annota-
tion of GWAS findings. Colocalization of cis-mQTLs with GWASs facili-
tates fine-mapping of trait-variants, while trans-colocalizations help 
pinpoint biological pathways contributing to variant-trait association, 
revealing the role of methylation in these pathways. For instance, we 
identified an EA-specific trans-colocalization mQTL network involved 
in basophil differentiation by affecting the binding efficiency of the 
ERG protein complex.

Second, our results indicate that blood cell-subtype-specific 
mQTLs are relatively uncommon, in line with recent findings15,50, but 
that the smaller number of lineage-specific mQTLs are more likely to 
map to hypomethylated cell-lineage-specific marker genes. Consist-
ent with this, TFs implicated in mQTLs (for example, NFKB1 or CTCF) 
are generally not immune-cell-type specific, displaying variable but 
consistently nonzero expression among such cell subtypes. Simulation, 
however, indicates that much larger studies will be needed to ascertain 
in which cell types a given mQTL is truly not present in25.

Third, we proposed two possible mechanistic models that together 
explain over 40% cis-mQTL-CpG associations. Of these, the M1 model 
accounted for a relatively large proportion of the explanation, sug-
gesting that the influence of an mQTL on DNAm is directly related to 
pioneer TF binding affinity. It also suggests that super enhancers have 

a key role in the formation of trans-mQTL hotspots. The enrichment of 
variants related to blood cell traits in trans-mQTL hotspots also sup-
ports the hypothesis that these hotspots have key roles in maintaining 
blood cell identity. In addition to TFs, other DNA binding factors such 
as TETs and DNMTs can also give rise to mQTLs. The models proposed 
here are rather simple, and more complex models can be developed 
to explore the mechanism of mQTLs.

Fourth, our trans-mQTL hotspot analysis has shown that many 
key hotspots (for example, NFKB1 and FOSL2) are independent of 
ethnicity. The hotspot associated with FOSL2 potentially modulates 
eosinophil count via the TF RUNX1, which also shows a degree of 
myeloid-specificity. Besides the potential role of the NFKB1 hotspot 
in mediating the risk of ulcerative colitis1, our analyses have revealed 
a role in obesity. MR on a subset of NFKB1-associated trans-mCpGs 
revealed that these could be causally implicated in mediating the risk 
of obesity, in stark contrast to EWAS BMI-DMC loci where DNAm vari-
ation appears to be primarily a consequence of BMI32.

In summary, this work advances our understanding of the mQTL 
landscapes across genetic ancestries, shedding light on the underlying 
mechanistic models that shape this complex landscape and their down-
stream effects on cellular processes and diseases/phenotypes. The 
associated mQTL database in EAs constitutes an invaluable resource 
for future studies to help explain differential susceptibility to disease 
and complex trait variation across different ancestries. As the SNPs 
studied here are microarray-based tagged SNPs, it is possible that the 
true causal SNPs are not captured. In the future, the influence of rare 
variants on DNAm could also be investigated.
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Methods
Further details of experimental methods and data analyses are pro-
vided in Supplementary Note.

Participants
Samples in the discovery dataset included 3,523 Han Chinese volun-
teers recruited in three regional districts of China: Zhengzhou, Taizhou 
and Nanning (NSPT, 1,310 males and 2,213 females, aged from 18 to 
83 years old, mean ± s.d. = 50.21 ± 12.75) from May 2015 to May 2019.

Samples in the validation dataset CAS included 1,060 Han Chinese 
volunteers recruited from the CAS cohort (CAS, 634 males and 426 
females, aged from 22 to 64 years, mean ± s.d. = 40.87 ± 9.41) from Jan 
2021 to Jun 2021. In brief, the CAS cohort is a prospective multi-omics 
cohort that enrolled 3,102 CAS employees (49.0%) from various CAS 
institutes or offices located in Beijing, China. They were characterized 
by their high level of education, being in the young- to middle-age 
range, and having a primary origin from the Chinese Han population. 
Eligible participants completed a baseline questionnaire regarding 
lifestyle, medical history and health-related questions, and underwent 
physical examinations by trained physicians at Beijing Zhongguancun 
Hospital. Fasting blood samples were collected for clinical laboratory 
tests and generation of omics data. All participants had genomic data 
and a subgroup of them (n = 1,071) had deep molecular phenotypic 
data, including data on epigenetics, proteomics and metabolomics.

Samples in the validation dataset CGZ included 798 Han Chinese 
volunteers recruited at baseline in two CGZ clinical trails (NCT02121717, 
also known as CGZ301, and NCT02173457 also known as CGZ302) 
from 2014 to 2017; a new pan-PPAR agonist developed by Shenzhen 
Chipscreen Biosciences was used for treating type 2 diabetes51–53.  
The CGZ cohort included 492 males and 306 females (aged from  
24 to 70 years, mean ± s.d. = 51.0 ± 9.7).

Ethics
The discovery cohort is a subproject of The National Science and Tech-
nology Basic Research Project, which was approved by the Ethics Com-
mittee of Human Genetic Resources of the School of Life Sciences, 
Fudan University, Shanghai (14117). CAS study protocol was approved 
by the Institutional Review Board of Beijing Institute of Genomics 
and Zhongguancun Hospital (2020H020, 2021H001 and 20201229). 
CGZ consists of two registered clinical trials, CGZ301 (NCG02121717,  
26 sites) and CGZ302 (NCG02173457, 33 sites). Ethical approvals were 
obtained from the ethical committees of the 59 study centers. All pro-
cedures performed in the study involving human participants were 
in accordance with the ethical standards of the institutional and/or 
national research committee and with the Declaration of Helsinki and 
its later amendments or comparable ethical standards. All participants 
provided written informed consent.

Statistics and reproducibility
Power estimation indicated that the discovery cohort (NSPT, n = 3,523) 
has sufficient power to detect mQTLs at MAF of 0.01 when DNAm vari-
ance explained is larger than 2% (note that in the study, we found that 
the median DNAm variance explained by a mQTL was 3.1%, with an 
interquartile range of 1.9%–6.3%). The two validation cohorts (CAS, 
n = 1,060 and CGZ, n = 798) have sufficient power to detect mQTLs at 
MAF of 0.01 when DNAm variance explained is larger than 5% or 6.5%. 
No statistical method was used to predetermine the sample size. The 
samples used in this study have already excluded those who failed in 
the step of quality control (QC) of the SNP chip or DNAm chip. No data 
were excluded in the following analysis.

DNAm assessment of the discovery panel (NSPT)
Blood samples were kept in Fudan University Taizhou Institute of Health 
Sciences for storage at −80 °C until DNA extraction. DNA extraction 
was performed using a TGuide M48 Automated nucleic acid extractor. 

Genome-wide DNAm was profiled using the Infinium MethylationE-
PIC BeadChips (Illumina). Five hundred nanograms of genomic DNA 
from each whole blood sample was bisulfite converted using the EZ 
DNA Methylation Kit (Zymo Research). BeadChips were processed 
following the manufacturer guide and protocol for Infinium Meth-
ylationEPIC array (Illumina). DNA was hybridized to BeadChips and 
single base extensions were performed using a Freedom EVO robot 
(Tecan). BeadChips were subsequently imaged using the iScan Micro-
array Scanner (Illumina). Illumina.idat files were then processed with 
the minfi Bioconductor package v1.46.0 (ref. 54) without background 
correction (although background correction reduces bias, it does so 
at the expense of increased variance, which is generally something to 
be avoided, unless the DNAm data are used for copy-number estima-
tion). Probes with SNPs were removed using the dropLociWithSnps 
function from minfi. This function uses the SNP information provided 
by Illumina and UCSC Common SNP tables (including versions 132, 
135, 137, 138, 141, 142, 144, 146 and 147) with preset MAF (0 is the default 
value and was used here) to filter SNP CpGs. We further removed probes 
on chromosomes X and Y. We further used the Illumina definition of  
β values and derived P values of detection for the rest of the probes by 
comparing the total intensity U + M to that of the background distri-
bution (given by negative control probes), as implemented in minfi.  
β values with P values of detection greater than 0.01 were set to NA. Of 
note, the threshold of detection (P < 0.01) is more stringent than the 
P < 0.05 threshold used in the other cohorts, partly because sample 
coverages were very high, allowing for a more stringent threshold 
while also retaining a high coverage over probes. Only probes with less 
than 5% missing values were retained. The missing β values were then 
imputed with the impute.knn function (using k = 5) in R. Type 2 probe 
bias was corrected using BMIQ55. All this resulted in an 811,876 probes 
times 3,523 samples data matrix. Based on principal component (PC) 
analyses, we found a significant slide/beadchip effect. Therefore, we 
used ComBat56 on M values (logit of β values) to correct for the slide 
effect and then M values were used in mQTL mapping.

SNP genotyping and imputation of the discovery panel (NSPT)
Genome-wide SNP genotyping was profiled using Illumina Infinium 
Global Screening Array, which analyzes over 710,000 SNPs. It is a fully 
custom array designed by WeGene (https://www.wegene.com/). Sam-
ples with call rate <98%, ambiguous sex and duplicates were excluded. 
No sample failed the heterozygosity and inbreeding test. 3,523 samples 
were kept in discovery NSPT dataset. SNPs were excluded if they had 
a call rate <98%, MAF < 1% and P value of violations from Hardy–Wein-
berg equilibrium (HWE) (PHWE) < 0.001. After QC, 433,485 SNPs of 3,523 
samples are left for further analyses. Imputation was done by SHAPEIT2 
and IMPUTE2 using the 1000 Genomes Phase 3 as a reference. Imputed 
variants were filtered with MAF > 0.01, imputation quality score >0.8 
and violations from HWE (P < 1 × 10−5), leaving 8,615,463 variants. Then, 
we excluded SNPs that had multiple alleles that belonged to insertion 
or deletion. After that, there were 7,576,990 SNPs (tested) left for mQTL 
mapping.

DNAm assessment of the validation panel (CAS)
Blood samples of CAS participants were taken after fasting overnight 
for at least 8 h. Blood samples were stored at −80 °C freezers in the 
Beijing Institute of Genomics until DNA extraction. DNA extraction 
was performed using XPure Blood DNA Extraction Kit (Biokeystone), 
then the DNA was bisulfite converted using the EZ DNA Methylation 
Kit (Zymo Research). Genome-wide DNAm was profiled using the 
Infinium MethylationEPIC BeadChips (Illumina). BeadChips were pro-
cessed following the manufacturer guide and protocol for the Infinium 
MethylationEPIC array. BeadChips were subsequently imaged using 
the iScan Microarray Scanner (Illumina). The resulting Illumina.idat 
files were processed with the ChAMP Bioconductor package v2.30.0  
(ref. 57) and most of the operations followed the recommendations of 
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the package authors and predecessors58. We extracted the methylation 
β values, checked the consistency of replicates (n = 5) and compared 
the control genotype probes (59) on the EPIC with our genotype data to 
make sure there were no mislabeling samples and data quality issues. 
Then we did some filters on probes and samples based on quality. We 
removed the samples with missing probes of more than 10% and the 
probes missing in samples of more than 20%, then carried out KNN 
imputation for the rest as recommended by the package. We removed 
the probes with less than three beads in more than 5% of samples and 
the non-CpG, cross-reactive or nonspecific ones. The probes mapping 
on the sex chromosomes and contained SNPs (the SNP list provided in 
ref. 59) were also removed. After checking sample outliers by MDS plots 
and β value distribution of type 1 and type 2, we did data normalization 
to convert the type 2 to type 1 probes using BMIQ55, which could reduce 
the differences between them and improve reproducibility. We kept 
the samples that had genotype data and transformed the methylation 
β values into M values. Finally, 751,015 methylation probes and 1,060 
samples were left for the following analysis.

SNP genotyping and imputation of the validation panel (CAS)
Genomic DNA was extracted from peripheral blood samples and 
genotyped on the Infinium Asian Screening Array + MultiDisease-24 
(ASA + MD) BeadChip, a specially designed genotyping array for clinical 
research of EA population with 743,722 variants on it. The GenTrain v2.0 
in GenomeStudio was used to perform genotype calling. Individuals 
with sex mismatch, biological relatedness, possible contamination 
or departure from the Chinese Han population were removed (n = 0). 
We regenotyped 15 samples with a low genotyping call rate (<98%). 
As a result, the mean call rate for all samples was 99.18%. For SNP level 
QC, variants were excluded if they were duplicates, not on autosomal 
chromosomes, had a MAF less than 1%, had a missing call rate ≥5% or 
had a HWE P value less than 1 × 10−4. Imputation of unmeasured SNPs 
was performed using SHAPEIT2 and IMPUTE2 with the 1000 Genomes 
phase 3 as a reference panel. SNPs with more than 5% missingness, 
imputation info score less than 0.6, or MAF less than 1% or that showed 
significant deviation from HWE were further excluded from the further 
analysis. After removing samples without DNAm data, 3,455,470 SNPs 
and 1,060 samples were left for the following analysis.

DNAm assessment of the validation panel (CGZ)
Blood samples of the CGZ cohort were kept in Shenzhen Chipscreen 
Biosciences Co. Ltd. until DNA extraction. DNA extraction was per-
formed using QIAamp DNA Blood Mini Kit (Qiagen). Genome-wide 
DNAm was profiled using the Infinium MethylationEPIC BeadChips 
(Illumina). Five hundred nanograms of genomic DNA from each whole 
blood sample was bisulfite converted using the EZ DNA Methylation 
Kit (Zymo Research). BeadChips were processed following the manu-
facturer guide and protocol for Infinium MethylationEPIC array. DNA 
was hybridized to BeadChips and single base extension was performed 
using a Freedom EVO robot (Tecan). BeadChips were subsequently 
imaged using the iScan Microarray Scanner (Illumina). Illumina.idat 
files were then processed with the CHAMP Bioconductor package 
v2.30.0 (ref. 57), which resulted in a 717,100 probes times 798 sample 
data matrix. β values were transformed into M values and M values were 
used in mQTL mapping.

SNP genotyping of the validation panel (CGZ)
CGZ samples and QC samples were genotyped with Affymetrix Axiom 
PMR Arrays under instructions from the manufacturer. The raw geno-
typing data (CEL files) were generated with the GeneTitan workflow, and 
subsequently went through the Best Practices Workflow embedded in 
Axiom Analysis Suite for genotype calling. Each sample was genotyped 
with 902,560 probes. All samples passed a default Dish QC threshold 
of 0.82 and a QC call rate threshold of 0.97 and had a call rate over 
0.98. After the successful completion of the Best Practices Workflow, 

genotyping calls in VCF and numeric call codes were exported, as well 
as the QC tables for samples and probes. After that, 874,438 SNPs were 
left for mQTL mapping.

mQTL-mapping analysis in NSPT
We adopted a two-step analysis strategy for mQTL mapping. Step 1, we 
adjusted methylation M values for bisulfite slide number, batch, age, 
sex, predicted blood cell fractions24, top ten genetic PCs and top two 
DNAm PCs by linear model regression. Then we tested associations 
between methylation residuals and SNP dosages using fastQTLmap-
ping60 and retained significant SNP–CpG pairs at a loose threshold 
(P < 1 × 10−10). Step 2, for the screened mQTLs in Step 1, we excluded the 
outliers of methylation M values (out the range of mean ± 3 s.d.) and 
the genotypes that presented in less than five samples, then repeated 
SNP–CpG association analyses in R. We applied Bonferroni correction 
to maintain an experiment-wide type 1 error rate of 0.05 for cis, lcis and 
trans pairs, respectively, that is, Pcis < 0.05/4.7 × 109 = 1.06 × 10−11, Plcis < 0.
05/1.75 × 1010 = 2.86 × 10−12 and Ptrans < 0.05/6.13 × 1012 = 8.16 × 10−15. After 
that, we got the list of study-wide significant cis-, lcis- and trans-mQTL 
pairs, including 56,289,777 cis-mQTL associations between 5,483,276 
SNPs and 267,891 CpGs, 2,270,491 lcis-mQTL associations between 
271,994 SNPs and 7,746 CpGs and 4,357,250 trans-mQTL associations 
between 1,138,024 SNPs and 26,415 CpGs. These mQTL results will 
be used in subsequent analyses unless otherwise specified. We also 
applied R package MatrixEQTL v2.3 (ref. 61) in the mQTL-mapping 
study to cross-validate the mQTL-mapping results.

mQTL replication in CAS
To validate our significant results in CAS, we matched our mQTL SNPs 
and CpGs in CAS according to genomic positions first. Then, we 
excluded SNPs with palindromic alleles, A/T and C/G. For the left SNPs, 
we harmonized (switch and flip) the alleles if needed. After preprocess-
ing, there were 20,917,614 (33.25%) mQTL pairs including 1,969,978 
(35.41%) SNPs and 224,990 (79.19%) CpGs that were available in CAS. 
Then, we performed mQTL mapping by fastQTLmapping in a linear 
model adjusted for age, sex, bisulfite slide number, bisulfite array 
position, estimated blood cell fraction (B cells, CD4+ and CD8+ T cells 
and NK cells and monocytes) and top ten genomic PCs. The P values 
were adjusted for multiple testing using the Benjamini–Hochberg 
method to control FDR and 19.62 M (93.81%) were successfully repli-
cated (FDR < 0.05). For these 19.62 M mQTLs, we compare the scaled 
effect sizes between the two cohorts usingβs

ijc, which is defined as the 
mQTL effect sizes divided by the maximum of absolute effect values 
in each cohort.

βs
ijc = βijc/max

i, j
(||βijc||) (1)

where βijc is the effect size of mQTL SNP i on CpG j  in cohort c.
Based on βs

ijc, we assessed the similarity of effect patterns and 
directions of mQTLs among the two cohorts. The similarity of the pat-
tern was estimated by Spearman’s rank correlation.

mQTL replication in CGZ
To validate our results, we conducted mQTL analysis using another 
independent Han Chinese cohort (CGZ). First, we matched our mQTL 
SNPs and CpGs in CGZ according to genomic positions. Then, we 
excluded SNPs with palindromic alleles, A/T and C/G. For the left SNPs, 
we harmonized (switch and flip) the alleles if needed. After preprocess-
ing, there were 2,463,100 (3.91%) mQTL pairs including 246,256 (4.43%) 
SNPs and 220,804 (77.71%) CpGs, which were available in CGZ. Then, we 
performed mQTL mapping by MatrixEQTL in a linear model adjusted 
for age, sex, batch, bisulfite slide number, top ten genomic PCs and pre-
dicted blood cell fractions (B cells, CD4+ and CD8+ T cells and NK cells, 
monocytes and neutrophils). The P values were adjusted for multiple 
testing using the Benjamini–Hochberg method to control FDR, and 
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2.14 M mQTLs (87.05%) were successfully replicated (FDR < 0.05). For 
these 2.14 M mQTLs, we calculated the scaled effect sizes as mentioned 
before, then assessed the similarity of effect patterns and directions 
of mQTLs among the two cohorts. The similarity of the pattern was 
estimated by Spearman’s rank correlation.

EA-specific mQTLs
We downloaded the summary statistics of mQTLs reported in the 
most recent meta-analysis of 36 European studies from the GoDMC 
(n = 27,750)8, which is the largest European mQTL research to date. We 
matched and excluded SNPs with palindromic alleles (that is, A/T and 
C/G) between NSPT and GoDMC. We harmonized (switch and flip) the 
alleles if needed. We also matched CpGs between NSPT and GoDMC. 
Then we focused on the SNP–CpG pairs comprised of the left SNPs 
(all with MAFs larger than 1% in both cohorts due to genomic QCs) 
and CpGs. For comparison, we used the same significance threshold 
(P < 1 × 10−14) to identify mQTLs in NSPT (n = 2.65 million) and GoDMC 
(n = 3.46 million) here. For the 3.46 million mQTLs in GoDMC, we cal-
culated the replication rate in NSPT for different MAF bins. First, we 
divided the GoDMC mQTLs into different MAF bins (bin size: 0.05) 
according to their MAFs in EUR data from the 1000 Genomes phase 
3 and calculated the distribution of the GoDMC mQTLs in each MAF 
bin. Then we also calculated the distribution of the replicated mQTLs 
in NSPT according to the MAF bin in NSPT. We further calculated the 
percentage of shared mQTLs among GoDMC mQTLs in each MAF bin 
cell, that is, the extent of GoDMC mQTLs being also mQTLs in NSPT. 
Using a similar strategy, we calculated the extent of 2.65 million NSPT 
mQTLs being also mQTLs in GoDMC in terms of different MAF bins.

We defined EA-specific mQTLs as NSPT-only mQTLs with signifi-
cance threshold P value < 1 × 10−14 and with P value > 1 × 10−14 in GoDMC. 
The presentations of EA-specific mQTLs in another two cohorts, CAS 
and FHS, were also calculated.

Colocalization analysis of EA-specific mQTLs and traits in BBJ 
GWASs. We applied the SMR (v1.3.1)62 followed by HEIDI (v1.3.1)62 to 
investigate the same variants that influence both DNAm and traits 
based on 248 K EA-specific cis-mQTLs and GWAS summary statistics 
of 230 traits in BBJ (downloaded from https://pheweb.jp/). We identi-
fied 152 CpG-trait associations scattered in 44 genomic loci (<1 Mbp), 
involving 85 CpGs and 33 traits (PSMR < 3.7 × 10−9, corrected by Bonfer-
roni method, and PHEIDI > 0.05). We also compared the colocalization 
loci with cis-eQTL (PeQTL < 1.0 × 10−5) from HGVD18,19, where only 3 of 44 
loci included cis-eQTLs nearby.

Colocalization analysis of cis-/trans-mQTLs in NSPT and GWASs 
in BBJ. To demonstrate the value of the NSPT mQTLs in studying the 
epigenetic mechanism behind genetic associations compared with 
the GoDMC mQTLs, we performed SMR to identify CpGs mediating 
the genetic associations and HEIDI to distinguish whether the mQTLs 
and the genetic associations were influenced by shared causal variants 
on NSPT cis-mQTLs (2.58 M) trans-mQTLs (365 K) and 107 BBJ GWAS 
summary statistics (107 shared traits between BBJ and UKBB). We 
identified 394 significant (PSMR < 3.5 × 10−9, corrected by Bonferroni 
method, and PHEIDI > 0.05) cis-colocalizations in EAs, which included 216 
SNP loci (>1 Mbp), 45 traits and 340 independent CpGs (>1 Mbp for each 
locus–trait pair). Among these, 144 cis-colocalizations (96 SNP loci, 
38 traits and 127 independent CpGs) were not identified (PSMR > 0.05) 
in Europeans (GoDMC mQTLs + UKBB GWASs), that is, EA-specific 
cis-colocalizations. We identified 854 significant (PSMR < 5.0 × 10−9, cor-
rected by Bonferroni method, and PHEIDI > 0.05) trans-colocalizations 
in EAs, which included 46 SNP loci (>1 Mbp), 23 traits and 739 inde-
pendent CpGs (>1 Mbp for each locus–trait pair). Among these, 541 
trans-colocalizations (36 SNP loci, 15 traits and 486 independent CpGs) 
were not identified (PSMR > 0.05) in Europeans (GoDMC mQTLs + UKBB 
GWASs), that is, EA-specific trans-colocalizations.

Cell-lineage-specific mQTL mapping using CellDMC
The inference of cell-lineage-specific mQTLs was implemented via the 
CellDMC24 algorithm (EpiDISH R package v2.8). CellDMC identifies 
interactions between phenotype and cell lineage fraction, thus allow-
ing for the detection of cell-lineage-specific differentially methylated 
cytosines (DMCTs). In this application, the phenotype is the genotype 
of the mQTL, and the DMCTs inferred by CellDMC would be a meas-
urement of the cell-lineage-specific nature of the mQTL. On the NSPT 
cohort, we ran CellDMC with confounders as additional covariates, 
which included age, sex, batch and array position. Blood cell fractions 
(B cells, CD4+ and CD8+ T cells and NK cells, monocytes and neutrophils) 
were estimated using EpiDISH63,64. Before running CellDMC, DNAm 
data were normalized for slide number using ComBat. The reason for 
not including slide numbers within CellDMC itself is that there are 
only eight samples per slide, adjustment of which thus benefits from 
a Bayesian shrinkage approach as implemented in Combat. CellDMC 
was run at two resolutions: 6 cell-type resolution (B cells, CD4+ and 
CD8+ and T cells, NK cells, monocytes, neutrophils) and 2 cell lineage 
resolution (lymphoid and myeloid lineage). When running CellDMC 
at the resolution of two lineages, we summed the estimated cell frac-
tions of B cells, CD4+ T cells, CD8+ T cells, and NK cells to give a total 
lymphocyte fraction, whereas for the myeloid lineage, we summed the 
fractions of monocytes, neutrophils and eosinophils.

The above procedure was carried out for mQTLs that had previ-
ously passed a relaxed significance threshold of P value < 1 × 10−8. This 
was done for computational feasibility. To verify that running CellDMC 
on all mQTLs with P value < 1 × 10−8 will not miss many non-mQTLs, 
which are cell-lineage-specific mQTLs, we ran CellDMC on 1 million 
random unrelated SNP–CpG pairs (non-mQTLs) to check that the frac-
tion of cell-lineage-specific mQTLs (declared using a relaxed FDR < 0.05 
threshold) is very low. Indeed, it is worth noting that the overwhelming 
majority of the mQTLs at P value < 1 × 10-8 display small effect sizes, 
which is consistent with two scenarios (large effect size in only one 
minor cell type or small effect size across many cell types). Thus, any 
putative lineage-specific mQTLs we could be missing due to our initial 
screening must have very small effect sizes (even when evaluated in 
purified samples of the affected cell type) and their biological relevance 
would be unclear. Using FDR < 0.05, there were 6,865,414 B-cell-specific 
mQTLs, 10,378,286 CD4+ T-cell-specific mQTLs, 12,374,232 CD8+ 
T-cell-specific mQTLs, 14,279,365 NK-cell-specific mQTLs, 7,178,916 
monocyte-specific mQTLs, 26,390,493 neutrophil-specific 
mQTLs, 22,744,847 lymphocyte-specific mQTLs and 63,964,415 
myeloid-cell-specific mQTLs.

We note that the observed overlap between lymphoid and myeloid 
mQTLs (fOVL) can be expressed mathematically as the true fraction of 
lineage-independent mQTLs (fSHARED) times the sensitivity to detect 
such an mQTL in the myeloid lineage (SEmye) times the sensitivity to 
detect it in the lymphoid lineage (SElym). Rearranging this, the fraction 
of mQTLs shared between lymphoid and myeloid lineages (fSHARED) 
can be estimated as fSHARED = fOVL/(SEmye × SElym).

To confidently estimate fOVL, the CellDMC threshold for call-
ing mQTLs in each lineage was set to an unadjusted P value < 0.05. 
To understand this, consider, for instance, an mQTL with a CellDMC 
unadjusted P value in the myeloid and lymphoid lineages of 1 × 10−10 and 
0.001, respectively. This mQTL would be declared as myeloid-specific 
if we had used FDR < 0.05, but would not be myeloid-specific if using 
an unadjusted P value < 0.05 threshold. Because of the potentially 
limited sensitivity, it, therefore, makes sense to use the more relaxed 
threshold and to declare such mQTLs as nonspecific. We also note that 
because an mQTL with P value < 1 × 10−8 must be an mQTL in at least one 
cell lineage, in the subsequent CellDMC analysis, we can certainly relax 
significance thresholds to ensure a reasonably low false negative rate. 
The observed overlap between lymphoid and myeloid mQTLs (fOVL), 
expressed as a fraction of the total number of mQTLs, for which Cell-
DMC was run, was 0.16 (16%).
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To estimate the sensitivities to detect shared mQTLs in the mye-
loid and lymphoid lineages, we extended our simulation framework 
published in ref. 25 to the mQTL context. Briefly, this simulation uses 
realistic DNAm profiles from >1,000 s monocytes (myeloid) and >200 
CD4 T cells (lymphoid) from ref. 65, introducing mQTLs with various 
effect sizes in the separate cell types before mixing them together 
using realistic proportions of myeloid and lymphoid proportions in 
blood. By running CellDMC on these simulated mixtures, we obtained 
estimates of CellDMC’s sensitivity (SE) to detect shared mQTLs in the 
myeloid and lymphoid lineages for a range of different effect sizes. As a 
definition of effect size, we used the difference in mean DNAm divided 
by the average of the standard deviations. Finally, we then performed 
a mathematical integration of the observed effect sizes for all mQTLs 
with P value < 1 × 10−8 with these power estimates, to obtain overall 
estimates of the sensitivity to detect a shared mQTL in the myeloid 
(SEmye ~ 0.57) and lymphoid (SElym ~ 0.3) lineages. The lower sensitivity 
in the lymphoid lineage is because the lymphocyte fraction is much 
lower and less variable than the myeloid one in whole blood. From 
this, we then estimated the true fraction of shared mQTLs to be 0.16/
(0.3 × 0.57) = 0.93, that is approximately 93% of mQTLs are shared 
between myeloid and lymphoid lineages.

Identification of mQTL hotspots
For each trans-mQTL, we dropped its associated trans-mCpGs, 
which were near the most significant CpG, and iterated until the left 
trans-mCpGs apart from each other >500 Kbp to exclude potential 
correlation between CpGs. Then we calculated the number of inde-
pendent trans-mCpGs associated with each trans-mQTL. To identify 
trans-mQTL hotspots, we first divided whole-genome trans-mQTLs into 
distinct loci. This began with the assignment of the trans-mQTL with 
the largest number of independent trans-mCpGs and all its adjacent 
trans-mQTLs (<1 Mbp) to a locus. Then we repeated this procedure for 
the remaining trans-mQTLs until all trans-mQTLs were successfully 
assigned to their respective loci. After that, we selected the index 
mQTL, which was associated with the largest number of independent 
trans-mCpGs in each locus. A locus containing an index trans-mQTL 
that was associated with more than one independent trans-mCpGs 
was defined as a mQTL hotspot. The following analyses were focused 
on the 16 mQTL hotspots, which were associated with more than 100 
independent trans-mCpGs.

Enrichment of trans-mCpGs in the motifs of corresponding TFs. 
We used two motif enrichment tools (TFmotifView66 and PWMEnrich 
(R package v4.30.0)67) to evaluate if the trans-mCpGs associated with 
the index mQTL in each hotspot were enriched in the corresponding 
TF motifs. For each index mQTL, we select the TFs near (<1 Mbp) it and 
got the motifs from JASPAR 2020 database68. The list of human TFs was 
downloaded from ref. 69. For TFmotifView, we randomly selected more 
than 10 K CpGs from all trans-wide CpGs (the distance between SNP 
and CpG >5 Mbp or on different chromosomes) of the index mQTL and 
ensured they had a consistent distribution of methylation variation 
(s.d.) with the interested trans-mCpGs. We then tested whether the 
flanking regions (±100 bp) of the interested trans-mCpGs enriched 
for the TF motifs compared with the background by one-tailed hyper-
geometric test. For PWMEnrich, the enrichment analyses were per-
formed by using a log-normal threshold-free approach (comparing the 
average affinity of the interested sequences to the average affinity of 
length-matched sequences from the background) with all trans-wide 
CpGs of the index mQTL as background.

For hotspot H2, which contained the TF FOSL2, we downloaded 
FOSL2 ChIP–seq binding signals data from ChIP-Atlas database70 
(peak-caller MACS2 Q value < 1 × 10−5) and performed enrichment of the 
trans-mCpGs (flanking regions, ±100 bp) compared with all trans-wide 
CpGs of the index mQTL (that is, rs4666078) using one-tailed hyper-
geometric test.

Enrichment of super enhancer in trans-mQTL hotspots. We 
checked if the interested TFs or DNA binding proteins (DBP) located 
in trans-mQTL hotspots were enriched with super enhancers as about 
two-thirds of the interested TFs were enriched with binding sites in 
remote mCpG regions. Super enhancers have crucial functions in 
defining cell identity28,29,71. The link between trans-mQTL hotspots 
and super enhancer would disclose the biological importance of these 
hotspots. Three super enhancer databases72–74 were used in this study. 
We checked if there was super enhancer for each interested TF/DBP in 
trans-mQTL hotspot in different tissues or cell lineages. We applied a 
one-tailed hypergeometric test to evaluate the enrichment of super 
enhancers in trans-mQTL hotspots.

Downstream effect of trans-mQTLs on diseases/traits
To further understand the impact of TF-mediated trans-mQTL hotspots 
on diseases/traits, we first matched the mQTL SNPs in trans-mQTL 
hotspots against GWAS databases (GWAS Catalog and PhenoScanner 
v2). We used 1 Mbp as the window size to check if any of the mQTL 
SNPs in the trans-mQTL hotspots matched with GWAS signals. We 
then compared whether mCpGs in TF-mediated trans-mQTL hotspots 
were significantly enriched for disease-associated methylation sites 
compared to randomly selected CpGs as well as EWAS signals. Further, 
we combined two-sample MR analysis (R package TwoSampleMR 
v0.5.6) and interaction analysis to resolve the relationship between 
TF-mediated trans-hotspots and diseases.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Our mQTL database is available for download at https://www.biosino.
org/panmqtl/, which incorporates mQTLs not only in EA (NSPT) but also 
in published European and South Asian data. The database also supports 
searching and visualization of genomic, functional and downstream dis-
ease/trait hits of mQTLs and mCpGs. The statistics of mQTLs in NSPT and 
CGZ cohort are available for download at NODE https://www.biosino.
org/node under accession number OEP002902, or directly accessed at 
https://www.biosino.org/node/project/detail/OEP002902. The statis-
tics of mQTLs replicated in CAS is available for download at OMIX https://
ngdc.cncb.ac.cn/omix under accession number OMIX004116, or directly 
accessed at https://ngdc.cncb.ac.cn/omix/release/OMIX004116. The 
individual-level genotype data is not available because of IRB restric-
tions due to privacy concerns. The individual-level DNAm data can 
be requested at https://ngdc.cncb.ac.cn/omix/release/OMIX004363 
(NSPT), https://ngdc.cncb.ac.cn/omix/release/OMIX004333 (CAS) 
and https://www.biosino.org/node/project/detail/OEP002902 (CGZ). 
Requests are normally processed within 1–3 months. Data usage shall 
be in full compliance with the Regulations on Management of Human 
Genetic Resources in China. The DNAm dataset in buccal cells is available 
by submitting data requests to mrclha.enquiries@ucl.ac.uk; see the 
full policy at http://www.nshd.mrc.ac.uk/data.aspx. Managed access 
is in place for this 69-year-old NSHD study to ensure that the use of the 
data is within the bounds of consent given previously by participants, 
and to safeguard any potential threat to anonymity because the partici-
pants are all born in the same week. The mQTL results of the EUR cohort 
(GoDMC) were downloaded from http://mqtldb.godmc.org.uk/down-
loads. The mQTL results of the EUR cohort (FHS) were downloaded from 
https://ftp.ncbi.nlm.nih.gov/eqtl/original_submissions/FHS_meQTLs/ 
(date: September 14, 2020). The annotation of CpG probes was down-
loaded from https://zwdzwd.github.io/InfiniumAnnotation (date: 
November 25, 2019). Significant GWAS results were downloaded from 
GWAS Catalog (https://www.ebi.ac.uk/gwas/docs/file-downloads, date: 
December 25, 2020) and significant EWAS results were downloaded 
from EWAS Atlas (https://ngdc.cncb.ac.cn/ewas/downloads, date: 
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December 25, 2020). The cis-eQTL results in whole blood were down-
loaded from GTEx V8 database (https://www.gtexportal.org/home/
datasets; date: June 17, 2020) and HGVD (http://www.genome.med.
kyoto-u.ac.jp/SnpDB/). The human gene information (Ensembl release 
v104) was downloaded from GENCODE (https://www.gencodegenes.
org/human/release_37lift37.html; date: April 26, 2021), the list of human 
TFs was from http://humantfs.ccbr.utoronto.ca/download.php (date: 
April 3, 2020), and the list of House-Keeping genes was downloaded 
from https://www.tau.ac.il/~elieis/HKG/. Motifs information of TFs 
was obtained from JASPAR 2020 database (http://jaspar.genereg.net/; 
date: July 2, 2021) and JASPAR 2022 (date: August 22, 2022). ChIP–seq 
signals of TFs were downloaded from the ChIP-Atlas database (http://
chip-atlas.org/; date: June 2, 2021). Other data sources used in this study 
include BLUEPRINT mQTLs summary statistics (https://ega-archive.
org/datasets/EGAD00001005200); Phenoscanner GWAS summary 
statistics (http://www.phenoscanner.medschl.cam.ac.uk/); Functional 
genomic regions from the Functional Annotation of Animal Genomes 
(FAANG) Project (https://www.faang.org); PCHi-C data (https://osf.
io/u8tzp); H3K27ac HiChIP data (https://www.ncbi.nlm.nih.gov/geo/, 
GSE101498); The DNase-seq data for B cells and T cells and the H3K27ac 
ChIP–seq data of neutrophil cells (https://www.encodeproject.org); 
GO terms, KEGG pathways, and Reactome pathways were downloaded 
from the Molecular Signatures Database (https://www.gsea-msigdb.
org/gsea/msigdb/index.jsp); and FANTOM5 (https://fantom.gsc.riken.
jp/data/). Experimental Factor Ontology (EFO) (https://www.ebi.ac.uk/
ols/ontologies/efo). GWASs in BBJ (https://pheweb.jp/); GWASs in UKBB 
(https://pan.ukbb.broadinstitute.org/); super enhancer databases 
(http://www.licpathway.net/sedb/; http://www.asntech.org/dbsuper/; 
http://www.licpathway.net/SEanalysis/); segmented functional regions 
from GM12878 cell line (http://genome.ucsc.edu/cgi-bin/hgTrackUi?d
b=hg19&g=wgEncodeAwgSegmentation); 15 chromatin states (https://
egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/coreMarks/jointModel/final/).

Code availability
Code for the analysis is available at GitHub (https://github.com/ 
Fun-Gene/fastQTLmapping) and Zenodo (https://doi.org/10.5281/ 
zenodo.8084877)75. Most operations are carried out by R (https:// 
cran.r-project.org/), and the plots are mainly made by ggplot2 v3.4.2  
R package (https://cran.r-project.org/web/packages/ggplot2/index. 
html). mQTL mapping is performed by fastQTLmapping (https:// 
github.com/Fun-Gene/fastQTLmapping) and R package MatrixEQTL  
v2.3 (https://cran.r-project.org/web/packages/MatrixEQTL/index. 
html). Heritability is estimated by GCTA (https://yanglab.westlake. 
edu.cn/software/gcta/). MKL is available at https://software.intel.com/ 
tools/onemkl. GSL is available at http://www.gnu.org/software/gsl/.  
Annotation of SNP is based on ANNOVAR (https://annovar.openbio 
informatics.org/en/latest/, date: 2020.11.2) and annotation of CpG is  
based on the manufacturer’s manifest files (date: 2020.10.21). Genotype  
calling is based on GenomeStudio (https://support.illumina.com/ 
array/array_software/genomestudio/downloads.html). Imputation of  
SNP chip is based on SHAPEIT2 (https://mathgen.stats.ox.ac.uk/genet 
ics_software/shapeit/shapeit.html) and IMPUTE2 (https://mathgen. 
stats.ox.ac.uk/impute/impute_v2.html). Enrichment analysis of mQTLs  
is performed by R package clusterProfiler v4.8.1 (https://bioconduc 
tor.org/packages/release/bioc/html/clusterProfiler.html). DNAm  
processing is based on R package minfi Bioconductor package v1.46.0  
(https://bioconductor.org/packages/release/bioc/html/minfi.html)  
and CHAMP Bioconductor package v2.30.0 (https://bioconductor. 
org/packages/release/bioc/html/ChAMP.html). Cell-type mQTLs are  
estimated by CellDMC, which is available as part of the EpiDISH v2.8  
Bioconductor R package (http://bioconductor.org/packages/devel/ 
EpiDISH. eFORGE is run with the web server at eFORGE2.0 (https:// 
eforge.altiusinstitute.org/). Sharing Effect of cell-type mQTLs is esti 
mated by R package mashr (https://cran.r-project.org/web/packages/ 

mashr/index.html). The GO and KEGG pathway enrichment analyses  
of mCpGs are conducted using R package missMethyl v1.34.0 (https:// 
bioconductor.org/packages/3.13/bioc/html/missMethyl.html). Genes  
enrichment for diseases/traits analysis is performed by the R package  
disgenet2r v0.99.3 (https://www.disgenet.org/disgenet2r) based on the  
DisGeNET knowledgebase (date: 2021.6.9). The two-sample MR analy 
sis is conducted using the R package TwoSampleMR v0.4.26 (https:// 
mrcieu.github.io/TwoSampleMR/). The HiChIP loops are processed  
by HiCCUPS and implemented in the Juicer Tools (v0.7.5) with default  
parameter settings. The influence of SNPs on REs is calculated using  
the tool OpenCausal (https://github.com/liwenran/OpenCausal). Colo 
calization is performed by SMR v1.3.1 (https://yanglab.westlake.edu.cn/ 
software/smr/#Download). Enrichment of mQTL CpGs for TF motifs is  
performed by TFmotifView (http://bardet.u-strasbg.fr/tfmotifview/)  
and R package PWMEnrich v4.30.0 (https://bioconductor.org/pack 
ages/release/bioc/html/PWMEnrich.html). Phenome-wide association  
analysis is carried out by PheWAS (https://gwas.mrcieu.ac.uk/phewas).
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Extended Data Fig. 1 | mQTLs enrichment for different functional elements. 
a,b, Enrichment of mQTLs (a) and mCpGs (b) in six functional elements: CTCF-
enriched elements (CTCF), enhancers (E), promoters (P), promoter flanking 
regions (PF), regulatory elements (RE), and TF binding sites (TFBS). The y-axis 
indicates the fold changes (see Methods) and the significance from the one-
tailed hypergeometric test is denoted by different symbols on each bar, that 

is, *, P < 0.05; **, P < 0.01; ***, P < 0.001. c, Enrichment of cis-mQTL pairs (left), 
lcis-mQTL pairs (middle), and trans-mQTL pairs (right) in all combinations of 
the six functional categories (that is, CTCF-E, P-E, RE-E, and etc). A one-tailed 
hypergeometric test is applied. The fold changes are labeled within each box. 
d, Proportion of SNP-CpG pairs of mQTL within the same TAD. e, Comparison of 
distance distributions of mQTLs and that of 3D loops.
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Extended Data Fig. 2 | The cis-colocalization at chr13q14.11 provides 
epigenetic evidence for the East Asian-specific height-association 
(rs7335629-height). a, The East Asian-specific height signal (rs7335629) is 
in high-linkage with three SNPs in the colocalization locus at chr13q14.11. 
b, rs7335629 has potential chromatin interaction with one of the CpGs 
(cg21067652) that colocalized at chr13q14.11. c, Both rs7335629 and cg21067652 
are located in regions of high DNase in several blood cell lines. d, Two-sample 
MR result indicates that cg21067652 is a causal factor for ELF1 RNA expression 

in CAGE (N = 2,765). Two-tailed MR egger test is applied. The dot and error bar 
indicate the beta value and s.e., which is SNP effect on CpG (x-axis) and ELF1 
expression (y-axis). The blue dotted line indicates the regression line from MR 
egger test with beta = -9.19, P = 1.34◊10-4. e, Two-sample MR result indicates that 
cg21067652 is a causal factor for height in BBJ (N = 165,056). Two-tailed MR egger 
test is applied. The dot and error bar indicate the beta value and s.e., which is the 
SNP effect on CpG (x-axis) and body height (y-axis). The blue dotted line indicates 
the regression line from the MR egger test with beta = -0.31, P = 3.73◊10-9.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | The enrichment of cis- and trans-colocalizations in EA-
specific colocalizations and functional states. a, Enrichment of trans- vs cis-
mQTLs amongst EA-specific colocalizations vs others in NSPT (left), and amongst 
EA-specific vs EAS-EUR shared colocalizations (right). Trans-, cis- colocalizations 
in East Asian is carried out based on mQTLs in NSPT (N = 3,523) and 107 GWASs 
in BBJ (N = ~170,000). Trans-, cis-colocalization in European is carried out based 
on mQTLs in GoDMC (N = 27,750) and 107 GWAS traits in UKBB (N = ~500,000) 
which are overlapped with traits in BBJ. b, Enrichment results of cis- vs trans-
colocalization loci in functional elements. Left: enrichment of cis- and trans-
colocalization loci in functional elements; Middle, enrichment of East Asian-

specific and EAS-EUR shared cis-colocalization loci in functional elements; Right, 
enrichment of East Asian-specific and EAS-EUR shared trans-colocalization 
loci in functional elements. c, Enrichment of cis- and trans-colocalization loci 
in chromatin states. Left, enrichment of cis- and trans-colocalization loci in 
chromatin states; Middle, enrichment of East Asian-specific and EAS-EUR shared 
cis-colocalization signals in chromatin states; Right, enrichment of East Asian-
specific and EAS-EUR shared trans-colocalization signals in chromatin states. 
Two-tailed Fisher’s exact test is applied. Each point with an error bar indicates 
log10-scaled odds ratio and its 95% confidence interval.
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Extended Data Fig. 4 | The relation between the trans-colocalization at 
chr21q22.2 and blood cell traits and immune diseases. a, The geographic 
distribution of rs80109907 allele frequencies in different populations (1000 
Genomes Phase 3) by the Geography of Genetic Variants (GGV) browser (https:// 
popgen.uchicago.edu/ggv). b, The PheWAS result of rs80107709 (https://gwas. 
mrcieu.ac.uk/phewas). c, The colocalization result of chr21q22.2 with other 
blood cell count and immune-related diseases. SMR test is applied, and the 

x-axis indicates the beta estimates from original GWAS while the y-axis shows 
the -log10(P) of the SMR test. d, Two-sample MR results showing that 39 CpGs 
are causal for 7 traits (several blood cell count and immune-related diseases) 
at FDR < 0.05. MR IVW test is applied. Red and blue squares indicate positive 
or negative causal effect of CpG on trait, while the size of the square indicates 
-log10(P) of the MR IVW test.
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