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A B S T R A C T

Purpose: Fragile X syndrome (FXS) is a common cause of intellectual disability and autism. FXS presents with abnormal facial features, which in pediatric patients are 
subtler than what is seen in adults. The three-dimensional (3D) facial images, which contain more stereoscopic and subtle information than two-dimensional (2D) 
photographs, are increasingly being used to classify genetic syndromes. Here, we used 3D facial images to describe facial features and construct a classification 
model, especially in male patients with FXS.
Methods: We registered the 3D facial images of 40 Chinese boys with FXS and 40 healthy boys. We utilized seven machine learning models with different features 
extracted from dense point cloud and sparse landmarks. A linear regression model was performed between feature reduction of regional point cloud and genomic as 
well as methylation subtypes.
Results: The typical and subtle differences between 3D average faces of patients and controls could be quantitatively visualized. The projection of patients and 
controls in Fragile X-liked vectors are significantly different. The random forests model using coordinates of regional facial points (chin, eye, forehead, nose and 
upper lip) could perform better than expert clinicians in binary classification. Among the 63 hierarchical facial segmentation, significantly associations were found in 
8 segments with genetic subtypes, and 2 segments with methylation subtypes.
Conclusion: The 3D facial images could assist to distinguish male patients with FXS by machine learning, in which the selected regional features performed better than 
the global features and sparse landmarks. The genetic and methylation status might affect regional facial features differently.

1. Introduction

Fragile X syndrome (FXS) is the most prevalent inherited cause of 
intellectual disability [1]. While FXS can affect both genders, males are 
more commonly and severely affected compared to females [2]. It is 
associated with symptoms such as intellectual disability, behavioral and 
learning challenges, features of autism spectrum disorders, and various 
physical characteristics [3]. Facial features unique to FXS include a long 
and narrow face (HP:0000275, HP:0000276), broad forehead 
(HP:0002003), mandibular prognathism (HP:0000303) and protruding 
ear (HP:0000411) [4]. Some other occasional facial morphological 
features, like thin and long palpebral fissures, puffiness around the eyes, 

epicanthal folds and broad nose, were observed and described by only a 
few studies with small sample size [5–7]. Among these and other re
searches on facial phenotypes, the way for identification and quantifi
cation has evolved from manual observation and direct measurements to 
extracting quantitative and detailed geometric features by digital im
ages, including two-dimensional (2D) and three-dimensional (3D) im
ages. As most individuals involved in studies of FXS are post pubertal or 
in adulthood and without digital images, the recognizable or subtle 
facial features at a young age were not well studied. Absence of digital 
studies in pediatric patients limited the ability to identify early Fragile X 
facial features.

In recent years, numerous studies have utilized 2D facial images with 
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deep learning methods or 3D ones with machine learning models to 
classify distinct genetic syndromes with special facial phenotypes [8,9]. 
In specific syndromes, machine-assisted screening models performed 
well, even better than human experts, showing the potential to aid 
disease diagnosis. Additionally, 3D facial images could be more ad
vantageous than 2D by providing more stereoscopic information [10]. 
However, due to factors such as limited sample sizes, variations in age 
distribution, population diversity, and differences in the classification 
objectives of the models, the accuracies of classification models for FXS 
were limited [8,9,11]. Therefore, using 3D images might potentially 
optimize the screening models for Fragile X patients within specific 
populations and ages.

The primary cause of FXS is a trinucleotide CGG expansion in the 
promoter region of the Fragile X Messenger Ribonucleoprotein 1 (FMR1) 
gene. The FMR1 gene is categorized into four types based on the length 
of CGG repeats: individuals with 6–44 CGG repeats are considered 
normal, 45–54 CGG repeats are termed "grey zone," premutation (PM) 
alleles fall within the range of 55–200 CGG repeats, and CGG repeats 
>200 are designated as full mutations (FM) and are typically methylated 
[12]. Size mosaicism of the CGG repeats has been observed in many 
patients with FXS. Males with mosaic mutation of PM and FM have 
generally been reported to exhibit better intellectual functioning 
compared to those with FM alone [13]. Besides genomic mutations, the 
methylation mosaicism was reported to be associated with better 
cognitive functioning and adaptive behavior and less social impairment 
[14]. In addition, several physical phenotypes, including decreasing 
body height, limb length, increased face height and ear width, were also 
related to deficit of the Fragile X mental retardation protein (FMRP) 
[15]. Thus, the stereoscopic and quantitative facial phenotypes extrac
ted from 3D images could provide possibility to explore the existence of 
relationship between subtle facial phenotypes and genotypes, including 
genomic mutations and methylation.

In this study, we have depicted more subtle facial features of patients 
through the comparison and quantitative analysis of 3D images from 
FXS patients and controls at early childhood. Additionally, we explored 
how to better assist screening by machine learning utilizing 3D facial 
images. Furthermore, we have investigated whether different genetic 
genotypes and methylation subtypes in patients affect facial 
morphology.

2. Materials and methods

2.1. Sample ascertainment and study design

From January to December 2023, we recruited a group of 40 Chinese 
boys genetically diagnosed as FXS. For the case-control study, we then 
recruited 40 healthy boys with a similar age distribution to the FXS boys, 
who were without intellectual or physical developmental delay. All 
participants received a clinical assessment and explanation of informed 
consent by specialists from department of child health care. The study 
protocol approved by the Children’s Hospital of Fudan University 
(FDCH_2022_260 and FDCH_2023_175).

2.2. 3D facial image collection and preprocess

We used VECTRA H1 system (Canfield, Parsippany, NJ) for 3D facial 
imaging from all participants, including 40 patients and 40 controls. The 
VECTRA H1 system consists of a VECTRA H1 3D camera with stereo 
optics and a software running in Windows. The participants were asked 
to close their mouth, open their eyes and hold faces with a neutral 
expression. We captured three images from right side, front and left side 
the VECTRA H1 3D camera, and ensured consistent participant posi
tioning. Then the three images were stitched as a 3D image in the 
VECTRA software. Each patient was sampled three times. The 3D surface 
images were registered to a anthropometric mask consisted of 7906 
spatially dense points, and were standardized using generalized 

Procrustes analysis (GPA) and symmetrization to eliminate the in
fluences of position, orientation, and the centroid size of the images [16,
17]. Finally, average face of the three measurements for each sample 
was used for subsequent analysis.

2.3. FXS liked vector and projection

First, we calculated the average face for both the controls (FControl) 
and FXS patients (FFXS). Subsequently, by subtracting the coordinates of 
the control average face from the coordinates of the FXS average face, 
we obtained the FXS liked vector (FXS v). 

FXS v= FFXS − FControl 

Finally, we projected face coordinate (Fi) of each sample onto this 
vector, with the length of the vector projection (li) indicating the degree 
to which it resembled the facial morphology of FXS. 

li =
Fi × FXS v
|FXS v|

2.4. Facial landmarking & anatomical regions segmentation

Since previous studies on syndrome classification used sparse land
marks as 3D facial phenotypes, we auto-landmarked 13 facial anatom
ical landmarks in this study using the dense corresponding approach 
proposed by White et al. [16] (Supplementary Fig. S1a). By referring to 
the partitioning methods in previous studies [17,18] and the visualized 
differences between average faces of the FXS boys and the controls, we 
divided the global face into nine anatomical regions for further analysis 
on features of regional face (Supplementary Fig. S1b).

2.5. Classification models by machine learning

To distinguish faces of FXS boys and controls, we used machine 
learning methods to make binary classification models. We tested seven 
machine learning approaches, including k-nearest neighbors (KNN), 
support vector machine (SVM) with linear function or radial basis 
function (rbf), random forests, and Boosting tree algorithms (including 
AdaBoost, GBDT and XGB class) by scikit-learn in Python. Due to the 
limited sample size, we used leave-one-out cross-validation (LOOCV) for 
internal validation. Our analysis reports accuracy, sensitivity, specificity 
and F1-score to show performance of each model.

We defined the input features of classification models in four ways. 
“All_points” is consisted with 23,718-length arrays of the coordinates of 
7906 spatially dense points. “Landmark” is consisted with 39-length 
arrays of the coordinates of 13 sparse anatomical points. “Dis
tances_LM” is consisted with sets of 78 paired linear distances was 
calculated from those 13 landmarks. The fourth one is consisted with 
ergodic combination of nine anatomical regions, 510 groups in all, 
except the global face (Supplementary Table S3). Besides facial infor
mation above, the age of every sample was also used as input feature in 
each model.

To evaluate the performance of the machine learning models, we 
recruited three expert clinicians from the child health care department 
to established an “Expert classifier”. Each clinician independently 
reviewed the original 3D texture images of 80 participants and provided 
a binary classification (FXS or control) for each image (Supplementary 
Table S1). In the averaged results (‘Clinician_avg’), if two or more cli
nicians classified a sample as FXS, it was considered a positive case. 
Otherwise, it was classified as a control.

2.6. Phenotyping of dense landmarks

We first corrected the symmetrized facial shapes for the covariates of 
age and age squared using a partial least-squares regression (PLSR, 
function plsregress from MATLAB 2018a). In each segment, we 
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performed principal component analysis (PCA) on the PLSR residuals of 
the discovery cohort and obtained principal component (PC) scores as 
the phenotypic scores. The 63 hierarchical facial segmentations derived 
in Zhang et al. could represent facial phenotypes in global and regional 
levels. The PC scores of 63 facial segmentations were used for associa
tion analysis.

2.7. Genetic and methylation testing

We were allowed to collected peripheral blood samples from 37 
patients for genetic and methylation testing.

The FMR1 CGG repeats testing utilized the PCR-CE FMR1 Kit (Biofast 
Biotechnology Co., Ltd.), and capillary electrophoresis (CE) conducted 
on the ABI 3500 Dx Genetic Analyzer (Thermo Fisher Scientific, Wal
tham, MA) using 1200 LIZ™ Size Standard, following the manufac
turer’s instructions. Gene-specific primers annealing to the upstream 
region in FMR1 5′UTR determined CGG repeats, and the triplet-repeated 
primer targeting the CGG region revealed AGG interruption status. The 
larger amplicon in FMR1 5′UTR covered the full expansion lengths and 
was converted into CGG repeat numbers using a regression curve 
derived from a standard mixture, and the CGG stutter amplicon indi
cated the status of AGG interruptions.

Methylation status was assessed using the PCR-CE mFMR1 assay 
(Biofast) according to manufacturer guidelines. gDNA, methylation- 
sensitive plasmid, and a reference control were pooled, then separated 
into control and methylation-digested groups. The latter was treated 
with HpaII then amplified with FAM-labeled primer, while the control 
group’s allele was amplified with NED-labeled primers. Both amplicons 
were pooled for capillary electrophoresis. The methylation percentage 
for each allele was calculated by normalizing against the reference 
control using the equation: 

Methylation (%)=100

×
FAM labeled ((FMR1 height)/(RefControl height))
NED labeled ((FMR1 height)/(RefControl height))

2.8. Association analysis between phenotype and subtypes

According to CGG repeat numbers tested, all patients in this study 
could be classified into two subtypes of “PM-FM mosaic” (carrying both 
55–200 CGG repeats and CGG repeats >200) and “FM-only” (only car
rying CGG repeats >200). “The genetic status” of “PM-FM mosaic” and 
“FM-only” were respectively equal to “1” and “2”.

Referring to methylation percentage all patients in this study could 
be classified into two subtypes of “partial methylation” (<80 %) and 
“complete methylation” (≥80 %). “The methylation status” of “partial 
methylation” and “complete methylation” were respectively equal to “1” 
and “2”.

Since the PC scores are high-dimensional, we utilized the genetic/ 
methylation status as dependent variable and facial PCs as independent 
variables in linear regression model, with P < 0.05 indicating nominal 
significance. We also used the 10000-times permutation tests to calcu
late the Bonferroni multiple testing threshold. For permutation in each 
face segment, we generated the null distribution as follows: 1. Keep the 
shape PC scores fixed and randomly permute the genotypes/methylation 
classifications. Note that the PCs between face segment were not 
completely independent, thus we kept the permutation the same for 
each segment the same to keep the correlation between facial segments. 
2. Perform the association analysis between random genotype/methyl
ation classifications with face PCs in each face segment to calculate p- 
values. 3. Construct the null p-value distributions in each face segment, 
and compared the 5 % quantile of the null distribution with 0.05 to 
identify whether this method will inflate the p-values. 4. Calculate the 
minimum p-value (minP) among 63 face segments in each permutation. 
Then, construct the null distribution using the minP in each permuta
tion. Finally, the 5 % quantile of the minP as the Bonferroni threshold. 

The p-values of multivariate association analysis were not inflated in 
each face segment for both genetic status (Supplementary Fig. S2a) and 
methylation (Supplementary Fig. S2c). And besides the nominal p-value 
threshold of 0.05, we set the Bonferroni threshold as P = 0.0015 for 
genetic status (Supplementary Fig. S2b) and P = 0.00139 for methyl
ation (Supplementary Fig. S2a).

3. Results

3.1. Patient characteristics and sample description

With recruitment of 40 FXS boys with confirmed FMR1 FM, 40 male 
controls with matched-age were obtained from an existing collection 
into this study (detailed breakdown of enrollment age in Supplementary 
Table S1, P = 0.137, one-tailed t-test). All individuals reported are 
Chinese of East-Asian origin.

Among all 40 FXS boys, we successfully collected blood samples from 
37 patients for gene testing of FMR1 and methylation analysis (Table 1, 
detailed information in Supplementary Table S2). According to classi
fication criteria of CGG repeat numbers in FMR1 gene, there are 17 
patients carrying only FM (FM-only), while 20 carrying FM and PM (PM- 
FM mosaic).

3.2. Comparison of average 3D faces of boys with FXS and healthy 
controls

The average 3D face of 40 boys with FXS and that of 40 age-matched 
male controls are respectively shown in Fig. 1 a&b. By calculating the 
difference in normal vector distances at corresponding points, the de
gree of facial feature differences, in terms of prominence and concavity, 
between average faces of patients and controls is respectively using a 
gradient of red and blue colors in the heatmap (Fig. 1c).

The well-known FXS facial features, such as the long and narrow 
face, is also dominant in 3D facial visualization. Other reported facial 
features, including mandibular prognathism, puffiness around the eyes 
and broad nose, could also be broadly observed in the 3D facial com
parison. Besides known facial features mentioned above, a prominent 
mouth consisted of prominent philtrum and hypotonic droop of the 
lower lip could be observed. Moreover, the maxillary and nasolabial fold 
regions showed a tendency to be concave. These observations from 3D 
facial comparison described more subtle facial features of FXS patients 
in an extended way.

The differ-vector of average 3D faces could also describe overall 
difference between patients and controls. We defined the differ-vector of 
average 3D face from control to FXS as “FragileX-liked vector”. By 
projecting 3D face of each individual to the “FragileX-liked vector”, the 
similarity tendency to patient or control could be assessed quantitatively 
by the projection value. Unsurprisingly, there are significant differences 
in the projection values between the patients and the control group 
(Fig. 2a, P = 8.40 × 10− 10, one-tailed t-test). In a random permutation 
test conducted 10,000 times, the difference of mean projection values 

Table 1 
Sample characteristics.

Patients Control

Total N 40 40
​ Age (median, IQR) 5.65 (3.88, 8.71) 5.65 (3.87, 6.54)
​ Age range 1.23–14.83 1.69–11.63

FMR1 mutations N 37 –

PM-FM mosaic N 17 –
Age (median, IQR) 5.37 (3.86, 7.41) –
Age range 2.19–10.54 –

FM-only N 20 –
Age (median, IQR) 5.05 (3.80, 8.75) –
Age range 1.23–14.83 ​
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between the patients and the control group remained the largest 
(Fig. 2b, P < 9.9 × 10− 5). This indicates that the differences observed 
between the patients and the controls are indeed significant.

3.3. Using 3D facial images to distinguish patients and controls

The analysis presented above demonstrated visual differences be
tween 3D average faces of FXS boys and controls, as well as significant 
quantitative differences in the projection analysis. These findings and 
previous studies on machine-assisted classification suggested the po
tential for using 3D facial images to construct a specific binary classifi
cation model for FXS boys and controls.

In order to investigate phenotypes most suitable for the model use, 

we explored different kinds of points information from 3D facial data as 
input features (Supplementary Table S3). The performance of models 
using input feature of “All_points” is better than those using “Landmark” 
and “Distances_LM”, suggesting dense points with more information is 
better than sparse landmarks. However, when using 510 groups of 
different combinations from nine anatomical region as input features, 
several models performed better than “All_points”, indicating that the 
features of regional face is enough to distinguish patients and controls.

Among all seven machine learning algorithms used in this study, we 
compared the accuracies, sensitivity, specificity and F1-score of all 
models between each two algorithms (paired one-tailed t-test, Supple
mentary Table S4). The random forest algorithms performed better 
every other machine learning algorithm in all four indicators. The SVM 

Fig. 1. Average 3D faces of Fragile X patients and healthy controls 
3D face visualization images with frontal and lateral 45 degrees of a) Fragile X patients and b)healthy controls. c) Heat maps of position difference with respect to 
normal axes for densely corresponded points on surface of average of individuals with Fragile X syndrome compared with corresponding position on the average of 
healthy male controls. The red–white–blue range reflects displacement parallel to the normal axis concerned with maximal red–blue at 3 SD in opposing directions 
and white at 0 SD. Red represented direction to outside (prominence), and blue represented direction to inside (concavity). (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. The distribution of projection on FragileX-liked vector. a) Violin plots and boxplots described the projection distribution of two groups on the FragileX- 
liked vector. b) The null distribution of differences between two mean projections from 10000 times random sampling and grouping from all samples. The dashed line 
represented the difference between mean FragileX projection and mean control projection.
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with linear function is second only to random forest algorithm.
Finally, we selected the models with the best performance of each 

kind of input features, with the best one from 510 groups of different 
combinations (Table 2). All of the selected machine learning models 
performed better than the “expert classifier”, expect the sensitivity. The 
random forest model using points of the group C5-95, including the 
regions of chin, eye, forehead, nose and upper lip, could reach the 
highest accuracy as 0.9. This indicated that the suitable machine 
learning model using regional facial points cloud match or even surpass 
the performance of expert clinicians in distinguish FXS patients from 
controls.

3.4. Regional facial phenotypes correlated with genetic classification of 
FXS

The facial phenotypic differences between patients and controls can 
indeed be regarded as extreme differences between disease and non- 
disease states. Within FXS boys, it is widely recognized that in
dividuals carrying FM may present more severe symptoms compared to 
those exhibiting PM/FM mosaicisms. Therefore, we conducted further 
investigations in 37 patients only, to explore whether the genetic clas
sification based on CGG repeat numbers also influences facial pheno
types in global or regional levels, similar to what observed in patients 
and controls. Meanwhile, in recent studies, the relationship between the 
methylation status of FMR1 and the severity of symptoms has been 
investigated.

We performed association analysis between PCs of each 63 regions 
and the genetic/methylation status (Fig. 3, Supplementary Table S4). 
Three segments (PSeg20 = 0.0486, PSeg40 = 0.0354 and PSeg45 = 0.0480), 
which also could be included in chin and lower jaw regions, were found 
to be associated with the genetic status at nominal significant level. 
Since the facial development showed an inflection point in the previous 
study, we further analyzed in two age group divided by 5-year-olds [19]. 
Four segments (PSeg9 = 0.0244, PSeg17 = 0.0276, PSeg39 = 0.0161 and 
PSeg55 = 0.0122) and one segment (PSeg35 = 0.00110) were associated 
with the genetic status in the <5 years group at nominal and Bonferroni 
significant level respectively. These facial segments were located in the 
nose region and partial cheek near nose. However, no association with 
the genetic status was found in the ≥5 years group.

In analysis with the methylation status, two segments (PSeg47 =

0.0358 and PSeg50 = 0.0322) showed association at nominal significant 
level. The Seg50, representing the eye region was also associated with 
the methylation status in the ≥5 years group at nominal significant level 
(PSeg50 = 0.0310). There was no other significant association with the 
methylation status was found in all samples or two age groups. These 
results suggested regional facial phenotypes might be influenced by 
genetic factor and the methylation of FMR1 in different ages.

4. Discussion

This study investigated the facial characteristics of FXS patients 
using 3D facial imaging and explored the potential of using these fea
tures to distinguish patients from controls. The findings revealed sig
nificant visual and quantitative differences between the average 3D 
faces of patients and controls. Machine learning models using different 

input features demonstrated the potential for constructing a binary 
classification model for FXS patients and controls based on 3D facial 
images. Facial regions divided based on visual differences, particularly 
the combination of chin, eye, forehead, nose and upper lip regions, 
showed promising results in distinguishing patients from controls. 
Furthermore, the study examined the association between facial phe
notypes and genetic classification within FXS patients, revealing sig
nificant associations between specific regional facial features and the 
genetic and methylation status.

This study extensively utilized 3D facial imaging to investigate the 
phenotypic patterns and applications in FXS patients, yielding 
constructive conclusions, but also had some limitations. First, the orig
inal 3D facial images collected did not include the complete ear region, 
and the registration mask face also lacked the ear portion. Therefore, the 
well-known feature of protruding ear is not available in this study to be 
visualized or analyzed with genotypes. Although the sample size of 
patients is generally larger than other studies including facial pheno
types of FXS, the cohort with only 40 case-control pairs of young age is 
still not enough to summarize complete facial features and develop
mental patterns of patients. Nevertheless, 3D facial images repeated the 
exhibit facial features of FXS and described more subtle features, indi
cating the adding value of 3D data to explore phenotypes in young 
patients.

While the use of 3D facial imaging and machine learning techniques 
showed promise in distinguishing FXS patients from controls, there are 
several limitations to consider. Facial features could be influenced by 
various external factors such as age, facial expression and ethnic back
ground. However, during image capture, we controlled these external 
factors into a stable status, including the finite age distribution of perfect 
matches and all East-Asian origin individuals. Machine learning models 
trained on a specific dataset might have the potential to overfit, without 
the generalizability to different age and ethnic background. We only 
used LOOCV as internal validation in a small dataset; larger sample size 
could validate the performance of models in an independent dataset. On 
the other hand, we used different combinations of facial landmarks and 
regions as input features to explore more suitable features for machine 
learning. We found that the model using regions of chin, eye, forehead, 
nose and upper lip as input feature performed best in this study, which is 
consist with the different regions between average faces of controls and 
patients (Fig. 1c). This is probably because the regions with obviously 
differences played a more important role, while the regions with no 
difference might be confounders reducing model performance. In 
addition to using regional feature in machine learning models of clas
sification between patients and controls, the more ways of feature 
extracting could be tested in the future, like the 65 landmarks used 
before [9]. Referring to transform learning often used in 2D image 
research, the deep hierarchical feature learning method could be used 
for 3D feature extraction before classification model construction. In all, 
for child health care departments with a large number of patients or a 
lack of experienced doctors, machine-assisted disease screening is a 
practical help to improve operational efficiency and diagnostic accu
racy. Although this study only established a binary classification model 
for males with FXS, it demonstrated the application potential of 3D 
facial images in auxiliary screening. The future collection of more 
samples of different sex, age and ethnic could validate whether the 

Table 2 
Performance of binary classification models using different types of input features with algorithms.

Input_feature Textrue_image All_points Landmark Distances_LM C5-95a

Machine learning algorithm Expert classifier Random Forest Random Forest Random Forest Random Forest
Accuracy 0.812 0.863 0.838 0.812 0.9
Sensitivity 1 0.9 0.9 0.825 0.9
Specificity 0.625 0.825 0.775 0.8 0.9
F1-score 0.769 0.857 0.827 0.81 0.9

a C5-95 represented the regions of chin, eye, forehead, nose and upper lip.
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model in this study is applicable to non-Chinese boys and female pa
tients. In addition, since many patients with neurogenetic syndromes 
presenting with ID and/or ASD require accurate and rapid diagnosis, we 
would collect more 3D facial images of patients with other diseases for 
the construction of multi-classification or other disease specific binary 
classification models. More feature extraction methods are also planned 
to increase generalizability of classification models.

Finally, we explored association analysis between regional facial 
phenotypes and genotypes, including genetic status and methylation 
status. The finding of significant associations suggested that the genetic 
mutation and the methylation level of the FMR1 gene might affect 
different facial morphological phenotypes. The Seg 20, 40 and 45 
showed the FM-only patients were with a more obtuse chin and a little 
wider lower jaw based on a longer and narrower face (Supplementary 
Fig. S3). Interestingly, although the phenotypes of midface showed no 
association with the subtype defined by the number of CGG repeats, 
those showed significant association among patients <5 years group. 
The five relevant segments could be summarized as a more concave 
infraorbital and nasolabial fold region in FM-only patients. The former 
facial structure might be consisted with a narrow sinus ostium and 
related to the recurrent sinusitis common in FXS patients [20,21]. 
Meanwhile, the midface region near nose undergo a more rapid growth 
rate <5 years group than other regions, so this phenomenon suggests 
that the number of CGG repeats might affect the speed of facial devel
opment in early childhood [18,19,22]. However, in later stages of 
development, due to the slow growth rate and the same developmental 
end points, the facial morphology associated with the number of CGG 
repeats becomes less obvious. Meanwhile, the eye region is more 
prominent in patients with the higher methylation status, both in the 

whole age group and ≥5 years group. The power of associations found in 
this study were limited by sample size and simplified subtypes. The 
methylation status was also limited by the samples collected from pe
ripheral blood, rather than tissues directly related to facial morphology. 
Additionally, increased intragenic DNA methylation of the CpG island 
and the Fragile X Related Epigenetic Element 2 (FREE2) is correlated 
with lower intellectual functioning in both males and females with FXS, 
which even could support the prediction of intellectual functioning and 
autism features in male patients [13,23,24]. Moreover, in females with 
PM, higher level of DNA methylation at FREE2 was reported to be 
associated with neuro-phenotypes, which also suggested the association 
between epi-genotypes and volume of white matter in female carriers 
and patients [25,26]. In sum, these correlation findings could give 
insight to pathogenic mechanism and suggestive features in computer 
aided diagnosis models for subtypes of FXS. In the future, more genetic 
or epigenetic tests such as long read sequencing to obtain the exact CGG 
repeats, FMRP level, refined methylation subtyping and tissue specific 
methylation can also be included to further investigate the association 
between facial phenotypes and genotypes, not only in male patients but 
also in female patients and PM carriers.

In conclusion, this study demonstrates the potential of using 3D 
images to reveal specific and subtle facial characteristics of FXS in young 
age groups. The findings contribute to our understanding of the rela
tionship between genotypes and phenotypes in FXS and highlight the 
importance of considering regional facial features in diagnostic models. 
Future studies should aim to validate these findings in larger and more 
diverse cohorts and investigate additional genetic or epigenetic factors 
that may influence facial phenotypes.

Fig. 3. The hierarchical facial segmentation. 
Facial shape variation is covered at five different levels of detail, same as the previous study. Segments are colored in grey. The segments significantly associated with 
the genetic and methylation status were respectively highlighted by red and blue. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)
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