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Abstract 53 

Epigenetic drift refers to the gradual and stochastic accumulation of epigenetic changes, such as DNA 54 

methylation variability, with advancing age. Although increasingly recognized for its potential role in 55 

aging biology, its extent, biological significance, and population specificity remain insufficiently 56 

characterized. Here, we present the first comprehensive epigenome-wide drift study (EWDS) in a large 57 

Chinese cohort (n = 3,538), with replication in two independent Chinese (total n = 1,467) and two 58 

European cohorts (total n = 956), to investigate the scale and relevance of epigenetic drift across 59 

populations. Through simulation, we identified White’s test as the most powerful method among four 60 

alternatives for detecting age-associated methylation variability. Our EWDS revealed that 10.8% (50,385 61 

CpGs) of sites on the 850K EPIC array exhibited epigenome-wide significant drift, with 99% showing 62 

increased inter-individual variability (positive drift) and 1% showing decreased variability (negative 63 

drift). Integration with single-cell RNA-seq data demonstrated that positive drift-CpGs are associated 64 

with increased transcriptional variability and upregulation in specific cell types, while negative drift-65 

CpGs exhibit the opposite effect. We developed epigenetic drift scores (EDSs) to quantify individual drift 66 

burden; these scores are strongly age-associated and correlate with lipidomic profiles and clinical aging 67 

indicators. Longitudinal data confirm within-individual accumulation of drift over time. Finally, a GWAS 68 

of EDS identified genetic determinants of drift magnitude, including heritable loci (e.g., ASTN2, SOCS5). 69 

Collectively, these findings establish epigenetic drift as a pervasive, directional, and biologically 70 

meaningful feature of human aging. 71 

Introduction 72 

Epigenetic drift refers to the progressive, stochastic accumulation of molecular alterations across the 73 

epigenome during aging. These include changes in DNA methylation, histone modifications, chromatin 74 

remodeling, and non-coding RNAs. Collectively, such alterations disrupt gene regulatory networks, 75 

leading to transcriptional dysregulation, loss of cellular homeostasis, and increased vulnerability to age-76 

related diseases (Li and Tollefsbol 2016; López-Otín et al. 2023). Among these, DNA methylation drift 77 
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has emerged as the most extensively characterized component of epigenetic aging. It is typified by 78 

increased variance in methylation levels at specific CpG sites-termed drift-CpGs-over chronological age, 79 

distinguishing it from the linear age-associated methylation changes at epigenetic clock sites (Fraga et al. 80 

2005; Horvath and Raj 2018; Seale et al. 2022). Importantly, epigenetic drift likely unfolds more 81 

gradually across wider temporal windows, capturing interindividual and cellular heterogeneity in a way 82 

that reflects biological aging beyond the linear progression captured by clock-based models. This 83 

stochastic accumulation is hypothesized to reflect rising intercellular and interindividual heterogeneity 84 

with age, potentially capturing biological aging more dynamically than static methylation clocks (Meyer 85 

and Schumacher 2024). Understanding and quantifying epigenetic drift may offer novel biomarkers for 86 

aging trajectories, disease susceptibility, and therapeutic interventions aimed at mitigating age-associated 87 

decline. 88 

The etiology of epigenetic drift is multifactorial. Genetic predisposition accounts for substantial 89 

interindividual variation in baseline methylation patterns (Shah et al. 2014). In addition, longitudinal twin 90 

studies have underscored the influence of environmental factors; for instance, Tan et al. identified over 91 

2,000 CpGs exhibiting significant methylation drift over a decade, strongly implicating environmental 92 

exposures (Tan et al. 2016). Infectious agents, such as cytomegalovirus, have also been shown to induce 93 

widespread methylation variance in a cell-composition-independent manner (Bergstedt et al. 2022). At the 94 

chromatin level, drift-CpGs are enriched in repressive Polycomb-bound regions (Slieker et al. 2016) and 95 

exhibit pronounced variability on the inactive X Chromosome (Liu et al. 2023), suggesting epigenomic 96 

compartmentalization of drift. The biological consequences of epigenetic drift are increasingly being 97 

explored. Hannum et al. showed that drift-CpGs in blood are associated with transcriptional changes, 98 

implicating drift as a potential regulator of aging pace (Hannum et al. 2013). At the molecular level, this 99 

may manifest as altered transcriptional output and increased expression noise, disrupting cellular function.  100 

Detecting epigenetic drift, however, requires robust statistical modeling capable of detecting changes 101 

in variance rather than mean methylation. Several approaches have been proposed. The most commonly 102 

used methods apply heteroscedasticity tests, such as the Breusch–Pagan test or double generalized linear 103 
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models (DGLMs), to identify CpG sites whose methylation variance increases linearly with age (Slieker 104 

et al. 2016; Bergstedt et al. 2022; Liu et al. 2023). Complementary entropy-based metrics estimate 105 

methylome-wide disorder, capturing the global stochasticity of the epigenome (Hannum et al. 2013; Wang 106 

et al. 2024). These statistical frameworks serve as critical tools for identifying drift-CpGs and quantifying 107 

the systemic erosion of epigenetic fidelity. 108 

Despite recent advances, several key challenges remain. First, there is no consensus on the optimal 109 

statistical framework for identifying drift-CpGs, with different studies applying distinct models and 110 

yielding limited concordance. Second, the generalizability of previously identified drift-CpGs is limited, 111 

as most were derived in European populations and lack validation across diverse ancestries, such as East 112 

Asians. Third, previous research has predominantly focused on positive drift, CpGs with increasing 113 

methylation variance over age, while negative drift-CpGs remain largely understudied, despite their 114 

potential biological importance. Fourth, it is still unclear whether drift-CpGs are cell-type specific or 115 

reflect a shared aging signature across hematopoietic lineages. Fifth, although entropy-based metrics have 116 

been used to estimate global methylation disorder, no standardized method currently exists to construct an 117 

epigenetic drift score (EDS) at the individual level using a finite set of CpGs. Lastly, the biological 118 

relevance of drift-CpGs, particularly their contribution to age-related complex traits, and their relationship 119 

with underlying genetic architecture, remains poorly understood.  120 

To address these challenges, we first performed a comprehensive evaluation of four commonly used 121 

statistical methods for identifying drift-CpGs, using both computer simulations and empirical population 122 

data. We then applied this method to 735,267 CpG sites (850K EPIC Array) measured in 3,538 Chinese 123 

individuals, systematically identifying a high-confidence set of drift-CpGs. Our replication analysis was 124 

conducted in 2,423 individuals from two additional Chinese cohorts and two European cohorts. Both 125 

positive and negative drift-CpGs were characterized to reveal complementary biological patterns. We 126 

further investigated whether drift-CpGs exhibit cell-type specificity or represent shared signatures of 127 

hematopoietic aging by integrating single cell RNA-seq analyses. To quantify individual-level epigenetic 128 

drift, we developed an EDS based on a finite subset of drift-CpGs, offering a standardized alternative to 129 
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entropy-based metrics. Finally, we evaluated the functional relevance of EDS through association 130 

analyses with age, lipidomic profiles, and genome-wide genetic variation, uncovering potential 131 

mechanistic links between stochastic epigenetic changes and age-related complex traits.  132 

Results 133 

Population characteristics 134 

An overview of the study design, detection technologies, and analytical workflow is presented in Fig. 1. 135 

The discovery cohort, the National Survey of Physical Traits (NSPT), comprised 3,538 Chinese 136 

individuals with a mean age of 50.2 years (SD = 12.7, range 18-83) and 37.0% male participants 137 

(Supplemental Table S1). The first replication cohort included 1,060 individuals from the Chinese 138 

Academy of Sciences cohort (CAS), predominantly highly educated individuals in intellectual 139 

professions, with a mean age of 40.8 years (SD = 9.4, range 22-64) and 59.7% male participants. The 140 

second replication cohort, a longitudinal study from the Shanghai Changfeng Study (Changfeng), spanned 141 

a median follow-up period of 4 years with 407 subjects. Baseline ages ranged from 47.6 to 80.0 years, 142 

with a mean age of 61.4 years (SD = 7.4), and follow-up ages ranged from 51.9 to 84.0 years, with a 143 

mean age of 65.5 years (SD = 7.3). DNA methylation at 735,267 CpGs, overlapping between the 144 

discovery and replication cohorts, showed highly concordant distributions (Supplemental Fig. S1). For 145 

subsequent epigenome-wide analysis, we retained 469,061 CpGs after excluding those affected by 146 

mQTLs (Peng et al. 2024), those with minimal variance in age-regressed residuals (R2 < 1×10⁻5), or those 147 

significant in a multimodal distribution test (p < 1×10⁻4). 148 
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 149 

Figure 1. Schematic representation of the study design, detection technologies, and analytic 150 

approaches. The method marked in red text and with a checkmark (√) was selected for downstream 151 

analysis. 152 

Positive and negative drifts enriched in different functional regions 153 

A simulation analysis was conducted to compare the statistical power and type-I error rates of four 154 

existing heteroscedasticity test methods: method A: double generalized linear model (Liu et al. 2023), 155 

method B: Breusch-Pagan likelihood ratio based chi-square statistic (Bergstedt et al. 2022), method C: 156 

Breusch-Pagan T-statistic (Slieker et al. 2016), and method D: White Test (White 1980) (see 157 

Supplementary Methods for details). This analysis showed that method B was overly aggressive, while 158 

method A was overly conservative. Method D showed  superior performance in scenarios involving non-159 

linear relationships between CpG variance and age (Supplemental Fig. S2). Using White Test, EWDS 160 

identified 10.8% of CpG sites (50,385) as drift-CpGs (p<1×10-7, Fig. 2A, B). This number significantly 161 

exceeds findings from previous studies, including one involving 385 Swiss twin pairs using the 450K 162 

array, which identified 571 drift-CpGs (different method due to twin samples), with 229 overlapping with 163 
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our list (Wang et al. 2018). Another study of 3,295 European individuals from the BIOS Consortium 164 

using the 450K array and the Method C identified 6,366 drift-CpGs (Fig. 2C), with 3,000 overlapping 165 

with ours (Wang et al. 2018). Our number also surpassed that from The Milieu Intérieur study of 968 166 

Europeans (Bergstedt et al. 2022), which identified 20,140 drift-CpGs from a total of 644,517 CpGs using 167 

Method B. These discrepancies are likely attributable to a combination of factors such as larger sample 168 

size, broader age range, greater CpG coverage, and enhanced statistical power. The vast majority of the 169 

identified drift-CpGs (99.0%, n=49,877) exhibited an increase in variance with aging, termed as positive 170 

drift-CpGs (Fig. 2D), while a small fraction showed a significant decrease in variance, termed as negative 171 

drift-CpGs (n=508, 1.0%, Fig. 2E). Positive drift-CpGs were highly significantly enriched in expression-172 

repressed CpG islands (CGIs) (OR=2.4, p<1×10⁻300, Fig. 2F, G), whereas negative drift-CpGs were 173 

significantly enriched in expression-active non-CGIs, such as open sea regions (OR = 2.4, p<8.8×10-19), 174 

with a particularly pronounced enrichment in enhancers (OR=10.1, p =2.1×10-64). A transcription factor 175 

binding motif enrichment analysis showed that negative drift-CpGs significantly enriched at AHR-ARNT, 176 

CREB3L4, and GMEB2 (Supplemental Fig. S3).  177 

Compared to the abundant age-associated CpGs identified by linear regression in the same 178 

dataset, referred to here as clock-CpGs (31.2%, n = 146,497, p < 1×10⁻⁷), the number of drift-CpGs was 179 

substantially smaller and exhibited lower statistical significance, as expected. Nonetheless, we observed a 180 

significant overlap between drift-CpGs and clock-CpGs (23.3%, n = 34,118), indicating that methylation 181 

drift and directional age associations are not mutually exclusive. In fact, drift-CpGs were significantly 182 

more likely than non-drift CpGs to also exhibit age-associated mean changes in methylation (OR = 5.7, p 183 

< 1×10⁻³⁰⁰, Supplemental Table S2). Notably, positive drift-CpGs were more frequently associated with 184 

CpGs that also showed increasing average methylation with age (positive clock-CpGs), whereas negative 185 

drift-CpGs were more likely to coincide with CpGs that decreased in methylation with age (negative 186 

clock-CpGs, OR = 1.3, p = 7.8×10⁻³, Supplemental Table S2). Positive drift-CpGs and positive clock-187 

CpGs were most significantly enriched in CGI Islands (Fig. 2H), while negative drift-CpGs and negative 188 
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clock-CpGs were most significantly enriched in enhancers (Fig. 2I). This concordance suggests a partial 189 

coupling between directional epigenetic aging and increased epigenetic variability. 190 

We examined whether changes in DNA methylation variance at CpG sites are associated with 191 

initial (young group age < mean - 2SD) and terminal (old group age > mean + 2SD) methylation levels. 192 

Specifically, we asked whether reduced variance indicates convergence toward methylation extremes (0 193 

or 1), and whether increased variance reflects divergence from such states. This analysis identified 194 

differential drift patterns based on the direction of methylation drift (Fig. 2J-L). Positive drift-CpGs 195 

predominantly remained at intermediate methylation ranges (0.1-0.9) throughout aging, rarely converging 196 

toward either hypermethylation or hypomethylation extremes. In contrast, negative drift-CpGs typically 197 

moved from intermediate methylation states toward methylation extremes but rarely vice versa. These 198 

observations suggest fundamentally different biological mechanisms underlying positive versus negative 199 

methylation drift during aging. We hypothesis that negative drift, characterized by shifts towards 200 

methylation extremes, likely reflects more targeted biological aging processes such as cellular senescence 201 

or clonal expansions, whereas positive drift might represent broader stochastic or heterogeneous aging 202 

processes. 203 

Epigenetic drift's cell-type specificity and transcriptional impact 204 

To investigate whether epigenetic drift-CpGs are driven by changes in blood cell-type composition, we 205 

applied the EpiDISH algorithm (Teschendorff and Zheng 2017). Among the 50,385 identified drift-CpGs, 206 

the majority (88%) did not exhibit cell-type-specific methylation patterns, suggesting that most epigenetic 207 

drift occurs independently of blood cell composition (Fig 2M). Of the 6,226 CpGs (12%) that did show 208 

significant cell-type-specificity, the vast majority (>99%) were associated with lymphoid lineage cells. 209 

Specifically, these CpGs were predominantly enriched in B cells (82%), followed by CD8+ T cells (12%), 210 

CD4+ T cells (4%), and natural killer (NK) cells (2%), while less than 1% were linked to myeloid cells. 211 

Importantly, CD4+ T cell-specific drift-CpGs (n=266) showed a distinct pattern, all of which exhibited 212 

negative drift with age. These findings suggest a cell-type-specific suppression of epigenetic drift noise in 213 
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CD4+ T cells, in contrast to the general age-associated increase observed in other cell types. 214 

Representative examples of lymphoid-, myeloid-, and CD4+ T cell-specific drifts are provided in 215 

Supplemental Fig. S4A–C. 216 

To investigate how age-associated DNA methylation drift influences gene expression, we integrated 217 

drift-CpG profiles with single-cell RNA sequencing (scRNA-seq) data across peripheral blood 218 

mononuclear cell (PBMC) immune cell types. Our analysis revealed statistically significant, albeit 219 

modest, shifts in gene expression profiles associated with drift-CpGs relative to the genome-wide 220 

background (Supplemental Fig. S5A-B). Specifically, genes associated with positive drift-CpGs exhibited 221 

a tendency towards higher mean expression and discernibly greater expression variability compared to the 222 

genome-wide background, suggesting a relatively more active yet potentially unstable transcriptional 223 

state. Conversely, genes adjacent to negative drift-CpGs displayed slightly but significantly lower 224 

transcriptional noise, indicating a more stable transcriptional pattern. 225 

We further examined age-related transcriptional changes in immune cells. Although overall mean 226 

transcriptional activity showed a modest but significant increase in older individuals (Supplemental Fig. 227 

S5A–B), stratifying by drift direction revealed consistent, albeit subtle, age-associated increases in 228 

transcriptional levels for genes proximal to both positive and negative drift-CpGs. Notably, only genes 229 

near positive drift-CpGs showed increased transcriptional variance with age, while those near negative 230 

drift-CpGs did not. 231 

Subsequent cell-type-specific analyses confirmed that age-related transcriptional changes 232 

associated with drift-CpGs were largely non-overlapping across immune cell types, underscoring a high 233 

degree of cell-type specificity (Supplemental Fig. S5C-F). In CD4+ T cells, BASiCS analysis revealed 234 

reduced transcriptional noise in aged individuals for genes associated with positive drift-CpGs, suggesting 235 

a context-dependent noise-suppressive function. The most pronounced transcriptional perturbations in 236 

genes associated with positive epigenetic drift were observed in B cells (Supplemental Fig. S5G). 237 
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Conversely, negative epigenetic drift primarily affected CD4+ T cells, driving distinct transcriptional 238 

changes in this subset (Supplemental Fig. S5H). 239 

 240 
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Figure 2. Epigenome-wide identification and annotation of drift- and clock-CpGs.  241 

A, Manhattan plot of significant CpGs (p < 1×10⁻⁷), colored by drift (blue), clock (blue), or both (red) 242 

effects. B, Venn diagram showing overlap between drift- and clock-CpGs; C, Overlap of NSPT drift-243 

CpGs with those from Slieker et al. and Wang et al. D–E, Representative CpGs with age-related increase 244 

(D) or decrease (E) in methylation variance. F–G, Genomic enrichment of positive and negative drift-245 

CpGs (F: CpG island-related; G: gene-related features). H–I, Genomic enrichment of drift- and clock-246 

CpGs (H: CpG island-related; I: gene-related features). J, Scatter plot of initial  (young) vs. terminal (old) 247 

methylation levels at drift-CpGs. K–L, Heatmaps of positive (K) and negative (L) drift-CpG distribution 248 

by methylation levels. M, Upset plot showing cell-type specificity of drift-CpGs across immune lineages. 249 

Abbreviations: PosD, positive drift-CpGs; NegD, negative drift-CpGs; PosC, positive clock-CpGs; NegC, 250 

negative clock-CpGs; NonD, non-drift CpGs; NonC, non-clock CpGs. 251 

Robust drifts in an independent CAS cohort 252 

In the CAS cohort of 1,060 samples, 48,171 CpGs overlapped with the 50,385 significant CpGs identified 253 

in NSPT. Of these overlapping CpGs, 50.2% were replicated at a nominal significance level in CAS (p < 254 

0.05, OR = 8.9, fisher.test, p < 2.2×10⁻¹⁶, Fig. 3A, Supplemental Table S3). An analysis of these 255 

replicated drifts revealed that 99.9% of positive drifts were consistently positive, and 99.1% of the 256 

negative drifts remained negative. When applying more stringent significance criteria in the discovery 257 

cohort, we observed a progressive increase in replication rates, peaking at 100% for a threshold of 1×10-258 

20. Notably, both positive and negative drifts exhibited complete consistency at these stringent levels.  259 

In the CAS cohort, the most significantly replicated positive drift was observed on Chr4 for 260 

cg24035745 in FBXO2 (NSPT p=5.1×10-14, CAS p=6.8×10-11). Young individuals exhibited significantly 261 

smaller variance in methylation compared to mid-aged and elderly individuals (Fig. 3B). Increased 262 

expression of FBXO2 occurs with neurons developmental maturation (Ciceri et al. 2024). FBXO2 263 

deficiency exacerbated deficits in motor function, and enhanced neurodegeneration(Liu et al. 2020). 264 
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Similarly, the most significantly replicated negative drift was identified on Chr14 for cg13868026 in EVL 265 

(NSPT p=6.8×10-59, CAS p=8.8×10-7). In this case, young and mid-aged individuals showed significantly 266 

larger variance in methylation compared to elderly individuals (Fig. 3C). DNA methylation of EVL was 267 

identified a prognostic signature in colon cancer, and promoter methylation of EVL differs between 268 

individuals and between regions of the normal colon (Yi et al. 2011). The CAS cohort also replicated the 269 

presence of other top significant negative drift-CpGs that were found in or near MAPRE2, ARPIN-AP3S2, 270 

TRAPPC9, APBB1IP and FOXK1. Among these, methylation of FOXK1 has a known effect on the 271 

regulation of immune and metabolic functions (Fujinuma et al. 2023).  272 

Epigenetic drifts in independent longitudinal Changfeng population 273 

We further analysed the CAS-replicated drift-CpGs (23,758 out of the available 24,161) within the 274 

Changfeng longitudinal cohort to determine if the methylation levels showed any drift over an 275 

approximate follow-up period of 4 years. For each individual CpG site, we performed a paired t-test. This 276 

test compared the absolute deviation of the methylation level from the population mean at the baseline to 277 

the same deviation at the follow-up. In mathematical terms, it involved comparing |cpg - mean(cpg)| at 278 

baseline with those at follow-up. Our results indicated that 48.1% of the examined drift-CpGs exhibited a 279 

nominally significant difference (n=11,422, p<0.05, OR = 5.0, fisher.test, p < 2.2×10⁻¹⁶) between these 280 

two time points. Among these nominally significant CpGs, 99.7% exhibiting the same effect directions as 281 

observed in NSPT and CAS (Fig. 3D). These findings demonstrated the robustness of the drift effects at 282 

our identified sites and underscore the genuine impact of negative drifts. In Changfeng, the most 283 

significantly replicated positive drift-CpG was cg27099280 in CELF6 (p = 6.2×10-19, Fig. 3E) and 284 

negative drift-CpG was cg03883331in ZBTB18 (p = 4.0×10-4, Fig. 3F) and cg22005677 in LPP (p = 285 

0.02). The repeated highlighting of the negative drift at LPP in both the CAS and Changfeng cohorts 286 

underscores its robustness and prominence in our findings. It is important to note that both the CAS and 287 

Changfeng replication cohorts have narrower age ranges compared to the discovery cohort, which may 288 

contribute to conservative replication rates. Functionally, the CpG site in ZBTB18 is instrumental in 289 
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regulating the expression of ZBTB18, a colorectal tumor suppressor gene(Bazzocco et al. 2021). Loss of 290 

its activity enhances chromatin accessibility and transcriptional adaptations that promote the phenotypic 291 

changes required for metastasis (Wang et al. 2023). This suggests that negative drifts may be involved in 292 

regulating global chromatin accessibility dysregulation in the development of age-related phenotypes. 293 

Epigenetic drift is cross-ethnic 294 

We further examined 14,909 of our drift-CpGs overlapping with the 450K beadchip in the dataset of 295 

Hannum et al. (Hannum et al. 2013), which consisted of a mixed population of 426 Caucasian and 230 296 

Hispanic individuals (age range: 19-101 years). A substantial proportion (76.3%, 11,378 out of 14,909) 297 

exhibited nominally significant drifting effects in the same direction (OR = 9.3, fisher.test, p < 2.2×10⁻¹⁶, 298 

Fig. 3G, H, I). 299 

Next, we focused on a cohort of 150 pairs of monozygotic (MZ) Danish twins aged 30 to 74 years 300 

(78 male pairs and 72 female pairs) (Tan et al. 2014). Our aim was to determine whether our identified 301 

drift-CpGs could account for previously observed inter-individual epigenetic variations (Planterose 302 

Jimenez et al. 2021). To this end, we categorized the MZ twins into two age groups (< 50 years and ≥ 50 303 

years). Using a t-test, we examined the absolute methylation level discrepancies (|MZ1 - MZ2|) between 304 

the two age groups. Among the CpGs corresponding with our drift-CpGs, a substantial proportion 305 

(49.6%, 6,731 out of 13,571) showed nominally significant drift effects (Fig. 3J, K, L). These findings 306 

support our hypothesis that aging plays a pivotal role in the epigenomic differentiation of MZ twins. 307 
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Figure 3. Replication of drift-CpGs in independent cohorts. A, Replication of significant drift-CpGs 309 

in CAS, with thresholds corresponding to Bonferroni significance in NSPT and nominal significance in 310 

CAS. CpGs are colored by drift direction and selected genes are labeled. B–C, Scatter plots of top 311 

positive (B: cg24035745) and negative (C: cg13868026) drift-CpGs validated in CAS. D–F, Validation of 312 

drift-CpGs in the Changfeng cohort, including representative positive (E: cg27099280) and negative (F: 313 

cg03883331) examples.  G–I, Replication in Hannum et al., with representative positive (H: cg16532606) 314 

and negative (I: cg11647481) drift-CpGs. J–L, Validation in monozygotic Danish twins, including top 315 

positive (K: cg21109038) and negative (L: cg08337633) drift-CpGs. Abbreviations: PosD, Positive drift-316 

CpGs; NegD, Negative drift-CpGs. 317 

Positive drifts related to neural system functions and negative drifts linked to 318 
immune functions 319 

GO and KEGG functional enrichment analyses of our replicated drift-CpGs have illuminated possible 320 

mechanisms tied to both positive and negative epigenetic drift (Fig. 4). Specifically, positive drift-CpGs 321 

(n=24,051) were markedly enriched for processes related to nervous system development (p=7.9×10-41 322 

after FDR) and neuroactive ligand-receptor interaction (p=6.2×10-23 after FDR), corroborating Slieker et 323 

al.'s work (Slieker et al. 2016). Conversely, negative drift-CpGs (n=110) showed distinct enrichment in 324 

alpha-beta T cell differentiation (p=1.4×10-3 after FDR). Phenotype enrichment analysis, derived from 325 

EWAS Atlas data, revealed that positive drift-CpGs were significantly associated with phenotypes such as 326 

B Acute Lymphoblastic Leukemia (p=1.8×10-91 after FDR), hepatocellular carcinoma (p<3.4×10-39 after 327 

FDR), and Helicobacter pylori infection (p=5.4×10-38 after FDR). This finding aligns with earlier studies 328 

showing that increased DNA methylation variability frequently occurs at loci related to malignancy and 329 

can be predictive of cancer emergence(Landau et al. 2014; Feinberg and Levchenko 2023). In contrast, 330 

the phenotype enrichment for negative drift underscored aging as the most significantly associated trait 331 

(p=1.3×10-36 after FDR), followed by Down syndrome as the second most significant (p=2.1×10-24 after 332 

FDR). These patterns suggest a differential impact of positive versus negative drift on phenotype 333 

expression, with negative drift showing a pronounced association with aging processes. 334 
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 335 

Figure 4. Biological and trait enrichments of directional epigenetic drift. This circular plot visualizes 336 

Gene Ontology (GO) terms, KEGG pathways, and traits enriched for positive (PosD) and negative 337 

(NegD) drift-CpGs. Enrichment score, calculated as -log10(FDR p), increases with distance from center.  338 

EDS represents a unique aging dimension 339 

We developed a positive epigenetic drift score (EDS_POS) using 204 independent CpGs, each more than 340 

500 kbp apart (Supplemental Table S4). These CpGs were selected from the 49,877 positive drift-CpGs 341 

identified in NSPT, based on their smallest Fisher combined p-values across NSPT, CAS, and Hannum et 342 

al., using a non-negative least squares regression model. 343 
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The EDS_POS ranges from 0 to 1, reflecting low to high levels of epigenetic positive drift. In both 344 

NSPT and Hannum et al., the distribution of EDS_POS was slightly right-skewed, with a mean of 0.41 345 

(boxplot: 0.21, 0.32, 0.39, 0.47, 0.69). EDS_POS exhibited a linear correlation with age, which 346 

strengthened as more CpGs were included. Specifically, Pearson’s correlation increased from 0 to 0.56 as 347 

the number of CpGs grew from 1 to 100, plateaued at 0.60 with 200 CpGs (Fig. 5A, B). The EDS_POS 348 

constructed in CAS using the same weights also demonstrated a highly consistent distribution (mean 0.39, 349 

boxplot: 0.25, 0.34, 0.37, 0.43, 0.56, Fig. 5C) and a robust age correlation (r = 0.50). 350 

We also found that EDS_POS increases more slowly with age in females compared to males (p = 351 

3.7×10⁻⁷, Fig. 5B). We then compared the performance of EDS_POS with a more robust but less sensitive 352 

score that included more CpGs with equal weights (11,367 positive drift-CpGs nominally replicated in 353 

both CAS and Hannum et al.). This score had a lower correlation with age (r = 0.46) than EDS_POS, 354 

likely due to added noise from less significant CpGs given equal weight. However, EDS_POS still 355 

showed a high correlation (r = 0.82) with this score (Fig. 5D). This result, along with the observation that 356 

age correlation plateaued after including 200 CpGs in EDS_POS, suggests that our EDS_POS effectively 357 

captures genome-wide epigenetic drift, with 204 drift-CpGs being sufficient for this purpose. 358 

We similarly developed a negative epigenetic drift score (EDS_NEG) based on 81 significant 359 

negative drift-CpGs identified in NSPT. The EDS_NEG ranges from 0 to 1, indicating low to high levels 360 

of negative drift (Supplemental Table S5). In NSPT, the distribution of EDS_NEG was slightly right-361 

skewed with a mean of 0.36 (boxplot: 0.23, 0.31, 0.36, 0.42, 0.57). EDS_NEG showed an increasingly 362 

strong negative correlation with age as more CpGs were included, reaching -0.38 when all 81 CpGs were 363 

included (r = -0.39 in males and r = -0.38 in females, Fig. 5E, F). The EDS_NEG constructed in CAS 364 

using the same weights demonstrated a highly consistent distribution (mean 0.42, boxplot statistics: 0.14, 365 

0.31, 0.40, 0.50, 0.79, Fig. 5G) and a robust correlation with age (r = -0.49). A more robust but less 366 

sensitive score, based on 508 equally weighted negative drift-CpGs, also showed a negative correlation 367 

with age at -0.34. The correlation between EDS_NEG and this 508-CpG score was 0.54 (Fig. 5H). 368 
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We further investigated into the correlations of our EDS with several previously established DNA 369 

methylation-based aging scores, including Horvath (Horvath 2013), Hannum (Hannum et al. 2013), 370 

Levine (Levine et al. 2018), and Dunedin (Belsky et al. 2020) (Fig. 5I). The Horvath and Hannum scores 371 

represent different versions of epigenetic clocks, while the Levine and Dunedin scores focus more on 372 

aging and aging pace. Our hypothesis posits that epigenetic drift may reflect a distinct or complementary 373 

aspect of aging compared to other epigenetic aging scores. Indeed, in NSPT, we observed expected 374 

modest levels of correlations prior to adjusting for age (EDS_POS: 0.29~0.63, EDS_NEG: -0.11~-0.39, 375 

Fig. 5J), which were further reduced after adjusting for age (EDS_POS: 0.17~0.31, EDS_NEG: -0.05~-376 

0.09, Fig. 5K). These results support our hypothesis that epigenetic drift captures aging across different 377 

dimensions and scales compared to other epigenetic scores. Note that the methylation changes associated 378 

with epigenetic drift occur over much longer timescales, typically spanning decades, in contrast to the 379 

changes observed in epigenetic clock-CpGs, which often occur within a span of several years 380 

(Supplemental Fig. S6). Consequently, the EDS and the clock score may be capturing different aspects of 381 

aging, which could explain why the EDS exhibits a lower correlation with age compared to the typically 382 

high correlation (over 0.9) observed with clock scores. 383 

In the NSPT cohort, individual-level entropy measures showed significant age associations: positive 384 

drift entropy significantly correlated with chronological age (Pearson's correlation coefficient, r = 0.39, p 385 

= 6.9´10-154) and negative drift entropy exhibited a significant inverse relationship (Pearson's 386 

correlationcoefficient, r = -0.51, p = 8.5´10-237, Fig. 5L-M). We observed moderate but significant 387 

concordance between individual entropy and population-level drift scores (Pearson's correlation 388 

coefficient, EDS_POS: r = 0.25, p = 1.0´10-61; negative: r = 0.29, p = 6.7´10-70). Furthermore, 389 

longitudinal analysis in the Changfeng cohort revealed a significant increase in overall epigenetic entropy 390 

over four years (paired t-test, p = 1.7×10⁻13), with the mean epigenetic entropy increasing from 4,101 at 391 

baseline to 4,172 at the 4-year follow-up, confirming the progressive nature of epigenetic drift at the 392 

individual level (Fig. 5N). 393 
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To evaluate EDS dynamics in the same individual's longitudinal aging process, we compared 394 

EDS_POS changes in methylation levels and variance from baseline to follow-up using longitudinal 395 

Changfeng data. These changes were then compared to analogous changes derived from a bootstrapped 396 

genome background, matched for the number of CpGs. The mean methylation (p=3.6×10-10) and variance 397 

(p=2.8×10-9) of these 204 positive drift-CpGs showed a statistically significant increase from baseline to 398 

the follow-up period (Fig. 5 O-P). Applying the weights derived from the NSPT to Changfeng confirmed 399 

a significant increase in EDS from the baseline to follow-up (baseline mean EDS=0.35; follow-up mean 400 

EDS=0.38, p=1.2×10-12, Fig. 5Q). 401 

 402 
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Figure 5. Validation and aging associations of the Epigenetic Drift Score (EDS). A, EDS_POS shows 404 

increasing correlation with age as more positive drift-CpGs are included. B–C, Scatter plots of EDS_POS 405 

vs. age in NSPT (B) and CAS (C), colored by gender. D, EDS_POS significantly correlates with genome-406 

wide positive EDS. E–G, EDS_NEG similarly shows increasing age correlation (E) and gender-stratified 407 

associations in NSPT (F) and CAS (G). H, EDS_NEG correlates with genome-wide negative EDS. I, 408 

Venn diagram showing CpG overlap between EDS and four aging clocks. J–K, Heatmaps of correlations 409 

among EDS, aging clocks, and age, before (J) and after (K) age adjustment. L–M, EDS_POS (L) and 410 

EDS_NEG (M) correlate with genome-wide methylation entropy. N, Methylation entropy increases 411 

longitudinally over 4 years. O–Q, EDS_POS CpGs show greater increases in methylation mean (O), 412 

variance (P), and EDS score (Q) over time compared to random CpGs. 413 

 414 

EDS associated with lipid metabolites  415 

Given the significant influence of epigenetic mechanisms on lipid metabolism (Gomez-Alonso et al. 416 

2021) and the observation that calorie restriction can modulate both epigenetic drift and metabolic 417 

pathways (Hahn et al. 2017; Maegawa et al. 2017), we further explored the impact of our EDS on serum 418 

lipid metabolites. We analyzed data from 3,037 individuals in the NSPT cohort, for whom both 419 

metabolomic and methylation profiles were available. The metabolomic dataset included 351 NMR-420 

detected lipoprotein subfractions, comprising 176 direct measurements and 175 derived values. 421 

After adjusting for age, gender, BMI, and sampling location, EDS_POS was significantly 422 

associated with 65 lipid metabolites following FDR correction (Fig. 6A-F, Supplemental Table S6). 423 

These associations encompassed 13 high-density lipoprotein (HDL) metrics, 17 low-density lipoprotein 424 

(LDL) metrics, 1 intermediate-density lipoprotein (IDL) metric, and 3 very-low-density lipoprotein 425 

(VLDL) metrics. Among the negative associations, EDS_POS showed the strongest correlation with 426 

phospholipids in HDL-4 (p = 4.1×10⁻³ after FDR). Among the positive associations, EDS_POS was most 427 

significantly associated with triglycerides in VLDL-5 (V5TGp, p = 2.3×10⁻² after FDR), consistent with 428 

 Cold Spring Harbor Laboratory Press on August 20, 2025 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


24 
 

previous studies that reported reduced VLDL levels in long-lived and younger cohorts (Lv et al. 2015). In 429 

addition to lipid metabolites, we examined the association of EDS with 17 physical and blood 430 

biochemical indicators. After adjusting for age, EDS_POS was significantly associated 6 out of 17 431 

indicators, i.e., BMI, HDL, triglycerides (TG), uric acid (UA), indirect bilirubin (IBIL), and creatinine 432 

(CREA) (FDR p < 0.05). EDS_NEG did not show any significant association in lipid or blood 433 

biochemical association analyses (p>0.05 after FDR). Notably, further adjusting for clock scores in these 434 

association analyses did not alter our findings except for those related to UA (Supplemental Fig. S7). 435 

Extending the lipid and blood biochemical association analyses to other epigenetic scores, 436 

including Hannum, Horvath, Levine, and Dunedin (Fig. 6 A-F), we identified numerous significant 437 

associations after adjusting for age. The strongest was between the Dunedin score and ApoA2 in HDL-4 438 

(p = 1.25×10⁻⁸). In terms of the number of associations, the Dunedin score exhibited the most extensive 439 

associations, with 97 metabolites and 13 blood biochemical indicators, followed by EDS_POS (65 and 6), 440 

Levine (16 and 3), Hannum (1 and 2), and Horvath (0 and 6). Notably, further adjusting for clock scores 441 

in these association analyses did not alter our findings (Supplemental Fig. S8). Although the metabolites 442 

and biochemical indicators are strongly intercorrelated, our results suggest that multiple epigenetic scores 443 

play complex roles in metabolic features related to lipid metabolism, kidney function, and liver function. 444 

 445 

 446 
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Figure 6. Associations of EDS_POS with serum lipid metabolic profiles. Forest plots display effect 448 

sizes (with 95% confidence intervals) per unit increase of relevant scores on various lipid metrics. The 449 

significance threshold for associations shown is set at FDR p < 0.05. Four epigenetic indicators are 450 

presented: EDS_POS (red), Dunedin (light blue), Levine (green), and Hannum (dark blue). A, 451 

Associations with HDL-related traits. B, Associations with LDL-related traits. C, Associations with IDL- 452 

and VLDL-related traits. D, Associations with lipid ratio metrics. E, Associations with lipid percentage 453 

metrics. F, Associations with other small metabolites and apolipoproteins. Abbreviations used in the 454 

figure include: ApoA1, ApoA2, ApoB (Apolipoprotein A1, Apolipoprotein A2, Apolipoprotein B); CH 455 

(Cholesterol); CE (Cholesteryl Esters); FA (Fatty Acids); FC (Free Cholesterol); HDL (High-Density 456 

Lipoprotein); IDL (Intermediate-Density Lipoprotein); LDL (Low-Density Lipoprotein); PL 457 

(Phospholipids); PN (Particle Number); TG (Triglycerides); UFA/TFA (Unsaturated Fatty Acids / Total 458 

Fatty Acids ratio); VLDL (Very Low-Density Lipoprotein); Subclass numbers indicate size-based 459 

lipoprotein subfractions. A complete list of all metabolite abbreviations and their full names is provided in 460 

Supplemental Table S6. 461 

GWAS on EDS identify genetic factors 462 

We conducted separate genome-wide association studies (GWAS) for EDS_POS and EDS_NEG, 463 

analyzing 8.6 million SNPs from microarray data after imputation in 3,513 individuals. No evidence of 464 

population sub-stratification was observed, as indicated by the inflation factor (λ < 1.03). The SNP-based 465 

heritability was estimated to be moderate for both traits using GCTA (EDS_POS VG/VP = 0.29, se = 466 

0.07; EDS_NEG VG/VP = 0.11, se = 0.07). 467 

The GWAS for EDS_POS identified a single SNP (rs7868942) located within the ASTN2 gene on 468 

9q33.1 showing a genome-wide significant association with EDS_POS (lead SNP rs7868942, β = 0.02, p 469 

= 4.3×10⁻⁸, Fig. 7A-C). The ancestral A allele of rs7868942 had a frequency of 0.95 in our sample, 470 

similar to the East Asian (EAS) population frequency of 0.94, much higher than other continental groups 471 

in the 1000 Genomes Project (AMR 0.69, AFR 0.75, EUR 0.60, SAS 0.75). ASTN2 regulates neuronal 472 

 Cold Spring Harbor Laboratory Press on August 20, 2025 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


27 
 

migration and synaptic strength by trafficking and degrading surface proteins, and has been repeatedly 473 

implicated in autism, Alzheimer's, and other neuropsychiatric disorders(Glessner et al. 2009; Ito et al. 474 

2023). During aging, the chromatin state of ASTN2 becomes more promoter-like and active, with a 475 

reduction in H3K36me3 and an accumulation of H3K4me3 and H3K27ac (Fig. 7D). This result is 476 

consistent with the previously proposed aging model, where reduced H3K36me3 levels within gene 477 

bodies inhibit the recruitment of KDM5B and DNMT3B to these regions, resulting in the accumulation of 478 

H3K4me3 and reduced DNA methylation, which leads to increased transcriptional noise(McCauley et al. 479 

2021). 480 

The GWAS for EDS_NEG identified 20 SNPs on 2p21 near the SOCS5 gene that showed 481 

genome-wide significant associations with EDS_NEG (lead SNP rs76089707, β = -0.02, p = 1.2×10⁻⁸, 482 

Fig. 7E-G). The ancestral G allele of rs76089707 had a frequency of 0.53 in our sample, closely matching 483 

the EAS population frequency of 0.52 and remaining comparable to frequencies in other continental 484 

groups from the 1000 Genomes Project (AMR 0.47, AFR 0.61, EUR 0.65, SAS 0.56). SOCS5, a cytokine 485 

signaling suppressor, negatively regulates the JAK/STAT pathway and plays a key role in balancing 486 

immune response and virus persistence (Seki et al. 2002; Kedzierski et al. 2022). While aging, T cells 487 

often experience increased activation and proliferation, leading to functional exhaustion. This exhaustion 488 

is linked to sustained JAK/STAT pathway activation, where SOCS proteins play a crucial inhibitory 489 

role(Sharma et al. 2019). During aging, the chromatin state of SOCS5 becomes more active, with an 490 

accumulation of H3K4me3 and H3K27ac, yet without a decrease in H3K36me3 (Fig. 7H). In exhausted T 491 

cells, specific CpG sites may become epigenetically stable, contributing to the long-term repression or 492 

activation of certain genes. While these preliminary findings provide valuable insights, the modest effect 493 

sizes and the proximity of the results to the genome-wide significance threshold suggest a cautious 494 

interpretation. Further validation through replication studies and functional assays is essential to confirm 495 

and elucidate the roles of these genomic loci in epigenetic drift. 496 

 497 
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Figure 7. GWAS results for Epigenetic Drift Scores (EDS). 499 

A, Manhattan plot showing SNP associations with EDS_POS. B–C, Locus zoom plot (B) and genotype-500 

specific differences (C) for lead SNP rs7868942 near ASTN2. D, Aging is associated with a more active 501 

chromatin state at ASTN2 (loss of H3K36me3; gain of H3K4me3, H3K27ac). E, Manhattan plot showing 502 

SNP associations with EDS_NEG. F–G, Locus zoom plot (F) and genotype-specific differences (G) for 503 

rs76089707 near SOCS5. H, SOCS5 chromatin becomes more active with age in hMSCs, marked by 504 

increased H3K4me3 and H3K27ac enrichment (McCauley et al. 2021). 505 

 506 

Discussion 507 

In this study, we present the largest EWDS to date, conducted in a Chinese population and replicated in 508 

multiple Chinese and European cohorts. We systematically benchmarked statistical approaches for 509 

detecting heteroscedasticity in DNA methylation data and identified White’s test as the most robust 510 

method. Applying this approach, we identified and functionally annotated over 50,000 significant drift-511 

CpGs, which segregated into positive and negative drift categories with distinct genomic enrichments, 512 

suggesting divergent underlying biological mechanisms. Integration with single-cell RNA sequencing 513 

revealed that drift-associated CpGs exert direction-specific transcriptional effects and display marked 514 

cell-type specificity. We further developed and validated composite EDS_POS and EDS_NEG to 515 

quantify individual-level drift, both of which showed strong correlations with chronological age. Notably, 516 

positive EDS was significantly associated with lipidomic profiles, as well as metabolic and clinical health 517 

indicators. Importantly, the population-level drift-CpGs and EDS signatures were also validated 518 

longitudinally at the individual level. Finally, genome-wide association analyses identified genetic loci, 519 

including ASTN2 and SOCS5, associated with positive and negative drift variation, respectively, 520 

underscoring a heritable component. Together, these findings offer key conceptual and methodological 521 

advances in mapping epigenetic drift and underscore its significance in aging biology and age-related 522 

disease susceptibility. 523 
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Our findings reveal that both positive and negative epigenetic drift are associated with aging, yet 524 

they likely represent distinct biological processes with divergent regulatory consequences. Positive drift, 525 

characterized by increased methylation variance with age, is more prevalent genome-wide and typically 526 

occurs in CpG island (CGI)-rich regions (Slieker et al. 2016). It exhibits minimal dependence on immune 527 

cell composition, suggesting a population-wide, stochastic process. Functionally, positive drift is 528 

associated with increased gene expression variability, i.e., transcriptional noise, particularly in genes 529 

linked to neurological and metabolic pathways. These changes may reflect compensatory or stress-530 

induced transcriptional activation and contribute to systemic dysregulation observed in aging, including 531 

altered lipid metabolism and blood biomarkers. Despite having a smaller effect size than traditional 532 

epigenetic clocks, we show that a subset of ~200 key drift-CpGs can effectively summarize genome-wide 533 

stochastic methylation variability. These results support the notion that positive drift captures non-534 

programmatic, nonlinear aspects of aging, potentially serving as a mechanistic substrate for the 535 

emergence of epigenetic clocks themselves through cumulative stochastic changes. In contrast, negative 536 

drift, though less common, is enriched in enhancer regions and exhibits strong CD4+ T cell-specific 537 

patterns. It is associated with reduced transcriptional noise in aged individuals and appears to reflect 538 

immune-specific regulatory stabilization, rather than general epigenomic entropy. Mechanistically, 539 

negative drift is enriched for binding sites of transcription factors such as AHR and may participate in 540 

fine-tuning immune gene regulation during aging (Salminen 2022). This is consistent with prior 541 

observations of age-associated T cell depletion, immune remodeling, and skewing of CD4+ T cells toward 542 

extreme regulatory and effector phenotypes (Dorshkind et al. 2009; Elyahu et al. 2019). Specifically, 543 

aging might reduce CD4⁺ T cell numbers and reshape their composition, potentially driving the 544 

emergence of distinct DNA methylation patterns linked to negative drift. Thus, while positive drift may 545 

reflect stochastic cellular deterioration, negative drift may represent an adaptive or programmed 546 

component of immune aging. These distinct patterns suggest that epigenetic drift is not a monolithic 547 

process, but rather a bifurcated aging mechanism—stochastic (positive) versus programmed (negative)—548 

with far-reaching implications for identifying aging biomarkers and designing targeted interventions. 549 
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While some previous studies have proposed that epigenetic drift may contribute to the generation of 550 

epigenetic clocks (Meyer and Schumacher 2024), our findings suggest that epigenetic drift appears to 551 

represent a distinct dimension of epigenetic aging, primarily reflecting the accumulation of stochastic, 552 

non-programmatic changes over time. In contrast, epigenetic clocks are typically derived from CpGs 553 

whose methylation levels change in a coordinated and directional manner with age, likely reflecting 554 

functional, environmentally responsive, or developmentally regulated processes. This distinction is 555 

supported by the only moderate correlations we observed between the EDS and established epigenetic age 556 

estimators(Hannum et al. 2013; Horvath 2013; Levine et al. 2018; Belsky et al. 2020). Unlike clocks, 557 

which are trained to predict chronological or biological age, the EDS captures genome-wide epigenomic 558 

instability irrespective of directionality. We therefore interpret positive drift as a signature of cumulative 559 

random damage or loss of epigenetic maintenance fidelity, rather than a direct mechanistic contributor to 560 

clock formation.  561 

Our study demonstrates that drift-CpGs and the EDS capture cumulative, age-related epigenetic 562 

variability at the individual level. Validated examples—such as positive drift at FBXO2 and LINC02716 563 

and negative drift at FOXK1 and TCF12—highlight their relevance to transcriptional regulation and 564 

disease. Inter-individual differences in EDS further support its utility in quantifying genome-wide drift 565 

and predicting aging-related traits. Notably, we found significant associations between EDS and lipid 566 

metabolism, particularly with subclasses of LDL and HDL, underscoring a potential regulatory link. 567 

These results align with prior studies on DNA methylation and lipoproteins (Gomez-Alonso et al. 2021) 568 

and suggest the need for further functional investigation into the causal role of epigenetic drift in lipid 569 

regulation. Our study suggests potential sex-specific differences in epigenetic aging, with females 570 

exhibiting a slower accumulation of positive epigenetic drift compared to males. This observation may 571 

reflect greater epigenomic stability in females against age-associated stochastic changes, potentially 572 

influenced by hormonal or chromatin-related factors. While these findings may offer a partial explanation 573 
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for the observed female longevity advantage, they also highlight the importance of considering sex as a 574 

biological variable in the development of aging biomarkers and potential interventions. 575 

Our analysis focused on identifying drift-CpGs using population-level, cross-sectional DNA 576 

methylation array data. In contrast, some other studies have proposed metrics such as Shannon entropy or 577 

the proportion of intermediately methylated sites to quantify methylation heterogeneity within individual 578 

samples (Scherer et al. 2020). These entropy-based measures typically require deep bisulfite sequencing 579 

(e.g., WGBS) to resolve single-molecule differences. Although we also calculated individual-level 580 

entropy from array data, our primary objective was to model changes in methylation variance with age 581 

across the population, enabling the identification of drift-CpGs that reflect systemic epigenetic variability 582 

rather than within-sample noise. This focus is partly driven by data availability: while WGBS offers near-583 

complete CpG coverage and can assess cell-intrinsic variability, the EPIC array surveys a fixed subset of 584 

CpGs and reflects averaged methylation signals across heterogeneous cell populations. Importantly, we 585 

validated the drift-CpGs identified at the population level using independent longitudinal datasets, 586 

supporting their temporal robustness. Furthermore, the EDS derived from drift-CpGs showed a strong 587 

correlation with entropy-based measures, suggesting that these two approaches, though methodologically 588 

distinct, converge on capturing common aspects of epigenetic aging. 589 

Nevertheless, we acknowledge several limitations. First, our study lacks multi-tissue or large-scale 590 

longitudinal data spanning broader age ranges, which are necessary to evaluate drift dynamics across 591 

developmental and aging trajectories. Second, our analysis is based on array-derived methylation data 592 

rather than whole-genome bisulfite sequencing, potentially limiting the detection of drift in non-CpG sites 593 

and distal regulatory elements. Third, we did not integrate matched transcriptomic or additional 594 

epigenomic layers, which constrains our ability to systematically assess the downstream regulatory 595 

consequences of drift. Future studies employing multi-omic, single-cell, and longitudinal designs across 596 

diverse tissues and larger cohorts will be critical to further refine and validate our model of epigenetic 597 

drift in human aging. 598 
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Methods 599 

Study Cohorts, DNA Methylation, Serum Metabolomics, SNP Microarray and 600 
Phenotyping 601 

Detailed descriptions of the NSPT, CAS, and Changfeng cohorts are provided in the Supplemental 602 

Methods. In brief, all cohorts consisted of Chinese individuals, and genome-wide DNA methylation was 603 

measured using the Illumina Infinium MethylationEPIC BeadChip. Written informed consent was 604 

obtained from all participants, and each study was approved by the respective institutional review board.  605 

 Genome-wide DNA methylation in all three cohorts was profiled using Illumina 606 

MethylationEPIC BeadChips. DNA extraction and bisulfite conversion followed published protocols (Xia 607 

et al. 2023; Peng et al. 2024). Raw .idat files were processed using minfi (NSPT) or CHAMP (CAS and 608 

Changfeng) without background correction. Quality control excluded samples with unclear gender and 609 

probes with SNPs, sex chromosome location, or high missingness. Missing values were imputed 610 

(impute.knn), Type-2 bias corrected (BMIQ), and batch effects adjusted (ComBat on M-values).  611 

The NSPT cohort included detailed phenotypic data (e.g., height, weight, blood pressure) and 13 612 

blood biochemical traits. Serum metabolomics on a subset was performed using a 600 MHz NMR 613 

platform (Bruker), analyzed with B.I.LISA™ and B.I.Quant-PS™ software (Wu et al. 2021). Genotyping 614 

was conducted using the Illumina Global Screening Array, followed by standard QC in PLINK and 615 

imputation with 1000 Genomes (SHAPEIT3 and IMPUTE2). After QC, 8,603,582 SNPs remained for 616 

analysis.  617 

Statistical Analysis 618 

White method for detecting epigenetic drift-CpGs 619 

To identify epigenetic drift-CpGs, defined as CpG sites exhibiting age-related heteroscedasticity, we 620 

employed an improved two-step regression method based on White's heteroscedasticity test (White, 621 

1980). 622 
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In the first step, we constructed a linear regression model (equation 1) using beta values of each CpG 623 

and age, calculating the squared residuals from the least squares regression while also correcting for 624 

potential confounding factors such as gender, BMI, and cell composition that may affect DNA 625 

methylation levels. Cell type proportions were estimated using the EpiDISH algorithm(Zheng et al. 626 

2018). 627 

𝛽!" = 𝛼"#𝑦 +	𝛼$# + 𝑐	, (equation 1) 628 

where 	𝛼"# and 𝛼$# denote the estimated effect and bias of the ith CpG site, respectively. y=(𝑦", 𝑦%, 629 

..., 𝑦&), c=(𝑐", 𝑐%, ..., 𝑐&), and 𝛽)#=(𝛽)"#, 𝛽)%# ..., 𝛽)&#) represent the age, covariates (gender, BMI, and cell 630 

composition), and estimated beta values of the ith CpG site for all samples, respectively, with n denoting 631 

the sample size. The deviation  𝑑#=(𝛽# - 𝛽!" )2 between the true beta value 𝛽# and the estimated value 𝛽!"  632 

reflects the degree of epigenetic drift at CpG site i under a given age.  633 

In the second step, we regressed 𝑑# on age using the following equation 2. 634 

𝑑# = 𝛾"#𝑦 + 𝛾%#𝑦% +	𝛾$# , (equation 2) 635 

where	𝛾"# , 𝛾%# 	and 𝛾$# denote the estimated age effect, age square effect and bias of the ith CpG site. 636 

To assess whether equation 2 significantly differs from the null model with no variables, we performed a 637 

hypothesis test on the model in equation (2) compared with model without age effect using a c2-statistic, 638 

and obtained the corresponding p-value.  639 

Simulation benchmarking for heteroscedasticity testing of drift-CpGs 640 

To evaluate the performance of existing heteroscedasticity testing methods in detecting epigenetic drift-641 

CpGs, we conducted a comprehensive simulation study. We generated four distinct types of synthetic 642 

DNA methylation datasets: (1) a baseline dataset with no heteroscedasticity or outliers (to assess Type I 643 

error), (2) a dataset with outliers but no heteroscedasticity (to evaluate robustness to outliers), (3) a dataset 644 
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exhibiting linear age-related heteroscedasticity, and (4) a dataset demonstrating non-linear age-related 645 

heteroscedasticity. 646 

We then compared the Type I error and statistical power of four methods: Liu et al. (Method A, 647 

Double Generalized Linear Model using dglm R package), Bergstedt et al. (Method B, Heteroscedastic 648 

Likelihood Ratio Test using gamlss R package), Slieker et al. (Method C, Breusch-Pagan test), and our 649 

improved White method (Method D). Performance was evaluated based on false positive rates for Dataset 650 

1, impact of outliers in Dataset 2, and statistical power for linear (Dataset 3) and nonlinear (Dataset 4) 651 

drift-CpGs. Detailed simulation parameters and method implementations are provided in Supplemental 652 

Methods. 653 

Epigenome-Wide Drift Study (EWDS) 654 

Prior to epigenome-wide drift analysis , we removed 342,815 CpGs from a total of 811,876 CpGs in the 655 

discovery NSPT dataset, including 284,128 DNA methylation CpGs, i.e., those significantly affected by 656 

mQTLs in Chinese populations (Peng et al. 2024), 57,691 CpGs with no variation (variance<1´10-5), and 657 

996 CpGs failing the Multimodal distribution test (R-diptest, p<1´10-4), resulting in a total of 469,061 658 

CpGs. Then we conducted epigenome-wide drift identification using the White method on these 469,061 659 

CpGs and further investigated and compared the performance of the other three methods. P value smaller 660 

than 1×10-7 (Bonferroni p<0.05) were considered as epigenome-wide significant. Significant drift-CpGs 661 

were categorized into positive drift (age-increasing inter-individual variability) and negative drift (age-662 

decreasing variability). Beyond identifying drift-CpGs, our analysis comprehensively characterized their 663 

properties and regulation through exploring correlations between DNA methylation variation and 664 

initial/terminal levels (details in Supplemental Methods). 665 

Epigenome-wide association study (EWAS) for chronological age 666 

To identify the age-associated CpGs, termed here as clock-CpGs, we used a linear model to perform 667 

epigenome wide association analysis based on 469,061 CpGs in the NSPT cohort with the same starting 668 

 Cold Spring Harbor Laboratory Press on August 20, 2025 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


36 
 

amount as EWDS. P value smaller than 1×10-7 (Bonferroni p <0.05) were considered as epigenome-wide 669 

significant. Covariates included gender, BMI, cell composition, experiment batch, the first 5 genetic 670 

principal components and the first 5 epigenetic principal components. Genomic principal components 671 

(genomic PCs) were calculated using PLINK 1.9 based on all genome-wide SNPs. For methylation 672 

principal components (methylation PCs), we applied the prcomp function in R to the β values of 810,000 673 

CpG sites across the genome. 674 

Cell-type-specific and Single-cell RNA-seq Integration 675 

To assess cell-type-specific contributions to methylation drift, we adapted the CellDMC framework 676 

(Zheng et al. 2018), modeling the interaction between age and estimated cell-type proportion (estimated 677 

using EpiDISH) (Teschendorff and Zheng 2017), for significant drift-CpGs. For each CpG, age-678 

dependent methylation drift specificity across cell types was assessed, with Bonferroni-adjusted p-values 679 

< 0.05 considered significant. To elucidate the contribution of age-related methylation drift to inter-680 

individual immune variation, we integrated population-scale epigenetic drift profiles with single-cell 681 

transcriptomic data from peripheral blood mononuclear cells (PBMCs) in the OneK1K cohort(Yazar et al. 682 

2022). We compared transcriptional dynamics between individuals at the extremes of the age spectrum. 683 

The BASiCS algorithm (Vallejos et al. 2015) was used to estimate age-associated changes in both 684 

transcriptional levels and noise, stratified by methylation drift direction.  685 

Biological Annotations 686 

CpGs were mapped to the hg19 build for genomic annotations (e.g., Enhancer, TSS1500, TSS200, UTR5, 687 

1stExon, ExonBnd, Body, UTR3, Promoter) and CpG island annotations (N_Shelf, N_Shore, Island, 688 

S_Shore, S_Shelf). Relative enrichment analysis of chromosome states and gene regions was conducted 689 

separately for positive/negative drift and clock CpGs. Significance was assessed using a hypergeometric 690 

test (p < 0.05). The formula for odds ratio calculation and detailed annotation categories are in 691 

Supplemental Methods. Transcription Factor Binding Site (TFBS) Enrichment Analysis on drift-CpGs 692 

 Cold Spring Harbor Laboratory Press on August 20, 2025 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


37 
 

was performed using the TFmotifView web tool (https://bardet.u-strasbg.fr/tfmotifview/), extracting 10 693 

bp sequence windows centered on each CpG site. Statistical significance was assessed using Bonferroni 694 

correction (adjusted p < 0.05). We drift-CpGs for enrichment of gene ontologies and KEGG pathways 695 

using the gometh function using R package ‘missmethyl’ (v1.28.0). Using the online analysis platform 696 

EWAS atlas, we performed phenotype enrichment analysis on successfully validated drift-CpGs. To 697 

explore the distinct biological functions associated with positive and negative drift, we performed 698 

enrichment analyses separately for the sets of positive drift-CpGs and negative drift-CpGs, applying a 699 

significance threshold of 0.05 after FDR adjustment. 700 

Replication Analysis 701 

Drift-CpGs significant in the NSPT discovery analysis (p<1×10−7 ) were followed up with a replication 702 

analysis in the CAS cohort using the White method. Further validation was performed in the GSE40279 703 

dataset (a mixed Caucasian and Hispanic population assessed with a 450K beadchip) (Hannum et al. 704 

2013). In the longitudinal Changfeng population, CpG drift values between two time points were 705 

calculated and analyzed using paired t-tests. The stability of drift was also investigated in the GSE61496 706 

twin cohort (Tan et al. 2014) using linear regression on absolute age differences and twin pair values.  707 

Construction of Epigenetic Drift Score (EDS) 708 

To quantify an individual's epigenetic drift burden, we developed the Epigenetic Drift Score (EDS). This 709 

score aggregates individual-level methylation variability at robustly selected CpGs, reflecting an 710 

individual's overall drift status. First, we selected highly robust drift-CpGs, defined as those significantly 711 

associated with age-related variability in the NSPT discovery cohort and consistently replicated in both 712 

CAS and Hannum cohorts. To ensure independence, CpGs within 500-kb proximity of a more significant 713 

CpG were removed. Specific filtering criteria and the final number of independent CpGs are detailed in 714 

Supplemental Methods. 715 
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For each individual i and selected drift site j, we computed the site-specific drift magnitude (𝑑#' ) as 716 

the squared deviation of methylation level from the mean, scaled by the site's standard deviation:	𝑑#' =717 

𝛽#' −	𝛽̅'
% 𝑆𝐷'0 , where 𝑑#' denotes the drift magnitude for individual i at site j, 𝛽#' is the methylation level 718 

for individual i at site j, 	𝛽̅' is the mean methylation level at site j, and 𝑆𝐷' is the standard deviation of 719 

methylation at site j. To derive weights for aggregation, a non-negative least squares regression between 720 

each site's drift score 𝑑#' and the age of the individual 𝑦# was then performed, 𝑦# = 𝛼 + 𝛾'𝑑#' 	, where 𝛼 is 721 

the intercept term and 𝛾' is the regression coefficient reflecting the correlation between drift score and 722 

age. The overall positive epigenetic drift score 𝐸𝐷𝑆_𝑃𝑂𝑆# for individual i was then calculated by 723 

summing across selected sites (K), weighted by their respective non-negative regression coefficients 724 

(𝛾')：𝐸𝐷𝑆_𝑃𝑂𝑆# = ∑ 𝛾'𝑑#' 	(
')"  725 

These weighting factors, derived from the NSPT and Hannum cohorts, serve as a standard reference. 726 

Scores were subsequently range-normalized to a 0-1 scale using reference populations to project 727 

minimum and maximum possible scores. The negative epigenetic drift score (EDS_NEG) was 728 

constructed following a similar approach. This involved using significant negative drift-CpGs from the 729 

NSPT cohort, applying a non-negative least squares regression model to identify contributing sites, and 730 

then range-standardizing the scores to a 0-1 scale (details on site selection and final number of sites in 731 

Supplemental Methods). As a validation, we also implemented an entropy-based approach (Scherer et al. 732 

2020) to measure individual-level DNA methylation variability. Genome-wide Shannon entropy was 733 

computed for positive and negative drift-CpGs, and its concordance with EDS values was assessed 734 

(details and formula in Supplemental Methods). 735 

Association of EDS with age, metabolome, and genetic variants 736 

We evaluated correlations between EDS and chronological age in the NSPT and CAS cohorts and 737 

assessed EDS distributions across gender groups. In the NSPT cohort, we used linear regression to test 738 
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associations between EDS and NMR-derived lipoprotein subfractions and small metabolites, adjusting for 739 

covariates (see Supplemental Methods). Significance was determined using FDR-adjusted p < 0.05. 740 

GWAS of EDS in NSPT was conducted using linear regression models in PLINK, adjusting for relevant 741 

covariates. EDS heritability was estimated using GCTA. Age-associated chromatin state changes at key 742 

loci were visualized using the Integrative Genomics Viewer (IGV) with hMSC ChIP-seq data from 743 

GSE156409 (McCauley et al. 2021). 744 

Published Software and Resources 745 

Publicly available software and R packages utilized in this study include: R (V4.4.0)(R Core Team 2024), 746 

ggplot2, diptest, missMethyl, poolr, corrplot, forestplot, SHAPEIT3, IMPUTE2, PLINK2.0, GCTA, and 747 

IGV (URLs in Supplemental Methods). 748 
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cohort: file name: methy_3523.rdata) and OEP00004768 (Changfeng cohort). Individual-level genotype 762 
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compliance with the 2023 Implementation Rules for the Management Regulations of Human Genetic 764 
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