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ABSTRACT

Purpose: Fragile X syndrome (FXS) is a common cause of intellectual disability and autism. FXS presents with abnormal facial features, which in pediatric patients are
subtler than what is seen in adults. The three-dimensional (3D) facial images, which contain more stereoscopic and subtle information than two-dimensional (2D)
photographs, are increasingly being used to classify genetic syndromes. Here, we used 3D facial images to describe facial features and construct a classification
model, especially in male patients with FXS.

Methods: We registered the 3D facial images of 40 Chinese boys with FXS and 40 healthy boys. We utilized seven machine learning models with different features
extracted from dense point cloud and sparse landmarks. A linear regression model was performed between feature reduction of regional point cloud and genomic as
well as methylation subtypes.

Resuilts: The typical and subtle differences between 3D average faces of patients and controls could be quantitatively visualized. The projection of patients and
controls in Fragile X-liked vectors are significantly different. The random forests model using coordinates of regional facial points (chin, eye, forehead, nose and
upper lip) could perform better than expert clinicians in binary classification. Among the 63 hierarchical facial segmentation, significantly associations were found in
8 segments with genetic subtypes, and 2 segments with methylation subtypes.

Conclusion: The 3D facial images could assist to distinguish male patients with FXS by machine learning, in which the selected regional features performed better than
the global features and sparse landmarks. The genetic and methylation status might affect regional facial features differently.

1. Introduction epicanthal folds and broad nose, were observed and described by only a

few studies with small sample size [5-7]. Among these and other re-

Fragile X syndrome (FXS) is the most prevalent inherited cause of
intellectual disability [1]. While FXS can affect both genders, males are
more commonly and severely affected compared to females [2]. It is
associated with symptoms such as intellectual disability, behavioral and
learning challenges, features of autism spectrum disorders, and various
physical characteristics [3]. Facial features unique to FXS include a long
and narrow face (HP:0000275, HP:0000276), broad forehead
(HP:0002003), mandibular prognathism (HP:0000303) and protruding
ear (HP:0000411) [4]. Some other occasional facial morphological
features, like thin and long palpebral fissures, puffiness around the eyes,
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searches on facial phenotypes, the way for identification and quantifi-
cation has evolved from manual observation and direct measurements to
extracting quantitative and detailed geometric features by digital im-
ages, including two-dimensional (2D) and three-dimensional (3D) im-
ages. As most individuals involved in studies of FXS are post pubertal or
in adulthood and without digital images, the recognizable or subtle
facial features at a young age were not well studied. Absence of digital
studies in pediatric patients limited the ability to identify early Fragile X
facial features.

In recent years, numerous studies have utilized 2D facial images with
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deep learning methods or 3D ones with machine learning models to
classify distinct genetic syndromes with special facial phenotypes [8,9].
In specific syndromes, machine-assisted screening models performed
well, even better than human experts, showing the potential to aid
disease diagnosis. Additionally, 3D facial images could be more ad-
vantageous than 2D by providing more stereoscopic information [10].
However, due to factors such as limited sample sizes, variations in age
distribution, population diversity, and differences in the classification
objectives of the models, the accuracies of classification models for FXS
were limited [8,9,11]. Therefore, using 3D images might potentially
optimize the screening models for Fragile X patients within specific
populations and ages.

The primary cause of FXS is a trinucleotide CGG expansion in the
promoter region of the Fragile X Messenger Ribonucleoprotein 1 (FMR1)
gene. The FMR1 gene is categorized into four types based on the length
of CGG repeats: individuals with 6-44 CGG repeats are considered
normal, 45-54 CGG repeats are termed "grey zone," premutation (PM)
alleles fall within the range of 55-200 CGG repeats, and CGG repeats
>200 are designated as full mutations (FM) and are typically methylated
[12]. Size mosaicism of the CGG repeats has been observed in many
patients with FXS. Males with mosaic mutation of PM and FM have
generally been reported to exhibit better intellectual functioning
compared to those with FM alone [13]. Besides genomic mutations, the
methylation mosaicism was reported to be associated with better
cognitive functioning and adaptive behavior and less social impairment
[14]. In addition, several physical phenotypes, including decreasing
body height, limb length, increased face height and ear width, were also
related to deficit of the Fragile X mental retardation protein (FMRP)
[15]. Thus, the stereoscopic and quantitative facial phenotypes extrac-
ted from 3D images could provide possibility to explore the existence of
relationship between subtle facial phenotypes and genotypes, including
genomic mutations and methylation.

In this study, we have depicted more subtle facial features of patients
through the comparison and quantitative analysis of 3D images from
FXS patients and controls at early childhood. Additionally, we explored
how to better assist screening by machine learning utilizing 3D facial
images. Furthermore, we have investigated whether different genetic
genotypes and methylation subtypes in patients affect facial
morphology.

2. Materials and methods
2.1. Sample ascertainment and study design

From January to December 2023, we recruited a group of 40 Chinese
boys genetically diagnosed as FXS. For the case-control study, we then
recruited 40 healthy boys with a similar age distribution to the FXS boys,
who were without intellectual or physical developmental delay. All
participants received a clinical assessment and explanation of informed
consent by specialists from department of child health care. The study
protocol approved by the Children’s Hospital of Fudan University
(FDCH_2022_260 and FDCH_2023_175).

2.2. 3D facial image collection and preprocess

We used VECTRA H1 system (Canfield, Parsippany, NJ) for 3D facial
imaging from all participants, including 40 patients and 40 controls. The
VECTRA H1 system consists of a VECTRA H1 3D camera with stereo
optics and a software running in Windows. The participants were asked
to close their mouth, open their eyes and hold faces with a neutral
expression. We captured three images from right side, front and left side
the VECTRA H1 3D camera, and ensured consistent participant posi-
tioning. Then the three images were stitched as a 3D image in the
VECTRA software. Each patient was sampled three times. The 3D surface
images were registered to a anthropometric mask consisted of 7906
spatially dense points, and were standardized using generalized

Computers in Biology and Medicine 189 (2025) 109912

Procrustes analysis (GPA) and symmetrization to eliminate the in-
fluences of position, orientation, and the centroid size of the images [16,
17]. Finally, average face of the three measurements for each sample
was used for subsequent analysis.

2.3. FXS liked vector and projection

First, we calculated the average face for both the controls (Fcongor)
and FXS patients (Frxs). Subsequently, by subtracting the coordinates of
the control average face from the coordinates of the FXS average face,
we obtained the FXS liked vector (FXS_v).

EXS_v :m — Feontrol

Finally, we projected face coordinate (F;) of each sample onto this
vector, with the length of the vector projection (1;) indicating the degree
to which it resembled the facial morphology of FXS.

| _FixEXSv
' |FXS_v|

2.4. Facial landmarking & anatomical regions segmentation

Since previous studies on syndrome classification used sparse land-
marks as 3D facial phenotypes, we auto-landmarked 13 facial anatom-
ical landmarks in this study using the dense corresponding approach
proposed by White et al. [16] (Supplementary Fig. S1a). By referring to
the partitioning methods in previous studies [17,18] and the visualized
differences between average faces of the FXS boys and the controls, we
divided the global face into nine anatomical regions for further analysis
on features of regional face (Supplementary Fig. S1b).

2.5. Classification models by machine learning

To distinguish faces of FXS boys and controls, we used machine
learning methods to make binary classification models. We tested seven
machine learning approaches, including k-nearest neighbors (KNN),
support vector machine (SVM) with linear function or radial basis
function (rbf), random forests, and Boosting tree algorithms (including
AdaBoost, GBDT and XGB class) by scikit-learn in Python. Due to the
limited sample size, we used leave-one-out cross-validation (LOOCV) for
internal validation. Our analysis reports accuracy, sensitivity, specificity
and F1-score to show performance of each model.

We defined the input features of classification models in four ways.
“All_points” is consisted with 23,718-length arrays of the coordinates of
7906 spatially dense points. “Landmark” is consisted with 39-length
arrays of the coordinates of 13 sparse anatomical points. “Dis-
tances_LM” is consisted with sets of 78 paired linear distances was
calculated from those 13 landmarks. The fourth one is consisted with
ergodic combination of nine anatomical regions, 510 groups in all,
except the global face (Supplementary Table S3). Besides facial infor-
mation above, the age of every sample was also used as input feature in
each model.

To evaluate the performance of the machine learning models, we
recruited three expert clinicians from the child health care department
to established an “Expert classifier”. Each clinician independently
reviewed the original 3D texture images of 80 participants and provided
a binary classification (FXS or control) for each image (Supplementary
Table S1). In the averaged results (‘Clinician_avg’), if two or more cli-
nicians classified a sample as FXS, it was considered a positive case.
Otherwise, it was classified as a control.

2.6. Phenotyping of dense landmarks
We first corrected the symmetrized facial shapes for the covariates of

age and age squared using a partial least-squares regression (PLSR,
function plsregress from MATLAB 2018a). In each segment, we
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performed principal component analysis (PCA) on the PLSR residuals of
the discovery cohort and obtained principal component (PC) scores as
the phenotypic scores. The 63 hierarchical facial segmentations derived
in Zhang et al. could represent facial phenotypes in global and regional
levels. The PC scores of 63 facial segmentations were used for associa-
tion analysis.

2.7. Genetic and methylation testing

We were allowed to collected peripheral blood samples from 37
patients for genetic and methylation testing.

The FMR1 CGG repeats testing utilized the PCR-CE FMR1 Kit (Biofast
Biotechnology Co., Ltd.), and capillary electrophoresis (CE) conducted
on the ABI 3500 Dx Genetic Analyzer (Thermo Fisher Scientific, Wal-
tham, MA) using 1200 LIZ™ Size Standard, following the manufac-
turer’s instructions. Gene-specific primers annealing to the upstream
region in FMR1 5'UTR determined CGG repeats, and the triplet-repeated
primer targeting the CGG region revealed AGG interruption status. The
larger amplicon in FMR1 5'UTR covered the full expansion lengths and
was converted into CGG repeat numbers using a regression curve
derived from a standard mixture, and the CGG stutter amplicon indi-
cated the status of AGG interruptions.

Methylation status was assessed using the PCR-CE mFMRI1 assay
(Biofast) according to manufacturer guidelines. gDNA, methylation-
sensitive plasmid, and a reference control were pooled, then separated
into control and methylation-digested groups. The latter was treated
with Hpall then amplified with FAM-labeled primer, while the control
group’s allele was amplified with NED-labeled primers. Both amplicons
were pooled for capillary electrophoresis. The methylation percentage
for each allele was calculated by normalizing against the reference
control using the equation:

Methylation (%) =100

y FAM labeled ((FMR1 height)/(RefControl height))
NED labeled ((FMR1 height)/(RefControl height))

2.8. Association analysis between phenotype and subtypes

According to CGG repeat numbers tested, all patients in this study
could be classified into two subtypes of “PM-FM mosaic” (carrying both
55-200 CGG repeats and CGG repeats >200) and “FM-only” (only car-
rying CGG repeats >200). “The genetic status” of “PM-FM mosaic” and
“FM-only” were respectively equal to “1” and “2”.

Referring to methylation percentage all patients in this study could
be classified into two subtypes of “partial methylation” (<80 %) and
“complete methylation” (>80 %). “The methylation status” of “partial
methylation” and “complete methylation” were respectively equal to “1”
and “2”.

Since the PC scores are high-dimensional, we utilized the genetic/
methylation status as dependent variable and facial PCs as independent
variables in linear regression model, with P < 0.05 indicating nominal
significance. We also used the 10000-times permutation tests to calcu-
late the Bonferroni multiple testing threshold. For permutation in each
face segment, we generated the null distribution as follows: 1. Keep the
shape PC scores fixed and randomly permute the genotypes/methylation
classifications. Note that the PCs between face segment were not
completely independent, thus we kept the permutation the same for
each segment the same to keep the correlation between facial segments.
2. Perform the association analysis between random genotype/methyl-
ation classifications with face PCs in each face segment to calculate p-
values. 3. Construct the null p-value distributions in each face segment,
and compared the 5 % quantile of the null distribution with 0.05 to
identify whether this method will inflate the p-values. 4. Calculate the
minimum p-value (minP) among 63 face segments in each permutation.
Then, construct the null distribution using the minP in each permuta-
tion. Finally, the 5 % quantile of the minP as the Bonferroni threshold.
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The p-values of multivariate association analysis were not inflated in
each face segment for both genetic status (Supplementary Fig. S2a) and
methylation (Supplementary Fig. S2¢). And besides the nominal p-value
threshold of 0.05, we set the Bonferroni threshold as P = 0.0015 for
genetic status (Supplementary Fig. S2b) and P = 0.00139 for methyl-
ation (Supplementary Fig. S2a).

3. Results
3.1. Patient characteristics and sample description

With recruitment of 40 FXS boys with confirmed FMR1 FM, 40 male
controls with matched-age were obtained from an existing collection
into this study (detailed breakdown of enrollment age in Supplementary
Table S1, P = 0.137, one-tailed t-test). All individuals reported are
Chinese of East-Asian origin.

Among all 40 FXS boys, we successfully collected blood samples from
37 patients for gene testing of FMR1 and methylation analysis (Table 1,
detailed information in Supplementary Table S2). According to classi-
fication criteria of CGG repeat numbers in FMR1 gene, there are 17
patients carrying only FM (FM-only), while 20 carrying FM and PM (PM-
FM mosaic).

3.2. Comparison of average 3D faces of boys with FXS and healthy
controls

The average 3D face of 40 boys with FXS and that of 40 age-matched
male controls are respectively shown in Fig. 1 a&b. By calculating the
difference in normal vector distances at corresponding points, the de-
gree of facial feature differences, in terms of prominence and concavity,
between average faces of patients and controls is respectively using a
gradient of red and blue colors in the heatmap (Fig. 1c).

The well-known FXS facial features, such as the long and narrow
face, is also dominant in 3D facial visualization. Other reported facial
features, including mandibular prognathism, puffiness around the eyes
and broad nose, could also be broadly observed in the 3D facial com-
parison. Besides known facial features mentioned above, a prominent
mouth consisted of prominent philtrum and hypotonic droop of the
lower lip could be observed. Moreover, the maxillary and nasolabial fold
regions showed a tendency to be concave. These observations from 3D
facial comparison described more subtle facial features of FXS patients
in an extended way.

The differ-vector of average 3D faces could also describe overall
difference between patients and controls. We defined the differ-vector of
average 3D face from control to FXS as “FragileX-liked vector”. By
projecting 3D face of each individual to the “FragileX-liked vector”, the
similarity tendency to patient or control could be assessed quantitatively
by the projection value. Unsurprisingly, there are significant differences
in the projection values between the patients and the control group
(Fig. 2a, P = 8.40 x 1071°, one-tailed t-test). In a random permutation
test conducted 10,000 times, the difference of mean projection values

Table 1
Sample characteristics.
Patients Control
Total N 40 40
Age (median, IQR) 5.65 (3.88, 8.71) 5.65 (3.87, 6.54)
Age range 1.23-14.83 1.69-11.63
FMR1 mutations N 37 -
PM-FM mosaic N 17 -
Age (median, IQR) 5.37 (3.86, 7.41) -
Age range 2.19-10.54 -
FM-only N 20 -
Age (median, IQR) 5.05 (3.80, 8.75) -
Age range 1.23-14.83
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a '@

Fragile X

Fig. 1. Average 3D faces of Fragile X patients and healthy controls

Control
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Difference

3D face visualization images with frontal and lateral 45 degrees of a) Fragile X patients and b)healthy controls. ¢) Heat maps of position difference with respect to
normal axes for densely corresponded points on surface of average of individuals with Fragile X syndrome compared with corresponding position on the average of
healthy male controls. The red—white-blue range reflects displacement parallel to the normal axis concerned with maximal red-blue at 3 SD in opposing directions
and white at 0 SD. Red represented direction to outside (prominence), and blue represented direction to inside (concavity). (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)

group
case

control

projection

case control

group

density

P <9.9e-05

0.01

40 80 120
projection differences between two groups from random sampling

Fig. 2. The distribution of projection on FragileX-liked vector. a) Violin plots and boxplots described the projection distribution of two groups on the FragileX-
liked vector. b) The null distribution of differences between two mean projections from 10000 times random sampling and grouping from all samples. The dashed line
represented the difference between mean FragileX projection and mean control projection.

between the patients and the control group remained the largest
(Fig. 2b, P < 9.9 x 107>). This indicates that the differences observed
between the patients and the controls are indeed significant.

3.3. Using 3D facial images to distinguish patients and controls

The analysis presented above demonstrated visual differences be-
tween 3D average faces of FXS boys and controls, as well as significant
quantitative differences in the projection analysis. These findings and
previous studies on machine-assisted classification suggested the po-
tential for using 3D facial images to construct a specific binary classifi-
cation model for FXS boys and controls.

In order to investigate phenotypes most suitable for the model use,

we explored different kinds of points information from 3D facial data as
input features (Supplementary Table S3). The performance of models
using input feature of “All_points” is better than those using “Landmark”
and “Distances LM”, suggesting dense points with more information is
better than sparse landmarks. However, when using 510 groups of
different combinations from nine anatomical region as input features,
several models performed better than “All_points”, indicating that the
features of regional face is enough to distinguish patients and controls.

Among all seven machine learning algorithms used in this study, we
compared the accuracies, sensitivity, specificity and Fl-score of all
models between each two algorithms (paired one-tailed t-test, Supple-
mentary Table S4). The random forest algorithms performed better
every other machine learning algorithm in all four indicators. The SVM
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with linear function is second only to random forest algorithm.

Finally, we selected the models with the best performance of each
kind of input features, with the best one from 510 groups of different
combinations (Table 2). All of the selected machine learning models
performed better than the “expert classifier”, expect the sensitivity. The
random forest model using points of the group C5-95, including the
regions of chin, eye, forehead, nose and upper lip, could reach the
highest accuracy as 0.9. This indicated that the suitable machine
learning model using regional facial points cloud match or even surpass
the performance of expert clinicians in distinguish FXS patients from
controls.

3.4. Regional facial phenotypes correlated with genetic classification of
FXS

The facial phenotypic differences between patients and controls can
indeed be regarded as extreme differences between disease and non-
disease states. Within FXS boys, it is widely recognized that in-
dividuals carrying FM may present more severe symptoms compared to
those exhibiting PM/FM mosaicisms. Therefore, we conducted further
investigations in 37 patients only, to explore whether the genetic clas-
sification based on CGG repeat numbers also influences facial pheno-
types in global or regional levels, similar to what observed in patients
and controls. Meanwhile, in recent studies, the relationship between the
methylation status of FMRI and the severity of symptoms has been
investigated.

We performed association analysis between PCs of each 63 regions
and the genetic/methylation status (Fig. 3, Supplementary Table S4).
Three segments (Psegoo = 0.0486, Psegao = 0.0354 and Psegqs = 0.0480),
which also could be included in chin and lower jaw regions, were found
to be associated with the genetic status at nominal significant level.
Since the facial development showed an inflection point in the previous
study, we further analyzed in two age group divided by 5-year-olds [19].
Four segments (Psegg = 0.0244, Pseg17 = 0.0276, Pseg3o = 0.0161 and
Psegss = 0.0122) and one segment (Pseg3s = 0.00110) were associated
with the genetic status in the <5 years group at nominal and Bonferroni
significant level respectively. These facial segments were located in the
nose region and partial cheek near nose. However, no association with
the genetic status was found in the >5 years group.

In analysis with the methylation status, two segments (Psegs7 =
0.0358 and Pgeg50 = 0.0322) showed association at nominal significant
level. The Seg50, representing the eye region was also associated with
the methylation status in the >5 years group at nominal significant level
(Psegso = 0.0310). There was no other significant association with the
methylation status was found in all samples or two age groups. These
results suggested regional facial phenotypes might be influenced by
genetic factor and the methylation of FMR1 in different ages.

4. Discussion

This study investigated the facial characteristics of FXS patients
using 3D facial imaging and explored the potential of using these fea-
tures to distinguish patients from controls. The findings revealed sig-
nificant visual and quantitative differences between the average 3D
faces of patients and controls. Machine learning models using different

Table 2
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input features demonstrated the potential for constructing a binary
classification model for FXS patients and controls based on 3D facial
images. Facial regions divided based on visual differences, particularly
the combination of chin, eye, forehead, nose and upper lip regions,
showed promising results in distinguishing patients from controls.
Furthermore, the study examined the association between facial phe-
notypes and genetic classification within FXS patients, revealing sig-
nificant associations between specific regional facial features and the
genetic and methylation status.

This study extensively utilized 3D facial imaging to investigate the
phenotypic patterns and applications in FXS patients, yielding
constructive conclusions, but also had some limitations. First, the orig-
inal 3D facial images collected did not include the complete ear region,
and the registration mask face also lacked the ear portion. Therefore, the
well-known feature of protruding ear is not available in this study to be
visualized or analyzed with genotypes. Although the sample size of
patients is generally larger than other studies including facial pheno-
types of FXS, the cohort with only 40 case-control pairs of young age is
still not enough to summarize complete facial features and develop-
mental patterns of patients. Nevertheless, 3D facial images repeated the
exhibit facial features of FXS and described more subtle features, indi-
cating the adding value of 3D data to explore phenotypes in young
patients.

While the use of 3D facial imaging and machine learning techniques
showed promise in distinguishing FXS patients from controls, there are
several limitations to consider. Facial features could be influenced by
various external factors such as age, facial expression and ethnic back-
ground. However, during image capture, we controlled these external
factors into a stable status, including the finite age distribution of perfect
matches and all East-Asian origin individuals. Machine learning models
trained on a specific dataset might have the potential to overfit, without
the generalizability to different age and ethnic background. We only
used LOOCV as internal validation in a small dataset; larger sample size
could validate the performance of models in an independent dataset. On
the other hand, we used different combinations of facial landmarks and
regions as input features to explore more suitable features for machine
learning. We found that the model using regions of chin, eye, forehead,
nose and upper lip as input feature performed best in this study, which is
consist with the different regions between average faces of controls and
patients (Fig. 1c). This is probably because the regions with obviously
differences played a more important role, while the regions with no
difference might be confounders reducing model performance. In
addition to using regional feature in machine learning models of clas-
sification between patients and controls, the more ways of feature
extracting could be tested in the future, like the 65 landmarks used
before [9]. Referring to transform learning often used in 2D image
research, the deep hierarchical feature learning method could be used
for 3D feature extraction before classification model construction. In all,
for child health care departments with a large number of patients or a
lack of experienced doctors, machine-assisted disease screening is a
practical help to improve operational efficiency and diagnostic accu-
racy. Although this study only established a binary classification model
for males with FXS, it demonstrated the application potential of 3D
facial images in auxiliary screening. The future collection of more
samples of different sex, age and ethnic could validate whether the

Performance of binary classification models using different types of input features with algorithms.

Input_feature Textrue_image All_points

Landmark Distances_LM C5-95%

Machine learning algorithm Expert classifier

Accuracy 0.812 0.863
Sensitivity 1 0.9

Specificity 0.625 0.825
Fl-score 0.769 0.857

Random Forest

Random Forest Random Forest Random Forest

0.838 0.812 0.9
0.9 0.825 0.9
0.775 0.8 0.9
0.827 0.81 0.9

# C5-95 represented the regions of chin, eye, forehead, nose and upper lip.
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Fig. 3. The hierarchical facial segmentation.
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Facial shape variation is covered at five different levels of detail, same as the previous study. Segments are colored in grey. The segments significantly associated with
the genetic and methylation status were respectively highlighted by red and blue. (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)

model in this study is applicable to non-Chinese boys and female pa-
tients. In addition, since many patients with neurogenetic syndromes
presenting with ID and/or ASD require accurate and rapid diagnosis, we
would collect more 3D facial images of patients with other diseases for
the construction of multi-classification or other disease specific binary
classification models. More feature extraction methods are also planned
to increase generalizability of classification models.

Finally, we explored association analysis between regional facial
phenotypes and genotypes, including genetic status and methylation
status. The finding of significant associations suggested that the genetic
mutation and the methylation level of the FMR1 gene might affect
different facial morphological phenotypes. The Seg 20, 40 and 45
showed the FM-only patients were with a more obtuse chin and a little
wider lower jaw based on a longer and narrower face (Supplementary
Fig. S3). Interestingly, although the phenotypes of midface showed no
association with the subtype defined by the number of CGG repeats,
those showed significant association among patients <5 years group.
The five relevant segments could be summarized as a more concave
infraorbital and nasolabial fold region in FM-only patients. The former
facial structure might be consisted with a narrow sinus ostium and
related to the recurrent sinusitis common in FXS patients [20,21].
Meanwhile, the midface region near nose undergo a more rapid growth
rate <5 years group than other regions, so this phenomenon suggests
that the number of CGG repeats might affect the speed of facial devel-
opment in early childhood [18,19,22]. However, in later stages of
development, due to the slow growth rate and the same developmental
end points, the facial morphology associated with the number of CGG
repeats becomes less obvious. Meanwhile, the eye region is more
prominent in patients with the higher methylation status, both in the

whole age group and >5 years group. The power of associations found in
this study were limited by sample size and simplified subtypes. The
methylation status was also limited by the samples collected from pe-
ripheral blood, rather than tissues directly related to facial morphology.
Additionally, increased intragenic DNA methylation of the CpG island
and the Fragile X Related Epigenetic Element 2 (FREE2) is correlated
with lower intellectual functioning in both males and females with FXS,
which even could support the prediction of intellectual functioning and
autism features in male patients [13,23,24]. Moreover, in females with
PM, higher level of DNA methylation at FREE2 was reported to be
associated with neuro-phenotypes, which also suggested the association
between epi-genotypes and volume of white matter in female carriers
and patients [25,26]. In sum, these correlation findings could give
insight to pathogenic mechanism and suggestive features in computer
aided diagnosis models for subtypes of FXS. In the future, more genetic
or epigenetic tests such as long read sequencing to obtain the exact CGG
repeats, FMRP level, refined methylation subtyping and tissue specific
methylation can also be included to further investigate the association
between facial phenotypes and genotypes, not only in male patients but
also in female patients and PM carriers.

In conclusion, this study demonstrates the potential of using 3D
images to reveal specific and subtle facial characteristics of FXS in young
age groups. The findings contribute to our understanding of the rela-
tionship between genotypes and phenotypes in FXS and highlight the
importance of considering regional facial features in diagnostic models.
Future studies should aim to validate these findings in larger and more
diverse cohorts and investigate additional genetic or epigenetic factors
that may influence facial phenotypes.
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