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Abstract

Epigenetic drift refers to the gradual and stochastic accumulation of epigenetic changes, such as DNA
methylation variability, with advancing age. Although increasingly recognized for its potential role in
aging biologys, its extent, biological significance, and population specificity remain insufficiently
characterized. Here, we present the first comprehensive epigenome-wide drift study (EWDS) in a large
Chinese cohort (n = 3,538), with replication in two independent Chinese (total n = 1,467) and two
European cohorts (total n = 956), to investigate the scale and relevance of epigenetic drift across
populations. Through simulation, we identified White’s test as the most powerful method among four
alternatives for detecting age-associated methylation variability. Our EWDS revealed that 10.8% (50,385
CpGs) of sites on the 850K EPIC array exhibited epigenome-wide significant drift, with 99% showing
increased inter-individual variability (positive drift) and 1% showing decreased variability (negative
drift). Integration with single-cell RNA-seq data demonstrated that positive drift-CpGs are associated
with increased transcriptional variability and upregulation in specific cell types, while negative drift-
CpGs exhibit the opposite effect. We developed epigenetic drift scores (EDSs) to quantify individual drift
burden; these scores are strongly age-associated and correlate with lipidomic profiles and clinical aging
indicators. Longitudinal data confirm within-individual accumulation of drift over time. Finally, a GWAS
of EDS identified genetic determinants of drift magnitude, including heritable loci (e.g., ASTN2, SOCS3).
Collectively, these findings establish epigenetic drift as a pervasive, directional, and biologically

meaningful feature of human aging.

Introduction

Epigenetic drift refers to the progressive, stochastic accumulation of molecular alterations across the
epigenome during aging. These include changes in DNA methylation, histone modifications, chromatin
remodeling, and non-coding RNAs. Collectively, such alterations disrupt gene regulatory networks,
leading to transcriptional dysregulation, loss of cellular homeostasis, and increased vulnerability to age-

related diseases (Li and Tollefsbol 2016; Lopez-Otin et al. 2023). Among these, DNA methylation drift
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has emerged as the most extensively characterized component of epigenetic aging. It is typified by
increased variance in methylation levels at specific CpG sites-termed drift-CpGs-over chronological age,
distinguishing it from the linear age-associated methylation changes at epigenetic clock sites (Fraga et al.
2005; Horvath and Raj 2018; Seale et al. 2022). Importantly, epigenetic drift likely unfolds more
gradually across wider temporal windows, capturing interindividual and cellular heterogeneity in a way
that reflects biological aging beyond the linear progression captured by clock-based models. This
stochastic accumulation is hypothesized to reflect rising intercellular and interindividual heterogeneity
with age, potentially capturing biological aging more dynamically than static methylation clocks (Meyer
and Schumacher 2024). Understanding and quantifying epigenetic drift may offer novel biomarkers for
aging trajectories, disease susceptibility, and therapeutic interventions aimed at mitigating age-associated
decline.

The etiology of epigenetic drift is multifactorial. Genetic predisposition accounts for substantial
interindividual variation in baseline methylation patterns (Shah et al. 2014). In addition, longitudinal twin
studies have underscored the influence of environmental factors; for instance, Tan et al. identified over
2,000 CpGs exhibiting significant methylation drift over a decade, strongly implicating environmental
exposures (Tan et al. 2016). Infectious agents, such as cytomegalovirus, have also been shown to induce
widespread methylation variance in a cell-composition-independent manner (Bergstedt et al. 2022). At the
chromatin level, drift-CpGs are enriched in repressive Polycomb-bound regions (Slieker et al. 2016) and
exhibit pronounced variability on the inactive X Chromosome (Liu et al. 2023), suggesting epigenomic
compartmentalization of drift. The biological consequences of epigenetic drift are increasingly being
explored. Hannum et al. showed that drift-CpGs in blood are associated with transcriptional changes,
implicating drift as a potential regulator of aging pace (Hannum et al. 2013). At the molecular level, this
may manifest as altered transcriptional output and increased expression noise, disrupting cellular function.

Detecting epigenetic drift, however, requires robust statistical modeling capable of detecting changes
in variance rather than mean methylation. Several approaches have been proposed. The most commonly

used methods apply heteroscedasticity tests, such as the Breusch—Pagan test or double generalized linear
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models (DGLMs), to identify CpG sites whose methylation variance increases linearly with age (Slieker
et al. 2016; Bergstedt et al. 2022; Liu et al. 2023). Complementary entropy-based metrics estimate
methylome-wide disorder, capturing the global stochasticity of the epigenome (Hannum et al. 2013; Wang
et al. 2024). These statistical frameworks serve as critical tools for identifying drift-CpGs and quantifying
the systemic erosion of epigenetic fidelity.

Despite recent advances, several key challenges remain. First, there is no consensus on the optimal
statistical framework for identifying drift-CpGs, with different studies applying distinct models and
yielding limited concordance. Second, the generalizability of previously identified drift-CpGs is limited,
as most were derived in European populations and lack validation across diverse ancestries, such as East
Asians. Third, previous research has predominantly focused on positive drift, CpGs with increasing
methylation variance over age, while negative drift-CpGs remain largely understudied, despite their
potential biological importance. Fourth, it is still unclear whether drift-CpGs are cell-type specific or
reflect a shared aging signature across hematopoietic lineages. Fifth, although entropy-based metrics have
been used to estimate global methylation disorder, no standardized method currently exists to construct an
epigenetic drift score (EDS) at the individual level using a finite set of CpGs. Lastly, the biological
relevance of drift-CpGs, particularly their contribution to age-related complex traits, and their relationship
with underlying genetic architecture, remains poorly understood.

To address these challenges, we first performed a comprehensive evaluation of four commonly used
statistical methods for identifying drift-CpGs, using both computer simulations and empirical population
data. We then applied this method to 735,267 CpG sites (850K EPIC Array) measured in 3,538 Chinese
individuals, systematically identifying a high-confidence set of drift-CpGs. Our replication analysis was
conducted in 2,423 individuals from two additional Chinese cohorts and two European cohorts. Both
positive and negative drift-CpGs were characterized to reveal complementary biological patterns. We
further investigated whether drift-CpGs exhibit cell-type specificity or represent shared signatures of
hematopoietic aging by integrating single cell RNA-seq analyses. To quantify individual-level epigenetic

drift, we developed an EDS based on a finite subset of drift-CpGs, offering a standardized alternative to
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entropy-based metrics. Finally, we evaluated the functional relevance of EDS through association
analyses with age, lipidomic profiles, and genome-wide genetic variation, uncovering potential

mechanistic links between stochastic epigenetic changes and age-related complex traits.

Results

Population characteristics

An overview of the study design, detection technologies, and analytical workflow is presented in Fig. 1.
The discovery cohort, the National Survey of Physical Traits (NSPT), comprised 3,538 Chinese
individuals with a mean age of 50.2 years (SD = 12.7, range 18-83) and 37.0% male participants
(Supplemental Table S1). The first replication cohort included 1,060 individuals from the Chinese
Academy of Sciences cohort (CAS), predominantly highly educated individuals in intellectual
professions, with a mean age of 40.8 years (SD = 9.4, range 22-64) and 59.7% male participants. The
second replication cohort, a longitudinal study from the Shanghai Changfeng Study (Changfeng), spanned
a median follow-up period of 4 years with 407 subjects. Baseline ages ranged from 47.6 to 80.0 years,
with a mean age of 61.4 years (SD = 7.4), and follow-up ages ranged from 51.9 to 84.0 years, with a
mean age of 65.5 years (SD = 7.3). DNA methylation at 735,267 CpGs, overlapping between the
discovery and replication cohorts, showed highly concordant distributions (Supplemental Fig. S1). For
subsequent epigenome-wide analysis, we retained 469,061 CpGs after excluding those affected by
mQTLs (Peng et al. 2024), those with minimal variance in age-regressed residuals (R? < 1x10°%), or those

significant in a multimodal distribution test (p < 1x10~).
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Figure 1. Schematic representation of the study design, detection technologies, and analytic

approaches. The method marked in red text and with a checkmark (V') was selected for downstream

analysis.

Positive and negative drifts enriched in different functional regions

A simulation analysis was conducted to compare the statistical power and type-I error rates of four

existing heteroscedasticity test methods: method A: double generalized linear model (Liu et al. 2023),

method B: Breusch-Pagan likelihood ratio based chi-square statistic (Bergstedt et al. 2022), method C:

Breusch-Pagan T-statistic (Slieker et al. 2016), and method D: White Test (White 1980) (see

Supplementary Methods for details). This analysis showed that method B was overly aggressive, while

method A was overly conservative. Method D showed superior performance in scenarios involving non-

linear relationships between CpG variance and age (Supplemental Fig. S2). Using White Test, EWDS

identified 10.8% of CpG sites (50,385) as drift-CpGs (p<1x107, Fig. 2A, B). This number significantly

exceeds findings from previous studies, including one involving 385 Swiss twin pairs using the 450K

array, which identified 571 drift-CpGs (different method due to twin samples), with 229 overlapping with
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our list (Wang et al. 2018). Another study of 3,295 European individuals from the BIOS Consortium
using the 450K array and the Method C identified 6,366 drift-CpGs (Fig. 2C), with 3,000 overlapping
with ours (Wang et al. 2018). Our number also surpassed that from The Milieu Intérieur study of 968
Europeans (Bergstedt et al. 2022), which identified 20,140 drift-CpGs from a total of 644,517 CpGs using
Method B. These discrepancies are likely attributable to a combination of factors such as larger sample
size, broader age range, greater CpG coverage, and enhanced statistical power. The vast majority of the
identified drift-CpGs (99.0%, n=49,877) exhibited an increase in variance with aging, termed as positive
drift-CpGs (Fig. 2D), while a small fraction showed a significant decrease in variance, termed as negative
drift-CpGs (n=508, 1.0%, Fig. 2E). Positive drift-CpGs were highly significantly enriched in expression-
repressed CpG islands (CGIs) (OR=2.4, p<1x10-%, Fig. 2F, G), whereas negative drift-CpGs were
significantly enriched in expression-active non-CGls, such as open sea regions (OR = 2.4, p<8.8x10™"),
with a particularly pronounced enrichment in enhancers (OR=10.1, p =2.1x10"). A transcription factor
binding motif enrichment analysis showed that negative drift-CpGs significantly enriched at AHR-ARNT,

CREB3L4, and GMEB?2 (Supplemental Fig. S3).

Compared to the abundant age-associated CpGs identified by linear regression in the same
dataset, referred to here as clock-CpGs (31.2%, n = 146,497, p < 1x1077), the number of drift-CpGs was
substantially smaller and exhibited lower statistical significance, as expected. Nonetheless, we observed a
significant overlap between drift-CpGs and clock-CpGs (23.3%, n = 34,118), indicating that methylation
drift and directional age associations are not mutually exclusive. In fact, drift-CpGs were significantly
more likely than non-drift CpGs to also exhibit age-associated mean changes in methylation (OR = 5.7, p
< 1x1073%_ Supplemental Table S2). Notably, positive drift-CpGs were more frequently associated with
CpGs that also showed increasing average methylation with age (positive clock-CpGs), whereas negative
drift-CpGs were more likely to coincide with CpGs that decreased in methylation with age (negative
clock-CpGs, OR = 1.3, p = 7.8x1073, Supplemental Table S2). Positive drift-CpGs and positive clock-

CpGs were most significantly enriched in CGI Islands (Fig. 2H), while negative drift-CpGs and negative
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clock-CpGs were most significantly enriched in enhancers (Fig. 21). This concordance suggests a partial

coupling between directional epigenetic aging and increased epigenetic variability.

We examined whether changes in DNA methylation variance at CpG sites are associated with
initial (young group age < mean - 2SD) and terminal (old group age > mean + 2SD) methylation levels.
Specifically, we asked whether reduced variance indicates convergence toward methylation extremes (0
or 1), and whether increased variance reflects divergence from such states. This analysis identified
differential drift patterns based on the direction of methylation drift (Fig. 2J-L). Positive drift-CpGs
predominantly remained at intermediate methylation ranges (0.1-0.9) throughout aging, rarely converging
toward either hypermethylation or hypomethylation extremes. In contrast, negative drift-CpGs typically
moved from intermediate methylation states toward methylation extremes but rarely vice versa. These
observations suggest fundamentally different biological mechanisms underlying positive versus negative
methylation drift during aging. We hypothesis that negative drift, characterized by shifts towards
methylation extremes, likely reflects more targeted biological aging processes such as cellular senescence
or clonal expansions, whereas positive drift might represent broader stochastic or heterogeneous aging

processes.

Epigenetic drift's cell-type specificity and transcriptional impact

To investigate whether epigenetic drift-CpGs are driven by changes in blood cell-type composition, we
applied the EpiDISH algorithm (Teschendorff and Zheng 2017). Among the 50,385 identified drift-CpGs,
the majority (88%) did not exhibit cell-type-specific methylation patterns, suggesting that most epigenetic
drift occurs independently of blood cell composition (Fig 2M). Of the 6,226 CpGs (12%) that did show
significant cell-type-specificity, the vast majority (>99%) were associated with lymphoid lineage cells.
Specifically, these CpGs were predominantly enriched in B cells (82%), followed by CD8" T cells (12%),
CD4" T cells (4%), and natural killer (NK) cells (2%), while less than 1% were linked to myeloid cells.
Importantly, CD4" T cell-specific drift-CpGs (n=266) showed a distinct pattern, all of which exhibited

negative drift with age. These findings suggest a cell-type-specific suppression of epigenetic drift noise in

10
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CD4" T cells, in contrast to the general age-associated increase observed in other cell types.
Representative examples of lymphoid-, myeloid-, and CD4" T cell-specific drifts are provided in
Supplemental Fig. S4A—C.

To investigate how age-associated DNA methylation drift influences gene expression, we integrated
drift-CpG profiles with single-cell RNA sequencing (scRNA-seq) data across peripheral blood
mononuclear cell (PBMC) immune cell types. Our analysis revealed statistically significant, albeit
modest, shifts in gene expression profiles associated with drift-CpGs relative to the genome-wide
background (Supplemental Fig. SSA-B). Specifically, genes associated with positive drift-CpGs exhibited
a tendency towards higher mean expression and discernibly greater expression variability compared to the
genome-wide background, suggesting a relatively more active yet potentially unstable transcriptional
state. Conversely, genes adjacent to negative drift-CpGs displayed slightly but significantly lower

transcriptional noise, indicating a more stable transcriptional pattern.

We further examined age-related transcriptional changes in immune cells. Although overall mean
transcriptional activity showed a modest but significant increase in older individuals (Supplemental Fig.
S5A-B), stratifying by drift direction revealed consistent, albeit subtle, age-associated increases in
transcriptional levels for genes proximal to both positive and negative drift-CpGs. Notably, only genes
near positive drift-CpGs showed increased transcriptional variance with age, while those near negative

drift-CpGs did not.

Subsequent cell-type-specific analyses confirmed that age-related transcriptional changes
associated with drift-CpGs were largely non-overlapping across immune cell types, underscoring a high
degree of cell-type specificity (Supplemental Fig. S5C-F). In CD4" T cells, BASiCS analysis revealed
reduced transcriptional noise in aged individuals for genes associated with positive drift-CpGs, suggesting
a context-dependent noise-suppressive function. The most pronounced transcriptional perturbations in

genes associated with positive epigenetic drift were observed in B cells (Supplemental Fig. S5G).

11
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Figure 2. Epigenome-wide identification and annotation of drift- and clock-CpGs.

A, Manhattan plot of significant CpGs (p < 1x1077), colored by drift (blue), clock (blue), or both (red)
effects. B, Venn diagram showing overlap between drift- and clock-CpGs; C, Overlap of NSPT drift-
CpGs with those from Slieker et al. and Wang et al. D-E, Representative CpGs with age-related increase
(D) or decrease (E) in methylation variance. F—G, Genomic enrichment of positive and negative drift-
CpGs (F: CpG island-related; G: gene-related features). H-I, Genomic enrichment of drift- and clock-
CpGs (H: CpG island-related; I: gene-related features). J, Scatter plot of initial (young) vs. terminal (old)
methylation levels at drift-CpGs. K-L, Heatmaps of positive (K) and negative (L) drift-CpG distribution
by methylation levels. M, Upset plot showing cell-type specificity of drift-CpGs across immune lineages.
Abbreviations: PosD, positive drift-CpGs; NegD, negative drift-CpGs; PosC, positive clock-CpGs; NegC,

negative clock-CpGs; NonD, non-drift CpGs; NonC, non-clock CpGs.

Robust drifts in an independent CAS cohort

In the CAS cohort of 1,060 samples, 48,171 CpGs overlapped with the 50,385 significant CpGs identified
in NSPT. Of these overlapping CpGs, 50.2% were replicated at a nominal significance level in CAS (p <
0.05, OR = 8.9, fisher.test, p <2.2x107'¢, Fig. 3A, Supplemental Table S3). An analysis of these
replicated drifts revealed that 99.9% of positive drifts were consistently positive, and 99.1% of the
negative drifts remained negative. When applying more stringent significance criteria in the discovery
cohort, we observed a progressive increase in replication rates, peaking at 100% for a threshold of 1x10°

% Notably, both positive and negative drifts exhibited complete consistency at these stringent levels.

In the CAS cohort, the most significantly replicated positive drift was observed on Chr4 for
cg24035745 in FBXO2 (NSPT p=5.1x10", CAS p=6.8x10"""). Young individuals exhibited significantly
smaller variance in methylation compared to mid-aged and elderly individuals (Fig. 3B). Increased
expression of FBXO2 occurs with neurons developmental maturation (Ciceri et al. 2024). FBX02

deficiency exacerbated deficits in motor function, and enhanced neurodegeneration(Liu et al. 2020).
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Similarly, the most significantly replicated negative drift was identified on Chr14 for cg13868026 in EVL
(NSPT p=6.8x10", CAS p=8.8x107). In this case, young and mid-aged individuals showed significantly
larger variance in methylation compared to elderly individuals (Fig. 3C). DNA methylation of EVL was
identified a prognostic signature in colon cancer, and promoter methylation of EVL differs between
individuals and between regions of the normal colon (Yi et al. 2011). The CAS cohort also replicated the
presence of other top significant negative drift-CpGs that were found in or near MAPRE2, ARPIN-AP3S2,
TRAPPCY, APBBIIP and FOXKI. Among these, methylation of FOXKI has a known effect on the

regulation of immune and metabolic functions (Fujinuma et al. 2023).

Epigenetic drifts in independent longitudinal Changfeng population

We further analysed the CAS-replicated drift-CpGs (23,758 out of the available 24,161) within the
Changfeng longitudinal cohort to determine if the methylation levels showed any drift over an
approximate follow-up period of 4 years. For each individual CpG site, we performed a paired #-test. This
test compared the absolute deviation of the methylation level from the population mean at the baseline to
the same deviation at the follow-up. In mathematical terms, it involved comparing |cpg - mean(cpg)| at
baseline with those at follow-up. Our results indicated that 48.1% of the examined drift-CpGs exhibited a
nominally significant difference (n=11,422, p<0.05, OR = 5.0, fisher.test, p <2.2x107'¢) between these
two time points. Among these nominally significant CpGs, 99.7% exhibiting the same effect directions as
observed in NSPT and CAS (Fig. 3D). These findings demonstrated the robustness of the drift effects at
our identified sites and underscore the genuine impact of negative drifts. In Changfeng, the most
significantly replicated positive drift-CpG was ¢g27099280 in CELF6 (p = 6.2x10°", Fig. 3E) and
negative drift-CpG was cg03883331in ZBTBI18 (p = 4.0x10™, Fig. 3F) and ¢g22005677 in LPP (p =
0.02). The repeated highlighting of the negative drift at LPP in both the CAS and Changfeng cohorts
underscores its robustness and prominence in our findings. It is important to note that both the CAS and
Changfeng replication cohorts have narrower age ranges compared to the discovery cohort, which may

contribute to conservative replication rates. Functionally, the CpG site in ZBTB18 is instrumental in
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regulating the expression of ZBTBI8, a colorectal tumor suppressor gene(Bazzocco et al. 2021). Loss of
its activity enhances chromatin accessibility and transcriptional adaptations that promote the phenotypic
changes required for metastasis (Wang et al. 2023). This suggests that negative drifts may be involved in

regulating global chromatin accessibility dysregulation in the development of age-related phenotypes.

Epigenetic drift is cross-ethnic

We further examined 14,909 of our drift-CpGs overlapping with the 450K beadchip in the dataset of
Hannum et al. (Hannum et al. 2013), which consisted of a mixed population of 426 Caucasian and 230
Hispanic individuals (age range: 19-101 years). A substantial proportion (76.3%, 11,378 out of 14,909)
exhibited nominally significant drifting effects in the same direction (OR = 9.3, fisher.test, p <2.2x107¢,

Fig. 3G, H, ).

Next, we focused on a cohort of 150 pairs of monozygotic (MZ) Danish twins aged 30 to 74 years
(78 male pairs and 72 female pairs) (Tan et al. 2014). Our aim was to determine whether our identified
drift-CpGs could account for previously observed inter-individual epigenetic variations (Planterose
Jimenez et al. 2021). To this end, we categorized the MZ twins into two age groups (< 50 years and = 50
years). Using a ¢-test, we examined the absolute methylation level discrepancies (IMZ1 - MZ2|) between
the two age groups. Among the CpGs corresponding with our drift-CpGs, a substantial proportion
(49.6%, 6,731 out of 13,571) showed nominally significant drift effects (Fig. 3J, K, L). These findings

support our hypothesis that aging plays a pivotal role in the epigenomic differentiation of MZ twins.
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Figure 3. Replication of drift-CpGs in independent cohorts. A, Replication of significant drift-CpGs

in CAS, with thresholds corresponding to Bonferroni significance in NSPT and nominal significance in
CAS. CpGs are colored by drift direction and selected genes are labeled. B—C, Scatter plots of top
positive (B: cg24035745) and negative (C: cgl13868026) drift-CpGs validated in CAS. D-F, Validation of
drift-CpGs in the Changfeng cohort, including representative positive (E: ¢g27099280) and negative (F:
cg03883331) examples. G-I, Replication in Hannum et al., with representative positive (H: cg16532606)
and negative (I: cg11647481) drift-CpGs. J-L, Validation in monozygotic Danish twins, including top
positive (K: ¢g21109038) and negative (L: cg08337633) drift-CpGs. Abbreviations: PosD, Positive drift-

CpGs; NegD, Negative drift-CpGs.

Positive drifts related to neural system functions and negative drifts linked to
immune functions

GO and KEGG functional enrichment analyses of our replicated drift-CpGs have illuminated possible
mechanisms tied to both positive and negative epigenetic drift (Fig. 4). Specifically, positive drift-CpGs
(n=24,051) were markedly enriched for processes related to nervous system development (p=7.9x10™!
after FDR) and neuroactive ligand-receptor interaction (p=6.2x10% after FDR), corroborating Slieker et
al.'s work (Slieker et al. 2016). Conversely, negative drift-CpGs (n=110) showed distinct enrichment in
alpha-beta T cell differentiation (p=1.4x107 after FDR). Phenotype enrichment analysis, derived from
EWAS Atlas data, revealed that positive drift-CpGs were significantly associated with phenotypes such as
B Acute Lymphoblastic Leukemia (p=1.8x10"" after FDR), hepatocellular carcinoma (p<3.4x10~ after
FDR), and Helicobacter pylori infection (p=5.4x107* after FDR). This finding aligns with earlier studies
showing that increased DNA methylation variability frequently occurs at loci related to malignancy and
can be predictive of cancer emergence(Landau et al. 2014; Feinberg and Levchenko 2023). In contrast,
the phenotype enrichment for negative drift underscored aging as the most significantly associated trait
(p=1.3x107 after FDR), followed by Down syndrome as the second most significant (p=2.1x10?* after
FDR). These patterns suggest a differential impact of positive versus negative drift on phenotype

expression, with negative drift showing a pronounced association with aging processes.
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336  Figure 4. Biological and trait enrichments of directional epigenetic drift. This circular plot visualizes
337  Gene Ontology (GO) terms, KEGG pathways, and traits enriched for positive (PosD) and negative

338  (NegD) drift-CpGs. Enrichment score, calculated as -logio(FDR p), increases with distance from center.

339 EDS represents a unique aging dimension

340 We developed a positive epigenetic drift score (EDS_POS) using 204 independent CpGs, each more than
341 500 kbp apart (Supplemental Table S4). These CpGs were selected from the 49,877 positive drift-CpGs
342  identified in NSPT, based on their smallest Fisher combined p-values across NSPT, CAS, and Hannum et

343  al., using a non-negative least squares regression model.
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The EDS_POS ranges from 0 to 1, reflecting low to high levels of epigenetic positive drift. In both
NSPT and Hannum et al., the distribution of EDS_POS was slightly right-skewed, with a mean of 0.41
(boxplot: 0.21, 0.32, 0.39, 0.47, 0.69). EDS_POS exhibited a linear correlation with age, which
strengthened as more CpGs were included. Specifically, Pearson’s correlation increased from 0 to 0.56 as
the number of CpGs grew from 1 to 100, plateaued at 0.60 with 200 CpGs (Fig. 5A, B). The EDS _POS
constructed in CAS using the same weights also demonstrated a highly consistent distribution (mean 0.39,

boxplot: 0.25, 0.34, 0.37, 0.43, 0.56, Fig. 5C) and a robust age correlation (r = 0.50).

We also found that EDS_POS increases more slowly with age in females compared to males (p =
3.7x107, Fig. 5B). We then compared the performance of EDS POS with a more robust but less sensitive
score that included more CpGs with equal weights (11,367 positive drift-CpGs nominally replicated in
both CAS and Hannum et al.). This score had a lower correlation with age (» = 0.46) than EDS POS,
likely due to added noise from less significant CpGs given equal weight. However, EDS POS still
showed a high correlation (» = 0.82) with this score (Fig. 5D). This result, along with the observation that
age correlation plateaued after including 200 CpGs in EDS_POS, suggests that our EDS POS effectively

captures genome-wide epigenetic drift, with 204 drift-CpGs being sufficient for this purpose.

We similarly developed a negative epigenetic drift score (EDS_NEG) based on 81 significant
negative drift-CpGs identified in NSPT. The EDS_NEG ranges from 0 to 1, indicating low to high levels
of negative drift (Supplemental Table S5). In NSPT, the distribution of EDS NEG was slightly right-
skewed with a mean of 0.36 (boxplot: 0.23, 0.31, 0.36, 0.42, 0.57). EDS_NEG showed an increasingly
strong negative correlation with age as more CpGs were included, reaching -0.38 when all 81 CpGs were
included (7 = -0.39 in males and » = -0.38 in females, Fig. SE, F). The EDS_NEG constructed in CAS
using the same weights demonstrated a highly consistent distribution (mean 0.42, boxplot statistics: 0.14,
0.31, 0.40, 0.50, 0.79, Fig. 5G) and a robust correlation with age (» = -0.49). A more robust but less
sensitive score, based on 508 equally weighted negative drift-CpGs, also showed a negative correlation

with age at -0.34. The correlation between EDS NEG and this 508-CpG score was 0.54 (Fig. SH).
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We further investigated into the correlations of our EDS with several previously established DNA
methylation-based aging scores, including Horvath (Horvath 2013), Hannum (Hannum et al. 2013),
Levine (Levine et al. 2018), and Dunedin (Belsky et al. 2020) (Fig. 5I). The Horvath and Hannum scores
represent different versions of epigenetic clocks, while the Levine and Dunedin scores focus more on
aging and aging pace. Our hypothesis posits that epigenetic drift may reflect a distinct or complementary
aspect of aging compared to other epigenetic aging scores. Indeed, in NSPT, we observed expected
modest levels of correlations prior to adjusting for age (EDS_POS: 0.29~0.63, EDS NEG: -0.11~-0.39,
Fig. 5J), which were further reduced after adjusting for age (EDS_POS: 0.17~0.31, EDS_NEG: -0.05~-
0.09, Fig. 5K). These results support our hypothesis that epigenetic drift captures aging across different
dimensions and scales compared to other epigenetic scores. Note that the methylation changes associated
with epigenetic drift occur over much longer timescales, typically spanning decades, in contrast to the
changes observed in epigenetic clock-CpGs, which often occur within a span of several years
(Supplemental Fig. S6). Consequently, the EDS and the clock score may be capturing different aspects of
aging, which could explain why the EDS exhibits a lower correlation with age compared to the typically

high correlation (over 0.9) observed with clock scores.

In the NSPT cohort, individual-level entropy measures showed significant age associations: positive
drift entropy significantly correlated with chronological age (Pearson's correlation coefficient, r = 0.39, p
= 6.9x107"**) and negative drift entropy exhibited a significant inverse relationship (Pearson's
correlationcoefficient, r = -0.51, p = 8.5x10*’, Fig. 5L-M). We observed moderate but significant
concordance between individual entropy and population-level drift scores (Pearson's correlation
coefficient, EDS POS: r=0.25, p = 1.0x10"°'; negative: r = 0.29, p = 6.7x107°). Furthermore,
longitudinal analysis in the Changfeng cohort revealed a significant increase in overall epigenetic entropy
over four years (paired -test, p = 1.7x107'?), with the mean epigenetic entropy increasing from 4,101 at
baseline to 4,172 at the 4-year follow-up, confirming the progressive nature of epigenetic drift at the

individual level (Fig. 5N).
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To evaluate EDS dynamics in the same individual's longitudinal aging process, we compared
EDS _POS changes in methylation levels and variance from baseline to follow-up using longitudinal
Changfeng data. These changes were then compared to analogous changes derived from a bootstrapped
genome background, matched for the number of CpGs. The mean methylation (p=3.6x10"°) and variance
(p=2.8x10") of these 204 positive drift-CpGs showed a statistically significant increase from baseline to
the follow-up period (Fig. 5 O-P). Applying the weights derived from the NSPT to Changfeng confirmed
a significant increase in EDS from the baseline to follow-up (baseline mean EDS=0.35; follow-up mean

EDS=0.38, p=1.2x10""2, Fig. 5Q).
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Figure 5. Validation and aging associations of the Epigenetic Drift Score (EDS). A, EDS POS shows
increasing correlation with age as more positive drift-CpGs are included. B—C, Scatter plots of EDS_POS
vs. age in NSPT (B) and CAS (C), colored by gender. D, EDS POS significantly correlates with genome-
wide positive EDS. E-G, EDS NEG similarly shows increasing age correlation (E) and gender-stratified
associations in NSPT (F) and CAS (G). H, EDS_NEG correlates with genome-wide negative EDS. I,
Venn diagram showing CpG overlap between EDS and four aging clocks. J-K, Heatmaps of correlations
among EDS, aging clocks, and age, before (J) and after (K) age adjustment. L-M, EDS POS (L) and
EDS NEG (M) correlate with genome-wide methylation entropy. N, Methylation entropy increases
longitudinally over 4 years. 0—Q, EDS_POS CpGs show greater increases in methylation mean (O),

variance (P), and EDS score (Q) over time compared to random CpGs.

EDS associated with lipid metabolites

Given the significant influence of epigenetic mechanisms on lipid metabolism (Gomez-Alonso et al.
2021) and the observation that calorie restriction can modulate both epigenetic drift and metabolic
pathways (Hahn et al. 2017; Maegawa et al. 2017), we further explored the impact of our EDS on serum
lipid metabolites. We analyzed data from 3,037 individuals in the NSPT cohort, for whom both
metabolomic and methylation profiles were available. The metabolomic dataset included 351 NMR-

detected lipoprotein subfractions, comprising 176 direct measurements and 175 derived values.

After adjusting for age, gender, BMI, and sampling location, EDS_POS was significantly
associated with 65 lipid metabolites following FDR correction (Fig. 6A-F, Supplemental Table S6).
These associations encompassed 13 high-density lipoprotein (HDL) metrics, 17 low-density lipoprotein
(LDL) metrics, 1 intermediate-density lipoprotein (IDL) metric, and 3 very-low-density lipoprotein
(VLDL) metrics. Among the negative associations, EDS_POS showed the strongest correlation with
phospholipids in HDL-4 (p = 4.1x107* after FDR). Among the positive associations, EDS POS was most

significantly associated with triglycerides in VLDL-5 (V5TGp, p = 2.3x1072 after FDR), consistent with
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previous studies that reported reduced VLDL levels in long-lived and younger cohorts (Lv et al. 2015). In
addition to lipid metabolites, we examined the association of EDS with 17 physical and blood
biochemical indicators. After adjusting for age, EDS POS was significantly associated 6 out of 17
indicators, i.e., BMI, HDL, triglycerides (TG), uric acid (UA), indirect bilirubin (IBIL), and creatinine
(CREA) (FDR p <0.05). EDS_NEG did not show any significant association in lipid or blood
biochemical association analyses (p>0.05 after FDR). Notably, further adjusting for clock scores in these

association analyses did not alter our findings except for those related to UA (Supplemental Fig. S7).

Extending the lipid and blood biochemical association analyses to other epigenetic scores,
including Hannum, Horvath, Levine, and Dunedin (Fig. 6 A-F), we identified numerous significant
associations after adjusting for age. The strongest was between the Dunedin score and ApoA2 in HDL-4
(p = 1.25x107®). In terms of the number of associations, the Dunedin score exhibited the most extensive
associations, with 97 metabolites and 13 blood biochemical indicators, followed by EDS POS (65 and 6),
Levine (16 and 3), Hannum (1 and 2), and Horvath (0 and 6). Notably, further adjusting for clock scores
in these association analyses did not alter our findings (Supplemental Fig. S8). Although the metabolites
and biochemical indicators are strongly intercorrelated, our results suggest that multiple epigenetic scores

play complex roles in metabolic features related to lipid metabolism, kidney function, and liver function.
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Figure 6. Associations of EDS_POS with serum lipid metabolic profiles. Forest plots display effect
sizes (with 95% confidence intervals) per unit increase of relevant scores on various lipid metrics. The
significance threshold for associations shown is set at FDR p < 0.05. Four epigenetic indicators are
presented: EDS POS (red), Dunedin (light blue), Levine (green), and Hannum (dark blue). A,
Associations with HDL-related traits. B, Associations with LDL-related traits. C, Associations with IDL-
and VLDL-related traits. D, Associations with lipid ratio metrics. E, Associations with lipid percentage
metrics. F, Associations with other small metabolites and apolipoproteins. Abbreviations used in the
figure include: ApoAl, ApoA2, ApoB (Apolipoprotein A1, Apolipoprotein A2, Apolipoprotein B); CH
(Cholesterol); CE (Cholesteryl Esters); FA (Fatty Acids); FC (Free Cholesterol); HDL (High-Density
Lipoprotein); IDL (Intermediate-Density Lipoprotein); LDL (Low-Density Lipoprotein); PL
(Phospholipids); PN (Particle Number); TG (Triglycerides); UFA/TFA (Unsaturated Fatty Acids / Total
Fatty Acids ratio); VLDL (Very Low-Density Lipoprotein); Subclass numbers indicate size-based
lipoprotein subfractions. A complete list of all metabolite abbreviations and their full names is provided in

Supplemental Table S6.

GWAS on EDS identify genetic factors

We conducted separate genome-wide association studies (GWAS) for EDS POS and EDS NEG,
analyzing 8.6 million SNPs from microarray data after imputation in 3,513 individuals. No evidence of
population sub-stratification was observed, as indicated by the inflation factor (A < 1.03). The SNP-based
heritability was estimated to be moderate for both traits using GCTA (EDS_POS VG/VP =0.29, se =

0.07; EDS_NEG VG/VP =0.11, se = 0.07).

The GWAS for EDS_POS identified a single SNP (rs7868942) located within the ASTN2 gene on
9g33.1 showing a genome-wide significant association with EDS POS (lead SNP rs7868942, § =0.02, p
=4.3x107%, Fig. 7A-C). The ancestral A allele of r1s7868942 had a frequency of 0.95 in our sample,
similar to the East Asian (EAS) population frequency of 0.94, much higher than other continental groups

in the 1000 Genomes Project (AMR 0.69, AFR 0.75, EUR 0.60, SAS 0.75). ASTN2 regulates neuronal
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migration and synaptic strength by trafficking and degrading surface proteins, and has been repeatedly
implicated in autism, Alzheimer's, and other neuropsychiatric disorders(Glessner et al. 2009; Ito et al.
2023). During aging, the chromatin state of ASTN2 becomes more promoter-like and active, with a
reduction in H3K36me3 and an accumulation of H3K4me3 and H3K27ac (Fig. 7D). This result is
consistent with the previously proposed aging model, where reduced H3K36me3 levels within gene
bodies inhibit the recruitment of KDM5B and DNMT3B to these regions, resulting in the accumulation of
H3K4me3 and reduced DNA methylation, which leads to increased transcriptional noise(McCauley et al.

2021).

The GWAS for EDS NEG identified 20 SNPs on 2p21 near the SOCSS gene that showed
genome-wide significant associations with EDS NEG (lead SNP rs76089707, f =-0.02, p = 1.2x10°8,
Fig. 7E-G). The ancestral G allele of r1s76089707 had a frequency of 0.53 in our sample, closely matching
the EAS population frequency of 0.52 and remaining comparable to frequencies in other continental
groups from the 1000 Genomes Project (AMR 0.47, AFR 0.61, EUR 0.65, SAS 0.56). SOCS5, a cytokine
signaling suppressor, negatively regulates the JAK/STAT pathway and plays a key role in balancing
immune response and virus persistence (Seki et al. 2002; Kedzierski et al. 2022). While aging, T cells
often experience increased activation and proliferation, leading to functional exhaustion. This exhaustion
is linked to sustained JAK/STAT pathway activation, where SOCS proteins play a crucial inhibitory
role(Sharma et al. 2019). During aging, the chromatin state of SOCS5 becomes more active, with an
accumulation of H3K4me3 and H3K27ac, yet without a decrease in H3K36me3 (Fig. 7H). In exhausted T
cells, specific CpG sites may become epigenetically stable, contributing to the long-term repression or
activation of certain genes. While these preliminary findings provide valuable insights, the modest effect
sizes and the proximity of the results to the genome-wide significance threshold suggest a cautious
interpretation. Further validation through replication studies and functional assays is essential to confirm

and elucidate the roles of these genomic loci in epigenetic drift.
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Figure 7. GWAS results for Epigenetic Drift Scores (EDS).

A, Manhattan plot showing SNP associations with EDS POS. B-C, Locus zoom plot (B) and genotype-
specific differences (C) for lead SNP rs7868942 near ASTN2. D, Aging is associated with a more active
chromatin state at ASTN2 (loss of H3K36me3; gain of H3K4me3, H3K27ac). E, Manhattan plot showing
SNP associations with EDS NEG. F-G, Locus zoom plot (F) and genotype-specific differences (G) for
rs76089707 near SOCS5. H, SOCS5 chromatin becomes more active with age in hMSCs, marked by

increased H3K4me3 and H3K27ac enrichment (McCauley et al. 2021).

Discussion

In this study, we present the largest EWDS to date, conducted in a Chinese population and replicated in
multiple Chinese and European cohorts. We systematically benchmarked statistical approaches for
detecting heteroscedasticity in DNA methylation data and identified White’s test as the most robust
method. Applying this approach, we identified and functionally annotated over 50,000 significant drift-
CpGs, which segregated into positive and negative drift categories with distinct genomic enrichments,
suggesting divergent underlying biological mechanisms. Integration with single-cell RNA sequencing
revealed that drift-associated CpGs exert direction-specific transcriptional effects and display marked
cell-type specificity. We further developed and validated composite EDS POS and EDS NEG to
quantify individual-level drift, both of which showed strong correlations with chronological age. Notably,
positive EDS was significantly associated with lipidomic profiles, as well as metabolic and clinical health
indicators. Importantly, the population-level drift-CpGs and EDS signatures were also validated
longitudinally at the individual level. Finally, genome-wide association analyses identified genetic loci,
including ASTN2 and SOCS3, associated with positive and negative drift variation, respectively,
underscoring a heritable component. Together, these findings offer key conceptual and methodological
advances in mapping epigenetic drift and underscore its significance in aging biology and age-related

disease susceptibility.
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Our findings reveal that both positive and negative epigenetic drift are associated with aging, yet
they likely represent distinct biological processes with divergent regulatory consequences. Positive drift,
characterized by increased methylation variance with age, is more prevalent genome-wide and typically
occurs in CpG island (CGI)-rich regions (Slieker et al. 2016). It exhibits minimal dependence on immune
cell composition, suggesting a population-wide, stochastic process. Functionally, positive drift is
associated with increased gene expression variability, i.e., transcriptional noise, particularly in genes
linked to neurological and metabolic pathways. These changes may reflect compensatory or stress-
induced transcriptional activation and contribute to systemic dysregulation observed in aging, including
altered lipid metabolism and blood biomarkers. Despite having a smaller effect size than traditional
epigenetic clocks, we show that a subset of ~200 key drift-CpGs can effectively summarize genome-wide
stochastic methylation variability. These results support the notion that positive drift captures non-
programmatic, nonlinear aspects of aging, potentially serving as a mechanistic substrate for the
emergence of epigenetic clocks themselves through cumulative stochastic changes. In contrast, negative
drift, though less common, is enriched in enhancer regions and exhibits strong CD4" T cell-specific
patterns. It is associated with reduced transcriptional noise in aged individuals and appears to reflect
immune-specific regulatory stabilization, rather than general epigenomic entropy. Mechanistically,
negative drift is enriched for binding sites of transcription factors such as AHR and may participate in
fine-tuning immune gene regulation during aging (Salminen 2022). This is consistent with prior
observations of age-associated T cell depletion, immune remodeling, and skewing of CD4" T cells toward
extreme regulatory and effector phenotypes (Dorshkind et al. 2009; Elyahu et al. 2019). Specifically,
aging might reduce CD4" T cell numbers and reshape their composition, potentially driving the
emergence of distinct DNA methylation patterns linked to negative drift. Thus, while positive drift may
reflect stochastic cellular deterioration, negative drift may represent an adaptive or programmed
component of immune aging. These distinct patterns suggest that epigenetic drift is not a monolithic
process, but rather a bifurcated aging mechanism—stochastic (positive) versus programmed (negative)—
with far-reaching implications for identifying aging biomarkers and designing targeted interventions.
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While some previous studies have proposed that epigenetic drift may contribute to the generation of
epigenetic clocks (Meyer and Schumacher 2024), our findings suggest that epigenetic drift appears to
represent a distinct dimension of epigenetic aging, primarily reflecting the accumulation of stochastic,
non-programmatic changes over time. In contrast, epigenetic clocks are typically derived from CpGs
whose methylation levels change in a coordinated and directional manner with age, likely reflecting
functional, environmentally responsive, or developmentally regulated processes. This distinction is
supported by the only moderate correlations we observed between the EDS and established epigenetic age
estimators(Hannum et al. 2013; Horvath 2013; Levine et al. 2018; Belsky et al. 2020). Unlike clocks,
which are trained to predict chronological or biological age, the EDS captures genome-wide epigenomic
instability irrespective of directionality. We therefore interpret positive drift as a signature of cumulative
random damage or loss of epigenetic maintenance fidelity, rather than a direct mechanistic contributor to

clock formation.

Our study demonstrates that drift-CpGs and the EDS capture cumulative, age-related epigenetic
variability at the individual level. Validated examples—such as positive drift at FBXO2 and LINC02716
and negative drift at FOXK/ and TCF12—highlight their relevance to transcriptional regulation and
disease. Inter-individual differences in EDS further support its utility in quantifying genome-wide drift
and predicting aging-related traits. Notably, we found significant associations between EDS and lipid
metabolism, particularly with subclasses of LDL and HDL, underscoring a potential regulatory link.
These results align with prior studies on DNA methylation and lipoproteins (Gomez-Alonso et al. 2021)
and suggest the need for further functional investigation into the causal role of epigenetic drift in lipid
regulation. Our study suggests potential sex-specific differences in epigenetic aging, with females
exhibiting a slower accumulation of positive epigenetic drift compared to males. This observation may
reflect greater epigenomic stability in females against age-associated stochastic changes, potentially

influenced by hormonal or chromatin-related factors. While these findings may offer a partial explanation
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for the observed female longevity advantage, they also highlight the importance of considering sex as a

biological variable in the development of aging biomarkers and potential interventions.

Our analysis focused on identifying drift-CpGs using population-level, cross-sectional DNA
methylation array data. In contrast, some other studies have proposed metrics such as Shannon entropy or
the proportion of intermediately methylated sites to quantify methylation heterogeneity within individual
samples (Scherer et al. 2020). These entropy-based measures typically require deep bisulfite sequencing
(e.g., WGBS) to resolve single-molecule differences. Although we also calculated individual-level
entropy from array data, our primary objective was to model changes in methylation variance with age
across the population, enabling the identification of drift-CpGs that reflect systemic epigenetic variability
rather than within-sample noise. This focus is partly driven by data availability: while WGBS offers near-
complete CpG coverage and can assess cell-intrinsic variability, the EPIC array surveys a fixed subset of
CpGs and reflects averaged methylation signals across heterogeneous cell populations. Importantly, we
validated the drift-CpGs identified at the population level using independent longitudinal datasets,
supporting their temporal robustness. Furthermore, the EDS derived from drift-CpGs showed a strong
correlation with entropy-based measures, suggesting that these two approaches, though methodologically

distinct, converge on capturing common aspects of epigenetic aging.

Nevertheless, we acknowledge several limitations. First, our study lacks multi-tissue or large-scale
longitudinal data spanning broader age ranges, which are necessary to evaluate drift dynamics across
developmental and aging trajectories. Second, our analysis is based on array-derived methylation data
rather than whole-genome bisulfite sequencing, potentially limiting the detection of drift in non-CpG sites
and distal regulatory elements. Third, we did not integrate matched transcriptomic or additional
epigenomic layers, which constrains our ability to systematically assess the downstream regulatory
consequences of drift. Future studies employing multi-omic, single-cell, and longitudinal designs across
diverse tissues and larger cohorts will be critical to further refine and validate our model of epigenetic
drift in human aging.
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Methods

Study Cohorts, DNA Methylation, Serum Metabolomics, SNP Microarray and
Phenotyping

Detailed descriptions of the NSPT, CAS, and Changfeng cohorts are provided in the Supplemental
Methods. In brief, all cohorts consisted of Chinese individuals, and genome-wide DNA methylation was
measured using the [llumina Infinium MethylationEPIC BeadChip. Written informed consent was

obtained from all participants, and each study was approved by the respective institutional review board.

Genome-wide DNA methylation in all three cohorts was profiled using Illumina
MethylationEPIC BeadChips. DNA extraction and bisulfite conversion followed published protocols (Xia
et al. 2023; Peng et al. 2024). Raw .idat files were processed using minfi (NSPT) or CHAMP (CAS and
Changfeng) without background correction. Quality control excluded samples with unclear gender and
probes with SNPs, sex chromosome location, or high missingness. Missing values were imputed

(impute.knn), Type-2 bias corrected (BMIQ), and batch effects adjusted (ComBat on M-values).

The NSPT cohort included detailed phenotypic data (e.g., height, weight, blood pressure) and 13
blood biochemical traits. Serum metabolomics on a subset was performed using a 600 MHz NMR
platform (Bruker), analyzed with B..LLISA™ and B.I.Quant-PS™ software (Wu et al. 2021). Genotyping
was conducted using the Illumina Global Screening Array, followed by standard QC in PLINK and
imputation with 1000 Genomes (SHAPEIT3 and IMPUTE2). After QC, 8,603,582 SNPs remained for

analysis.

Statistical Analysis

White method for detecting epigenetic drift-CpGs

To identify epigenetic drift-CpGs, defined as CpG sites exhibiting age-related heteroscedasticity, we
employed an improved two-step regression method based on White's heteroscedasticity test (White,
1980).
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In the first step, we constructed a linear regression model (equation 1) using beta values of each CpG
and age, calculating the squared residuals from the least squares regression while also correcting for
potential confounding factors such as gender, BMI, and cell composition that may affect DNA
methylation levels. Cell type proportions were estimated using the EpiDISH algorithm(Zheng et al.

2018).

B, = ay;y + ay; + ¢, (equation 1)

where a; and ay; denote the estimated effect and bias of the ith CpG site, respectively. y=(v1, ¥>,
s Yn)s €=(C1, Ca, ooy €), and Bi=(Bui, Bai .., Bni) represent the age, covariates (gender, BMI, and cell
composition), and estimated beta values of the ith CpG site for all samples, respectively, with n denoting
the sample size. The deviation d;=(; - B,)* between the true beta value f; and the estimated value f3,

reflects the degree of epigenetic drift at CpG site i under a given age.

In the second step, we regressed d; on age using the following equation 2.

di = Y1Y + V2i¥* + Yoi » (equation 2)

where y4; , ¥2; and yq; denote the estimated age effect, age square effect and bias of the ith CpG site.
To assess whether equation 2 significantly differs from the null model with no variables, we performed a
hypothesis test on the model in equation (2) compared with model without age effect using a y2-statistic,

and obtained the corresponding p-value.

Simulation benchmarking for heteroscedasticity testing of drift-CpGs

To evaluate the performance of existing heteroscedasticity testing methods in detecting epigenetic drift-
CpGs, we conducted a comprehensive simulation study. We generated four distinct types of synthetic
DNA methylation datasets: (1) a baseline dataset with no heteroscedasticity or outliers (to assess Type I

error), (2) a dataset with outliers but no heteroscedasticity (to evaluate robustness to outliers), (3) a dataset
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exhibiting linear age-related heteroscedasticity, and (4) a dataset demonstrating non-linear age-related

heteroscedasticity.

We then compared the Type I error and statistical power of four methods: Liu et al. (Method A,
Double Generalized Linear Model using dglm R package), Bergstedt et al. (Method B, Heteroscedastic
Likelihood Ratio Test using gamlss R package), Slieker et al. (Method C, Breusch-Pagan test), and our
improved White method (Method D). Performance was evaluated based on false positive rates for Dataset
1, impact of outliers in Dataset 2, and statistical power for linear (Dataset 3) and nonlinear (Dataset 4)
drift-CpGs. Detailed simulation parameters and method implementations are provided in Supplemental

Methods.

Epigenome-Wide Drift Study (EWDS)

Prior to epigenome-wide drift analysis , we removed 342,815 CpGs from a total of 811,876 CpGs in the
discovery NSPT dataset, including 284,128 DNA methylation CpGs, i.e., those significantly affected by
mQTLs in Chinese populations (Peng et al. 2024), 57,691 CpGs with no variation (variance<1x107), and
996 CpGs failing the Multimodal distribution test (R-diptest, p<1x10*), resulting in a total of 469,061
CpGs. Then we conducted epigenome-wide drift identification using the White method on these 469,061
CpGs and further investigated and compared the performance of the other three methods. P value smaller
than 1x107 (Bonferroni p<0.05) were considered as epigenome-wide significant. Significant drift-CpGs
were categorized into positive drift (age-increasing inter-individual variability) and negative drift (age-
decreasing variability). Beyond identifying drift-CpGs, our analysis comprehensively characterized their
properties and regulation through exploring correlations between DNA methylation variation and

initial/terminal levels (details in Supplemental Methods).

Epigenome-wide association study (EWAS) for chronological age

To identify the age-associated CpGs, termed here as clock-CpGs, we used a linear model to perform

epigenome wide association analysis based on 469,061 CpGs in the NSPT cohort with the same starting
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amount as EWDS. P value smaller than 1x107 (Bonferroni p <0.05) were considered as epigenome-wide
significant. Covariates included gender, BMI, cell composition, experiment batch, the first 5 genetic
principal components and the first 5 epigenetic principal components. Genomic principal components
(genomic PCs) were calculated using PLINK 1.9 based on all genome-wide SNPs. For methylation
principal components (methylation PCs), we applied the prcomp function in R to the § values of 810,000

CpG sites across the genome.

Cell-type-specific and Single-cell RNA-seq Integration

To assess cell-type-specific contributions to methylation drift, we adapted the CelIDMC framework
(Zheng et al. 2018), modeling the interaction between age and estimated cell-type proportion (estimated
using EpiDISH) (Teschendorff and Zheng 2017), for significant drift-CpGs. For each CpG, age-
dependent methylation drift specificity across cell types was assessed, with Bonferroni-adjusted p-values
< 0.05 considered significant. To elucidate the contribution of age-related methylation drift to inter-
individual immune variation, we integrated population-scale epigenetic drift profiles with single-cell
transcriptomic data from peripheral blood mononuclear cells (PBMCs) in the OneK1K cohort(Yazar et al.
2022). We compared transcriptional dynamics between individuals at the extremes of the age spectrum.
The BASICS algorithm (Vallejos et al. 2015) was used to estimate age-associated changes in both

transcriptional levels and noise, stratified by methylation drift direction.

Biological Annotations

CpGs were mapped to the hg19 build for genomic annotations (e.g., Enhancer, TSS1500, TSS200, UTRS,
IstExon, ExonBnd, Body, UTR3, Promoter) and CpG island annotations (N_Shelf, N_Shore, Island,

S Shore, S_Shelf). Relative enrichment analysis of chromosome states and gene regions was conducted
separately for positive/negative drift and clock CpGs. Significance was assessed using a hypergeometric
test (p < 0.05). The formula for odds ratio calculation and detailed annotation categories are in

Supplemental Methods. Transcription Factor Binding Site (TFBS) Enrichment Analysis on drift-CpGs
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was performed using the TFmotifView web tool (https://bardet.u-strasbg.fr/tfmotifview/), extracting 10
bp sequence windows centered on each CpG site. Statistical significance was assessed using Bonferroni
correction (adjusted p < 0.05). We drift-CpGs for enrichment of gene ontologies and KEGG pathways
using the gometh function using R package ‘missmethyl’ (v1.28.0). Using the online analysis platform
EWAS atlas, we performed phenotype enrichment analysis on successfully validated drift-CpGs. To
explore the distinct biological functions associated with positive and negative drift, we performed
enrichment analyses separately for the sets of positive drift-CpGs and negative drift-CpGs, applying a

significance threshold of 0.05 after FDR adjustment.

Replication Analysis

Drift-CpGs significant in the NSPT discovery analysis (p<1x10"") were followed up with a replication
analysis in the CAS cohort using the White method. Further validation was performed in the GSE40279
dataset (a mixed Caucasian and Hispanic population assessed with a 450K beadchip) (Hannum et al.
2013). In the longitudinal Changfeng population, CpG drift values between two time points were
calculated and analyzed using paired #-tests. The stability of drift was also investigated in the GSE61496

twin cohort (Tan et al. 2014) using linear regression on absolute age differences and twin pair values.

Construction of Epigenetic Drift Score (EDS)

To quantify an individual's epigenetic drift burden, we developed the Epigenetic Drift Score (EDS). This
score aggregates individual-level methylation variability at robustly selected CpGs, reflecting an
individual's overall drift status. First, we selected highly robust drift-CpGs, defined as those significantly
associated with age-related variability in the NSPT discovery cohort and consistently replicated in both
CAS and Hannum cohorts. To ensure independence, CpGs within 500-kb proximity of a more significant
CpG were removed. Specific filtering criteria and the final number of independent CpGs are detailed in

Supplemental Methods.
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For each individual i and selected drift site j, we computed the site-specific drift magnitude (d;; ) as

the squared deviation of methylation level from the mean, scaled by the site's standard deviation: d;; =

Bij — 13 jz /S D;, where d;; denotes the drift magnitude for individual 7 at site j, §;; is the methylation level
for individual i at site j, 8 ; is the mean methylation level at site j, and SD; is the standard deviation of
methylation at site j. To derive weights for aggregation, a non-negative least squares regression between
each site's drift score d;; and the age of the individual y; was then performed, y; = a + y;d;; , where a is
the intercept term and y; is the regression coefficient reflecting the correlation between drift score and
age. The overall positive epigenetic drift score EDS_POS; for individual i was then calculated by
summing across selected sites (K), weighted by their respective non-negative regression coefficients

(y)): EDS_POS; = ¥, y;d;;

These weighting factors, derived from the NSPT and Hannum cohorts, serve as a standard reference.
Scores were subsequently range-normalized to a 0-1 scale using reference populations to project
minimum and maximum possible scores. The negative epigenetic drift score (EDS _NEG) was
constructed following a similar approach. This involved using significant negative drift-CpGs from the
NSPT cohort, applying a non-negative least squares regression model to identify contributing sites, and
then range-standardizing the scores to a 0-1 scale (details on site selection and final number of sites in
Supplemental Methods). As a validation, we also implemented an entropy-based approach (Scherer et al.
2020) to measure individual-level DNA methylation variability. Genome-wide Shannon entropy was
computed for positive and negative drift-CpGs, and its concordance with EDS values was assessed

(details and formula in Supplemental Methods).
Association of EDS with age, metabolome, and genetic variants

We evaluated correlations between EDS and chronological age in the NSPT and CAS cohorts and

assessed EDS distributions across gender groups. In the NSPT cohort, we used linear regression to test
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associations between EDS and NMR-derived lipoprotein subfractions and small metabolites, adjusting for
covariates (see Supplemental Methods). Significance was determined using FDR-adjusted p < 0.05.
GWAS of EDS in NSPT was conducted using linear regression models in PLINK, adjusting for relevant
covariates. EDS heritability was estimated using GCTA. Age-associated chromatin state changes at key
loci were visualized using the Integrative Genomics Viewer (IGV) with hMSC ChIP-seq data from

GSE156409 (McCauley et al. 2021).

Published Software and Resources

Publicly available software and R packages utilized in this study include: R (V4.4.0)(R Core Team 2024),
ggplot2, diptest, missMethyl, poolr, corrplot, forestplot, SHAPEIT3, IMPUTE2, PLINK?2.0, GCTA, and

IGV (URLs in Supplemental Methods).
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Data access

All DNA methylation data generated in this study have been deposited in publicly accessible databases.
The CAS cohort data are available at OMIX (https://ngdc.cncb.ac.cn/omix/) under accession code
OMIX004333. The NSPT and Changfeng cohort data are available at the National Omics Data
Encyclopedia (NODE, https://www.biosino.org/node) under accession numbers OEZ00008120 (NSPT
cohort: file name: methy 3523.rdata) and OEP00004768 (Changfeng cohort). Individual-level genotype
data can also be requested through NODE under accession number OEZ00008120. Data usage shall be in
compliance with the 2023 Implementation Rules for the Management Regulations of Human Genetic
Resources issued by China’s Ministry of Science and Technology (MOST). The source codes used in this
study to identify and quantify epigenetic drift, and to generate corresponding graphs, are available at

GitHub (https://github.com/Fun-Gene/EpigeneticDriftScore) and as Supplemental Code.
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