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Abstract
Palmprints are of long practical and cultural interest. Palmprint principal lines, also called primary palmar lines, are one 
of the most dominant palmprint features and do not change over the lifespan. The existing methods utilize filters and edge 
detection operators to get the principal lines from the palm region of interest (ROI), but can not distinguish the principal 
lines from fine wrinkles. This paper proposes a novel deep-learning architecture to extract palmprint principal lines, which 
could greatly reduce the influence of fine wrinkles, and classify palmprint phenotypes further from 2D palmprint images. 
This architecture includes three modules, ROI extraction module (REM) using pre-trained hand key point location model, 
principal line extraction module (PLEM) using deep edge detection model, and phenotype classifier (PC) based on ResNet34 
network. Compared with the current ROI extraction method, our extraction is competitive with a success rate of 95.2%. For 
principal line extraction, the similarity score between our extracted lines and ground truth palmprint lines achieves 0.813. 
And the proposed architecture achieves a phenotype classification accuracy of 95.7% based on our self-built palmprint 
dataset CAS_Palm.

Keywords Palmprint principal line extraction · Palmprint phenotype classification · ROI extraction · Deep learning

Introduction

Dermatoglyphics refers to the texture patterns of skin on 
certain body parts such as fingers, palms, and soles. During 
the early period of embryonic development, dermatoglyph-
ics will develop into a certain pattern influenced by genotype 

and environment. Palmar creases were distinguished into 
major and minor creases. Major palmar creases, which are 
called “palmprint principal lines” in this study, consist of 
radial longitudinal crease, proximal transverse crease, and 
distal transverse crease, and have been analyzed qualitatively 
and quantitatively. Compared with other dermatoglyphics, 
palmprint has many advantages: palmprint feature can be 
obtained from low-resolution images while fingerprint 
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cannot; palmprint collection device is cheaper than iris col-
lection device (Zhang et al. 2017).

Palmprint principal lines are the most dominant and are 
easy to get lines even in some low-resolution images, while 
other fine wrinkles and shorter lines may be missing. Palm-
print principal lines contain rich information, which can 
be applied in palmprint recognition (Shu and Zhang 1998; 
Huang et al. 2008), personality prediction (Prasad and Chai 
2020), medical conditions prediction (Cascos 1965; Wojto-
wicz and Wajs 2012) and many other fields. Based on the 
different distribution of three palmprint principal lines, we 
can divide palmprint phenotype into major four types: nor-
mal type, Sydney crease type, Simian crease type and Tri-
ple radial base crease, and Fig. 1 offers some examples of 
dermatoglyphics and palmprint.

This paper mainly pays attention to the extraction of 
palmprint principal lines and the classification of palmprint 
phenotype using these extracted principal lines, which pro-
vide ease for other large-scale population study rather than 
individual recognition. Palmprint principal line extraction 

and classification contain three steps: (a) ROI extraction, (b) 
palmprint principal line extraction and (c) palmprint phe-
notype classification. Traditional method usually utilizes 
manually designed filters in these three steps, which needs 
large labor effort and lacks robustness (Badrinath and Gupta 
2012; Ali et al. 2016; Bruno et al. 2014). And the quality 
of palmprint images can have a high impact on the clas-
sification accuracy (Zhai and Min 2020; Zhai et al. 2005). 
To improve the performance of palmprint phenotype clas-
sification, we design deep learning modules for palmprint 
ROI extraction, principal line extraction, and classification. 
Each step has been optimized, and our contributions can be 
summarized as follows: 

1. We introduce the first palmprint principal line extrac-
tion method using a deep edge detection model, and our 
results show our line extraction is more accurate than the 
traditional palmprint edge detection operator.

2. We propose a new deep learning palmprint phenotype 
classification architecture, including REM, PLEM, and 

Fig. 1  Introduction of dermatoglyphics and palmprint a Three differ-
ent kinds of human dermatoglyphics, from left to right is fingerprint, 
palmprint, and footprint. b Definition of palmar creases. Radial lon-
gitudinal crease (I) becomes distinct according to the flexion of car-
pometacarpal joints of the thumb. Proximal (II) and distal transverse 
creases (III) become distinct according to the flexion of the metacar-
pophalangeal joints of the second to fifth fingers. Other minor creases 
are not studied so far. c Four different palmprint phenotype class 
types, based on the different distribution of principal lines. Normal 
crease. Simian crease: proximal and distal transverse crease meet to 

cross the palm and so named as it resembles the usual condition of 
non-human simians (primates). Sydney crease: extended proximal 
palmar crease across the palm and so named as first described in Syd-
ney, Australia. Triple radial base crease: radial longitudinal crease 
and proximal transverse crease do not meet on the radial border of 
the palm are also named Open crease (Park et al. 2010). Recently a 
new Suwon crease has been described as an extended distal trans-
verse crease and so named as it first described in Suwon, Korea. In 
our study, we categorized the Suwon crease as Simian crease because 
of its rarity, which is lower than 0.5%
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PC. Compared with the traditional method, our model 
has competitive results.

3. Since there is no proper dataset with palmprint phe-
notype, we introduce a new palmprint dataset, named 
CAS_Palm with manually labeled palmprint phenotype 
and palmprint principal lines.

The rest of the paper is organized as follows: we describe the 
architecture of our proposed method, and give the details of 
our experiments and results, then we discuss the results and 
conclude this paper.

Materials and Methods

Dataset

The database we used is a self-built palmprint database, 
including 5251 images collected from 5251 subjects, namely 
CAS_Palm. Both hands of each subject were scanned to a 
6840 * 4824 image by using an EPSONV370 scanner. Dif-
ferent from the previous public palm dataset, such as the 
Hong Kong Polytechnic University Palm Dataset, our self-
built CAS_Palm dataset has no requirements on the light-
ing environment where the subject is and the palm position, 
which requires the algorithm to be highly robust.

Proposed Architecture

The architecture of our proposed model is shown in Fig. 2, 
including three different modules: REM, PLEM and PC. 
REM will extract the ROI area from the palm images using 
a pre-trained hand key point location model. The output of 
REM, i.e. the ROI area, is the input of PLEM. PLEM will 
employ a deep edge detection model to extract three princi-
pal lines from ROI area, and PC will use a ResNet34 clas-
sifier to classify these palmprint images into different types 
based on their ROI area and principal lines. We will express 
the details of our model in the following section.

REM

The traditional ROI extraction method is based on valley 
point extraction. It first segments the palm from the back-
ground by setting a proper threshold, which is usually calcu-
lated adaptively (Otsu 1979). Then Kekre’s method (Kekre 
et al. 2012) needs an edge detection algorithm to find the 
contour of the hand. The valley points are usually the points 
closest to the palm centroid in the contour. So the valley 
points are found and ROI can be extracted using the location 
of valley points.

But two problems may occur in the process: first, when the 
luminance condition is complex, it is difficult to find a proper 

threshold for palm segmentation. Second, when the fingers of 
subjects are closed together, it is hard for the edge detection 
algorithm to draw out the hand contour properly. To address 
the second problem, researchers proposed the PRE ROI extrac-
tion method to extract the ROI area in complex background, 
but still requires subjects to keep their fingers open (Chai et al. 
2016).

To address the two problems aforementioned and sim-
plify the steps of ROI extraction, we proposed a deep learn-
ing ROI extraction method based on Blaze Palm (Bazarevsky 
and Zhang 2019), Google pre-trained hand tracking model. 
The model is mainly composed of a whole palm detector and 
a hand key point locator. The whole palm detector uses an 
oriented hand bounding box to locate the palm in the image, 
which avoids threshold choosing. The key point locator will 
locate hand key points in the cropped hand bounding box. The 
model uses 30,000 hand images with manually labeled key 
point data as training set, including real hand images photoed 
in different scenes and synthetic images generated by com-
puters. The luminance conditions and finger positions in the 
training set are variable, so the model is robust in different 
environments and can address the problems mentioned above.

The detailed steps of REM is shown in the first block of 
Fig. 2a. We convert the color image into the grayscale image. 
And second, we apply BlazePalm to locate two key points in 
the hand, one index finger root node named A1, and the other 
is the pinky finger root node named A2. We connect A1 and 
A2, and calculate the length L of line A1A2 and the angle 
� between the line A1A2 and the horizontal line. We use a 
square box to represent the ROI area, with A1A2 as one side 
of the square. Third, as the palm positions in different images 
are different, the selected ROI needs to be aligned to facilitate 
the subsequent principal line feature extraction. We take A2 as 
the center of rotation, and � as the rotation angle, then rotate 
the ROI area counterclockwise to horizontal.

To measure the extraction performance, REM calculates the 
sum of the Euclidean distance between the vertex coordinates 
of the extracted ROI area and the vertex coordinates of the cor-
responding ground truth ROI area. If the sum of the distances 
is less than the chosen threshold, we consider the extraction to 
be successful, if it is greater than the threshold, the extraction 
failed. The evaluation metric is accuracy, and the calculation 
method is shown in the following formula.

Where N is the number of test images, ROIgt
i

 is the ith man-
ually labeled ground truth ROI image, and ROIi is the ith 
ROI area obtained from the ROI extraction method. c is the 
distance threshold, and ED(⋅, ⋅) is the Euclidean distance 
function which calculates the distance between two ROI’s 
vertexes.

(1)acc =
1

N

N
∑

i=1

I(ED(ROI
gt

i
, ROIi) − c)
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Fig. 2  Architecture of our model. a Our proposed model architecture, 
including REM, PLEM and PC. b Details about PLEM, i.e. the HED 
model, including VGG16 Backbone for feature extraction and Edge 

Detection Module for edge line extraction, and input is gray-scale 
ROI area and output is the binary principal line image
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I is the indicator function, I(x) = 1 if x > 0,

I(x) = 0 if x ≤ 0.

PLEM

After ROI extraction, we obtained the ROI area, including 
the three deepest and longest palmprint principal lines, as 
well as the small crest lines, folds, and other features. To 
reduce computation resource cost, the first step of our PLEM 
is to resize the input ROI areas into 200 ∗ 150 gray images, 
and the output of the PLEM is binary images of principal 
lines.

Traditional edge detection operator is mainly designed 
based on the gray-scale transformation. But for the contact-
based palmprint images, there exist wrinkles caused by 
extrusion between palms and palm collection device. Such 
wrinkles will interfere with the principal line extraction. 
Deep learning edge detection algorithm not only uses the 
gray-scale transformation information but also other poten-
tial features, such as the direction of the line, the length of 
the line. And we build our PLEM based on the holistically 
nested edge detection network (HED) (Xie and Tu 2015).

Deep convolutional neural network is composed of many 
layers, and different layers can learn different hierarchical 
features. Shallow layers can extract the basic physical fea-
tures, and with the depth of layers increasing, high-level 
feature can be extracted, such as principal lines. To fully 
utilize those different hierarchical features, researchers have 
proposed many different hierarchical learning and multi-
scale learning methods, including DeepContour (Shen 
et al. 2015), CaseNet (Yu et al. 2017), and HED (Xie and 
Tu 2015). As HED model and its variants show promising 
results in many fields, we choose HED model as our palm-
print principal line extraction model.

The architecture of Holistically-nested Edge Detection 
model is shown in Fig. 2b, which utilizes VGG16 network 
as backbone. The model is comprised of two parts, that is, 
the VGG16 backbone and the edge detection module. The 
VGG16 backbone includes five stages with different recep-
tive fields, and the edge detection module will learn multi-
scale features from the output of different VGG16 stages. 
The structure of five VGG16 stages is several convolutional 
layers followed by a max pooling layer with stride 2. Conv1: 
two convolutional layers with 64 kernels of size 3; Conv2: 
two convolutional layers with 128 kernels of size 3; Conv3: 
three convolutional layers with 256 kernels of size 3; Conv4 
and Conv5: three convolutional layers with 512 kernels of 
size 3. Compared with original VGG16 network, HED has 
the following modifications: 

1. The last three fully connected layers and the last pooling 
layer of VGG16 network are eliminated because we only 
need the multi-scale features of intermediate layers and 

do not need fully connected layers to do image classifi-
cation tasks.

2. The edge detection module connects a side output layer 
to the last convolutional layer of each stage. So HED 
model can learn different scale features. And the output 
of five side output layers is concatenated as the input of 
the final output layer.

3. A new loss function is proposed, which considers the 
difference between all side output layers and the ground 
truth edge image. The integration of each side output 
layer prediction is more accurate than a single final out-
put layer prediction.

In terms of evaluation metrics, the main purpose of the edge 
detection model in this paper is to extract the main structure 
of palmprint principal lines. The focus is to measure the 
main structural similarity between the extracted results and 
the original principal lines, regardless of whether a small 
number of pixels is classified right or wrong. Therefore, this 
paper uses SSIM (Hore and Ziou 2010) as the evaluation 
metric, instead of accuracy or F1 Score. SSIM measures the 
similarity of two images based on three characteristics: lumi-
nance, contrast, and structure. SSIM is defined as follows:

l(x, y) measures the luminance similarity between image x 
and image y, �x and �y is the mean value of image x and y, c1 
and c2 are two constant to avoid zero division. c(x, y) meas-
ures the contrast similarity between the image, �x and �y are 
the standard deviation of the pixel value. s(x, y) calculates 
the structure, and �xy is the covariance of two images. And 
SSIM is the integration of these three aspects.

Phenotype Classifier

To divide the palmprint principal lines into different palm-
print phenotypes, we need to build our phenotype classifier. 
As neural network has shown promising results in image 
classification (He et al. 2016), we choose different neural 
networks as our phenotype classifier, including ResNet18, 
ResNet34, a three-layer fully-connected network, and a 
three-layer convolutional network. We compare their results 
and choose the one with the highest performance.

ResNet is proposed to overcome the Degradation Prob-
lem. ResNet designs a special Residual Block which can alle-
viate Degradation Problem and make neural network have 
higher learning ability. ResNet has many variants according 
to the depth of different models, such as ResNet18, ResNet34 
and ResNet152. As the extracted palmprint images are very 
simple and only contain several principal lines and black 
background, a very deep neural network may lead to the 

(2)

SSIM(x, y) = l(x, y) ⋅ c(x, y) ⋅ s(x, y) =
(2�x�y + c1)(2�xy + c2)

(�2
x
+ �2

y
+ c1)(�

2
x
+ �2

y
+ c2)
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problem of overfitting. So we choose ResNet34 as the classi-
fication model, to balance the trade-off between the learning 
ability and the risk of overfitting. Besides, we utilize the idea 
of transfer learning. We initialize the ResNet classifier with 
parameters pre-trained on the ImageNet dataset.

Results

ROI Extraction

In this section, we compare our deep learning ROI extraction 
method with the Kekre valley point based ROI extraction 
method (Kekre et al. 2012), and Chai’s PRE method (Chai 
et al. 2016). Because the database is relatively new, there is 
no recognized ground truth ROI area yet. Therefore, in this 
section, 500 palmprint images are randomly selected from 
the self-built palmprint database to evaluate the performance 
of different ROI extraction methods. And these 500 images 
of the ROI area are manually labeled as the ground truth 

image of the measurement standard by the experts in the 
palmprint research field.

Our deep learning method gets 21 failed cases without 
ROI area output, which means the method can not find 
key points in the hand. In the 479 cases of extracted ROI 
area, three cases are abandoned due to the distance between 
extracted ROI area and ground truth ROI area larger than 
the threshold. Our method has 476 successful cases with a 
extraction successful rate of 95.2%, the highest among all 
methods. Chai’s method is 6% lower than our method, but 
still much better than the Kekre finger valley point extrac-
tion method. This result indicates our method can extract 
the great majority of ROI area in the dataset, while Chai’s 
method and Kekre’s method perform poorly because they 
cannot handle the situation when the fingers of subjects are 
closed together. The results of our experiments are summa-
rized in Fig. 3. Then we utilize our deep learning method 
to extract the ROI area of all 5251 palm images in the data-
set. Each image contains two hands, so the dataset includes 
10,502 images of ROI area, and our deep learning method 
output 9941 images of ROI area, and 561 failed cases.

c 

b 

Fig. 3  Procedure and results of ROI extraction. a The result of ROI 
extraction success rate using Kekre’s method, Chai’s method, and 
our own method. b An example of ROI extraction, including the 
ground truth ROI area and predicted ROI area. We calculate the dis-
tance between two ROI’s vertexes, for example, the distance between 

A and A’. If AA’ is smaller than the distance threshold c, we regard 
it as a successful extraction case. c An example of failed cases, the 
extracted contour is in green, while the palm contour in the red box 
is not detected properly, leading to the failure of valley point location 
and ROI extraction
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Principal Line Extraction

In this section, the holistically nested edge detection model 
and four traditional edge detection operators (Ali et al. 2016) 
are used to extract principal lines. To evaluate their perfor-
mance, we calculate the structural similarity between results 
and ground truth images. We manually label 480 princi-
pal line images as ground truth, apply 400 images to train 
the HED model, and evaluate the performance of different 
methods on the surplus 80 images. In addition, to improve 
the robustness of the deep learning model, we enhance the 
dataset by flipping the training images horizontally, verti-
cally, both horizontally and vertically. So 1600 images are 
used for HED training. Here, HED uses default parameters 
as the author suggested.

We did the principal line extraction experiment using 
the Laplacian operator, Sobel operator, Scharr operator, 
Canny operator and our HED model. Results show our HED 

model has the highest SSIM value compared with traditional 
edge detection operators. To further discuss the difference 
between these methods, we compare the extracted principal 
lines. We can find as the vein texture on the palm is very 
complicated, traditional edge detection operators cannot dis-
tinguish the small wrinkle and the principal lines. While our 
HED network can utilize discriminative features to extract 
the principal lines clearly, and it has strong anti-interference 
ability. To explain the training process of HED model, we 
visualize the output of the HED intermediate layers. The 
results of principal line extractions are shown in Fig. 4.

Phenotype Classification

In this section, we utilize the aforementioned neural net-
works to classify palmprint phenotype. We utilize the ROI 
and extracted edges as the input for the classification model 
and compare their results. After ROI extraction we get 9941 

a 

        

Fig. 4  Results of phenotype extraction. a Principal line extraction results comparison using different edge detection operators and HED model. b 
Visualization of intermediate layers of HED model in the first training epoch 1 and last epoch 50
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images of ROI areas, and the phenotype distribution of these 
images is shown in Table 1. We divide the data according 
to the ratio of training set: validation set: test set = 8:1:1. 
It is noted that there is a serious data imbalance problem 
in the sample, and the normal type accounts for more than 
90%. Therefore, we apply data enhancement method in the 
Triple radial base crease palmprints, Simian palmprints, 
and Sydney type, and we rotated these images horizontally, 
vertically, both horizontally and vertically. The validation 
set and test set are not enhanced. The final phenotype data 
distribution is shown in Table 1.

The evaluation metric is accuracy, learning rate is 0.001, 
batch size is 64, Adam optimizer is exploited with the default 
setting, and training epoch is 50. An RTX2080ti is used for 
network training. Table 2 shows the classification accuracy 
on testing set using different classification networks, and the 
best results are highlighted in bold.

For ROI images and edge images extracted by the HED 
network, Sobel Operator, and Laplacian Operator, using 
ResNet34 achieves the highest classification accuracy among 
these four networks, which reflects the strong feature extrac-
tion ability of ResNet34. And in these four networks, we 
can find using edge images extracted by HED outperforms 
directly using ROI images as inputs, which shows the advan-
tage of our proposed architecture.

To further discuss the training process of ResNet34, we 
draw the classification accuracy curve of training set and 
validation set in Fig. 5. The ResNet34 model can achieve 
nearly 100% classification accuracy in training set using all 
kinds of inputs, while in the validation set using ROI images 
and edge images extracted by HED outperform other inputs. 
This result indicates traditional edge extraction operator may 
lose some useful information for classification, but our HED 
model keeps it. Table 3 shows the classification accuracy of 
different palmprint phenotypes using ResNet34. From which 
we can find using edges extracted by HED improves model 
performance in normal type, Simian type, and Sydney type 
compared with using ROI images, and the total accuracy 

increases 1.5%. We are also curious about the misclassified 
images, and Fig. 6 shows two typical misclassified Sydeny 
type images. Due to the complex distribution of principal 
lines, using ROI area or extracted lines images all fail to 
classify these two images into the right type.

Discussion

Recent researches have shown many promising applications 
using palmprint feature. In the biometric field, researchers 
started to use geometry features, principal-line features, and 
wrinkle features to verify a person’s identity (Shu and Zhang 
1998). In the forensic crime investigation field, palmprint 
images in the criminal scene were collected to help detect 
the identification of masked terrorists (Chan et al. 2017). 
In the medical field, Cascos researched 150 patients with 
congenital heart disease and analyzed their palmprint pattern 
(Cascos 1965). Such applications require higher demands for 
palmprint feature extraction and phenotype classification.

To the best of our knowledge, this study builds the first 
deep learning architecture for palmprint phenotype feature 
extraction and classification, which includes ROI extraction, 
principal lines extraction and phenotype classification. This 
study builds a large palmprint phenotype dataset with 9941 

Table 1  Distribution of training set, validation set and test set (without/with data enhancement)

Without enhancement Normal Simian Triple radial base crease Sydney Total

 Training 7168 238 521 25 7952
 Validation 900 28 61 6 995
 Test 890 37 61 6 994
 Total 8958 303 643 37 9941

 With enhancement Normal Simian Triple radial base crease Sydney Total

 Training (Enhanced) 7168 952 2084 100 10,304
 Validation 900 28 61 6 995
 Test 890 37 61 6 994
 Total 8958 1017 2206 112 12,293

Table 2  Accuracy on test set using different neural networks

Bold indicates best performance

Inputs Three lay-
ers MLP

Three lay-
ers Conv

ResNet18 ResNet34

Sobel Edge 0.895 0.889 0.915 0.928
Laplacian Edge 0.881 0.889 0.921 0.923
Canny Edge 0.874 0.870 0.898 0.894
Scharr Edge 0.878 0.880 0.923 0.906
ROI 0.895 0.870 0.937 0.942
HED Edge 0.923 0.888 0.943 0.957
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unique palms, and compares the performance of our method 
and traditional methods in the dataset. The result shows the 
effectiveness and reliability of our model.

To extract ROI areas, we need to find proper key points 
to build the coordinate system. Kekre calculates the dis-
tance between points in the hand contour and the centroid, 
and the points with the smallest distance are valley points. 
Chai regards the hand as a small convex hull, and the valley 
points are the farthest in convex defects to the convex hull. 
Both methods need precise hand contour tracking, while it 

will be difficult to get hand contour when the subject fin-
gers are closed or the luminance condition is complex. Our 
REM uses deep neural network BlazePalm to locate key 
points directly. And BlazePalm uses a large number of hand 
images in different postures and different environments for 
pre-training, and it is robust to irrelevant interference. By 
further discussing the failed cases, we can find traditional 
methods perform poorly in three situations; first, the fingers 
are closed together; second, the ROI area hanging in the air; 
third, the subjects wear a ring. Figure 3c shows one typical 
failed case of the Kekre ROI extraction method. Due to the 
subject’s fingers being closed, the detected palm contour is 
not complete, and the valley point between the index finger 
and middle finger is not included in the palm contour, lead-
ing to the failure of the valley point location.

In the principal line extraction task, we use four edge 
detection operators and HED edge detection network to 
extract the lines. Traditional edge detection operators rely 
on the grayscale value change to find the edge, but the 
edges on the palmprint include principal lines, small crest 
lines, and folds. So the result produced by edge detection 
operators contains much noise information. In Fig. 4c, we 
visualize the output from different layers of our HED edge 

Fig. 5  Phenotype classification accuracy using ResNet34 a in the training set and b in the validation set

Table 3  Accuracy on test set using ResNet34

Bold indicates best performance

Inputs Normal Simian Triple radial 
base crease

Sydney Total

Sobel Edge 0.972 0.454 0.656 0 0.928
Laplacian Edge 0.967 0.432 0.639 0 0.923
Canny Edge 0.965 0.189 0.377 0 0.894
Scharr Edge 0.976 0.432 0.246 0.167 0.906
ROI 0.973 0.622 0.770 0 0.942
HED Edge 0.983 0.703 0.770 0.500 0.957

Fig. 6  Two typical misclassified cases a the principal line in red box 
is too shallow, so it cannot be captured by the PLEM, which leads to 
the wrong classification, and b the lines in the red box have similar 

directions and similar depth, so both lines are extracted, which makes 
it difficult for the classifier to recognize
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detection model in different periods. We choose the output 
of epoch1, the starting epoch, and the output of epoch50, 
the last epoch in which the loss of HED model is nearly 
convergent. The output from shallow layers is similar to the 
edge detection operator output, containing principal lines, 
wrinkles, and many other useless features. With the layers 
becoming deeper, HED model will filter useless features and 
keep the principal lines feature. Such a process makes HED 
model achieve a higher SSIM value (0.813) compare with 
traditional edge detection operators.

For phenotype classifying, we choose a famous deep 
learning network ResNet34, and compare the results by dif-
ferent inputs. We use the edge extracted by the edge detec-
tion operator, the original ROI area, and the edge extracted 
by HED model. We can find that using edges extracted by 
HED has the highest classification accuracy 95.7% and using 
the original ROI area has the second highest accuracy. But 
using edges extracted by traditional edge detection operators 
has relatively lower accuracy. The reason accounting for this 
result may be that traditional edge detection operator lose 
some useful information for phenotype classifying. And in 
the contrast, our HED edge detection model keeps useful 
information and improves final performance.

This study also has some limitations. First, we only dis-
cuss the feature extraction and phenotype classifying of 
palmprint, and we can apply our model in other dermato-
glyphics or extend our model to other palmprint dataset. 
Second, there still exists a large space for further analysis of 
the relationship between palmprint phenotype and gene type. 
Last, the performance of the model in rare classes needs 
improvement due to the serious data imbalance problem. All 
the work will be considered in the future study.

Conclusion

In this paper, a palmprint phenotype classification architec-
ture is proposed, including REM, PLEM, and PC. In the 
REM, we utilize a pre-trained hand key point location model 
to improve the ROI extraction performance in complicated 
situations. For the PLEM, it’s the first palmprint principal 
line extraction model using deep neural network. And the 
comparison between our model and traditional edge detec-
tion operators shows the strong feature learning ability of 
our model, with 0.813 SSIM value. And we use the extracted 
principal lines to do palmprint phenotype classification task 
and achieve an accuracy of 95.7%. Also, we build a new 
manually labeled dataset for ROI extraction, principal line 
extraction, and phenotype classification. For future develop-
ment, we hope to apply the extracted principal line feature 
for other tasks such as palmprint recognition and further 
investigate the use of deep learning methods for other derm-
atoglyphics feature extraction and utilization.
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