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Abstract 39 

Overweight-related hypertension (OrH), defined by the coexistence of excess body 40 

weight and hypertension (HTN), is an increasing health concern elevating 41 

cardiovascular disease risks. This study evaluated the prediction performance of 42 

polygenic risk scores (PRS) and methylation risk scores (MRS) for OrH in 7605 43 

Chinese participants from two cohorts: the Chinese Academy of Sciences (CAS) and 44 

the National Survey of Physical Traits (NSPT). In CAS cohort, which predominantly 45 

consists of academics, males showed significantly higher prevalence of obesity, HTN, 46 

and OrH, along with worse metabolic syndrome indicators, compared to females. This 47 

disparity was less pronounced in NSPT cohort and in broader Chinese studies. Among 48 

ten PRS methods, PRS-CSx was the most effective, enhancing prediction accuracy for 49 

obesity [area under the curve (AUC) = 0.75], HTN (AUC = 0.74), and OrH (AUC = 50 

0.75), compared to baseline models using only age and sex (AUC = 0.55–0.71). 51 

Similarly, least absolute shrinkage and selection operator (LASSO)-based MRS 52 

models improved prediction accuracies for obesity (AUC = 0.70), HTN (AUC = 0.73), 53 

and OrH (AUC = 0.78). Combining PRS and MRS further boosted prediction 54 

accuracy to the AUC of 0.77, 0.76, and 0.80, respectively. These models stratified 55 

individuals into high (> 0.6) or low (< 0.1) risk categories, covering 59.95% for 56 

obesity, 31.75% for HTN, and 43.89% for OrH, respectively. Our findings highlight a 57 

higher OrH risk among male academics, emphasize the influence of metabolic and 58 

lifestyle factors on MRS predictions, and highlight the value of multi-omics 59 

approaches in enhancing risk stratification. 60 

 61 

KEYWORDS: Overweight-related hypertension; Polygenic risk scores; Methylation 62 

risk scores; Multi-omics prediction; Academics  63 
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Introduction 64 

Overweight-related hypertension (OrH) is a distinct clinical condition characterized 65 

by the concurrent disorders of both body weight and blood pressure [1–3]. Its global 66 

prevalence has largely increased over the past two decades, linking to a rise in the 67 

risks of cardiovascular and cerebrovascular diseases [4,5]. Recent genome-wide 68 

association studies (GWAS) [6] and epigenome-wide association studies (EWAS) [7] 69 

have uncovered numerous genetic and epigenetic factors associated with body weight 70 

and blood pressure. To date, the National Human Genome Research Institute - 71 

European Bioinformatics Institute (NHGRI-EBI) GWAS catalog [8,9] has cataloged 72 

4263 single nucleotide polymorphisms (SNPs) from 54 studies that are significantly 73 

associated with body mass index (BMI), spanning 1252 genes. Meanwhile, 36 studies 74 

have identified 2853 SNPs across 862 genes significantly associated with diastolic 75 

blood pressure (DBP) and systolic blood pressure (SBP) (Table S1). Furthermore, 76 

EWAS have identified 1581 CpG sites across 855 genes that are associated with BMI 77 

[10–15] along with 150 CpG sites from 85 genes associated with blood pressure 78 

(Table S2) [16–22].  79 

With the continuous discovery of a large number of genetic and epigenetic risk 80 

factors, polygenic risk scores (PRS) [23,24] and methylation risk scores (MRS) [18,25] 81 

have emerged as pivotal tools for profiling the risk landscape of OrH. For instance, a 82 

meta analysis involving 700,000 European individuals constructed a PRS using 941 83 

SNPs, which explained approximately 6% of the variance in BMI [26]. A stratification 84 

analysis from the Korean Genome and Epidemiology Study (KoGES) showed that 85 

participants in the highest PRS quartile had a two-fold increased risk of obesity and 86 

hypertension (HTN) compared to those in the lowest quartile [27]. Similarly, using 87 

EWAS data of nearly 5000 Europeans and Africans, a MRS constructed from 33 CpG 88 

loci accounted for 3.31% and 3.99% of the variance in SBP and DBP, respectively 89 

[28]. Additionally, a MRS based on 435 CpGs, derived from penalized regression of 90 

methylation data from 2562 unrelated participants in Generation Scotland, explained 91 

around 10% of BMI variance, with each standard deviation (SD) increase in MRS 92 

D
ow

nloaded from
 https://academ

ic.oup.com
/gpb/advance-article/doi/10.1093/gpbjnl/qzaf048/8164098 by guest on 01 July 2025



 

 

associated with a 37% higher risk of obesity [29]. Furthermore, by contrasting MRS 93 

with PRS, a recent review emphasized the importance of integrating genetic and 94 

epigenetic data for improved trait prediction [25]. Indeed, studies combining PRS and 95 

MRS have demonstrated an increase in the explained variance in BMI, up to 14% [30] 96 

and 19% [10], highlighting the potential of multi-omics approaches.  97 

Despite these achievements, as a comorbidity with various disorders, the 98 

prediction of OrH remains underexplored. The construction of PRS and MRS for OrH 99 

faces several challenges, especially in the Chinese population. One major limitation is 100 

the reduced efficacy of PRS and MRS when developed in one ancestry group and 101 

applied to others. To date, well-powered GWAS and EWAS have predominantly 102 

focused on individuals of European ancestry, limiting their applicability to other 103 

populations [31,32]. Moreover, cultural and environmental factors unique to the 104 

Chinese population may influence how genetic variations and epigenetic 105 

modifications contribute to disease risk [7,33].  106 

On the other hand, multiple approaches have been developed for constructing PRS 107 

and MRS. In addition to the classic clumping and thresholding (C+T) method [34], 108 

shrinkage methods such as Stacked C+T (SCT) [35], PRS-CS [36], LDpred2 [37,38], 109 

and lassosum [39] adjust the weight of SNPs based on linkage disequilibrium (LD) 110 

information. Other methods, such as PRS-CSx [40], CT-SLEB [41], PolyPred-P+ [42], 111 

JointPRS [43], and Polygenic Risk scOres based on an enSemble PEnalized 112 

Regression (PROSPER) [44], are specifically designed for deployment across 113 

multiple ancestries, enhancing generalizability across diverse populations. For MRS 114 

construction, common computations approaches include C+T [30] and penalized 115 

linear regression [11]. Furthermore, integrating both PRS and MRS effectively could 116 

offer a promising opportunity to improve risk prediction for OrH. 117 

In attempt to accurately assess OrH in the Chinese population, this study aimed to 118 

construct an integrative multi-omics model. Using data from 3021 individuals in the 119 

Chinese Academy of Sciences (CAS), we evaluated various PRS methodologies based 120 

on GWAS statistics from the BioBank Japan (BBJ) and the UK Biobank (UKB). 121 
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Simultaneously, we analyzed several MRS models based on prior EWAS findings 122 

using data from 3513 individuals in the National Survey of Physical Traits (NSPT). 123 

The performance of both PRS and MRS in predicting OrH risk was further validated 124 

in a separate dataset of 1071 individuals from the CAS. 125 

 126 

Results 127 

Higher obesity, HTN, and OrH risk in male academics 128 

Our study included a total of 7605 Chinese individuals from two cohorts: 991 129 

participants of phase 1 and 3101 of phase 2 from the CAS cohort with phenotype and 130 

genomic data, and 3513 participants from the NSPT cohort with phenotype and DNA 131 

methylation data. Additionally, methylation data were available for 1071 samples in 132 

phase 2 of the CAS cohort. According to the baseline data in Table 1, both the CAS 133 

and NSPT cohorts are middle-aged (average ages of 39.42 ± 10.11 years and 50.21 ± 134 

12.75 years, respectively), with slightly fewer males (47.8% and 37.1%, respectively). 135 

A notable feature of the CAS cohort is the high proportion of participants with higher 136 

education (99.4% compared to 12.5% in the NSPT cohort). 137 

A distinct pattern is observed in the CAS cohort, where obesity, HTN, and OrH 138 

exhibit a notably higher male-to-female prevalence (M/F) ratio compared to both the 139 

NSPT cohort and broader Chinese epidemiological studies. In CAS, as shown in 140 

Table 1, the proportion of males is 77.7% in obesity cases, 72.9% in HTN, and 81.0% 141 

in OrH. When converted to gender ratios, the M/F ratio for obesity is 3.8 (14.6% vs. 142 

3.8%, P = 3.60E−33) and for HTN is 2.9 (29.0% vs. 9.9%, P = 2.52E−72), and the 143 

M/F ratio for OrH is particularly concerning at 4.7 (21.5% vs. 4.6%, P = 8.50E−59). 144 

Notably, this gender disparity persists across all age groups (Figure 1). In contrast, 145 

the proportions of males in obesity, HTN, and OrH cases are all lower in NSPT cohort 146 

(44.2%, 43.5%, and 45.1%, respectively), with the gender disparity (M/F ratio) being 147 

much less pronounced (1.3, 1.3, and 1.4, respectively). The gender ratio of NSPT is 148 

similar to that observed in the national survey on obesity and HTN (Table S3) [45–149 
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50]. 150 

Additionally, compared to NSPT cohort, gender disparities in metabolic health 151 

were more pronounced in CAS. CAS males exhibited significantly worse levels of 152 

multiple metabolic syndrome indicators, including total cholesterol (TC), triglycerides 153 

(TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) (Table S4). 154 

In contrast, CAS females demonstrated significantly better indicators, including TG, 155 

HDL, LDL, and fasting blood glucose (FBG), compared to NSPT females. These 156 

findings highlight a notable gender difference in the health conditions of academics in 157 

China. 158 

Furthermore, we assessed healthy lifestyle scores in CAS cohort, calculated as the 159 

sum of six binary indicators (Table S5). As demonstrated in Figure 1, as high as 160 

67.1% of women have their scores ≥ 4 compared to only 30.8% of men reach this 161 

score (P = 2.54E−31). Normal BMI (18.5–23.9 kg/m2) and waist circumference (WC) 162 

(< 85 cm for men and < 80 cm for women) showed the most notable gender 163 

differences: BMI (34.4% in men vs. 66.2% in women, P = 3.12E−24) and WC (35.5% 164 

in men vs. 74.3% in women, P = 2.84E−35). Significant differences were also 165 

observed in the absence of current smoking (81.1% in men vs. 99.3% in women, P = 166 

1.36E−19) and the absence of excessive drinking (92.6% in men vs. 98.8% in women, 167 

P = 7.30E−06).  168 

 169 

PRS-CSx outperforms other PRS methods 170 

In this analysis, we utilized sub-datasets from the CAS cohort for PRS tuning, testing, 171 

and validation (see Materials and methods), including: the PRS tuning set (n = 2030, 172 

phase 2 without CAS1k), PRS testing set (n = 991, phase 1), and the validation set (n 173 

= 1071, CAS1k). For quantitative traits including BMI, DBP, and SBP, 10 PRS 174 

methods (C+T, SCT, PRS-CS, LDpred2, lassosum, PRS-CSx, CT-SLEB, 175 

PolyPred-P+, JointPRS, and PROSPER) were trained in the PRS tuning set using 176 

GWAS summary statistics from the UKB (n ≈ 450,000, European) and BBJ (n ≈ 177 

150,000, Japanese) (Figures S1 and S2; Table S6). The latter five methods (PRS-CSx, 178 

D
ow

nloaded from
 https://academ

ic.oup.com
/gpb/advance-article/doi/10.1093/gpbjnl/qzaf048/8164098 by guest on 01 July 2025



 

 

CT-SLEB, PolyPred-P+, JointPRS and PROSPER) represent multi-ancestry PRSs, 179 

where weights were derived by integrating UKB and BBJ GWAS data.  180 

Overall, throughout the tuning–testing–validation process (Tables S7–S12), the 181 

PRS generated using PRS-CSx method demonstrated robust performance, showing 182 

relatively strong prediction ability for the residuals of age-, sex-, and six genomic 183 

principal components regressed quantitative phenotypes, including BMI, SBP, and 184 

DBP. Specifically, PRS-CSx achieved an R2 of 2.40%–9.81% in predicting residual 185 

variance, with an average of 4.76% in testing set (slightly lower than 4.87% for 186 

PROSPER) and 5.54% in validation set (higher than 4.98% for PROSPER) (Figure 187 

2A; Table S12).  188 

When compared to the PRSs from the Polygenic Score (PGS) Catalog, the 189 

PRS-CSx method showed strong performance across multiple traits (BMI, SBP, and 190 

DBP) in both testing and validation sets (Table S13). The exceptions were DBP in the 191 

testing set, where PRS-CSx ranked second, slightly lower than that PGS003964 192 

(3.75% vs. 4.90%), and SBP, where PRS-CSx ranked second in the testing set and 193 

third in the validation set, with marginal differences from the top-performing PRS. 194 

These results underscore the broad applicability and robustness of PRS-CSx in 195 

capturing the genetic architecture of complex traits, which led us to choose PRS-CSx 196 

for the subsequent analysis. 197 

 198 

Prediction accuracy of PRS-CSx for quantitative and binary traits 199 

After comparison and selection of PRS-CSx, we further assessed its prediction 200 

performance in the validation dataset (CAS1k, n = 1071) in predicting quantitative 201 

traits (BMI, SBP, and DBP) and binary disease outcomes (obesity, HTN, and OrH). 202 

The PRSs were largely normally distributed (Kolmogorov–Smirnov normality test 203 

with Bonferroni correction for multiple comparisons, P > 0.05). 204 

For quantitative traits, our baseline prediction models, which incorporated sex and 205 

age only, revealed R2 values of 18.28% for BMI, 17.86% for DBP, and 20.47% for 206 

SBP. When these models were augmented with respective PRS-CSx, there was a 207 
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significant increase in accuracy, evidenced by R2 values of 26.54% for BMI, 21.21% 208 

for DBP, and 22.71% for SBP (Table 2).  209 

Similarly, for binary disease statuses including obesity, HTN, and OrH, models 210 

integrated with PRS-CSx also demonstrated improved accuracy compared to baseline 211 

models. The PRSBMI distinctively segregated obesity from non-obesity groups (P = 212 

4.35E−11, Figure 2B), with the odds ratio (OR) for obesity increased by 2.13 for each 213 

SD increment (OR/SD) in PRSBMI [95% confidence interval (CI): 1.77–2.57, P = 214 

1.70E−11] (Table S14). In a five-quantile schema, the OR for obesity rose 215 

progressively across quintiles, reaching 12.63 in the highest quintile (Figure 2C; Table 216 

S14). This inclusion of PRSBMI notably enhanced the model’s accuracy for obesity 217 

prediction, increasing the area under the curve (AUC) from 0.55 to 0.75 (Table 2). For 218 

HTN, the combined PRSSBP and PRSDBP (PRSHTN) showed significant differentiation 219 

between HTN and non-HTN groups (P = 2.24E−8) (Figure 2D), with an OR/SD of 220 

1.68 in PRSHTN (95% CI: 1.47–1.91, P = 1.04E−10) (Table S14). The ORs for HTN 221 

increased gradually across the five quantiles, peaking at 2.93 in the highest quintile 222 

(Figure 2E; Table S14). The inclusion of PRSHTN in the model resulted in an 223 

improvement in prediction accuracy for HTN (AUC increased from 0.70 to 0.74) 224 

(Table 2).  225 

Lastly, the model for predicting OrH showed a significant improvement in 226 

accuracy when including both PRSBMI and PRSHTN as predictors, with the AUC 227 

increasing from 0.71 to 0.75 (Table 2). Both of PRSBMI and PRSHTN demonstrated 228 

significant differentiation between OrH and non-OrH groups (P = 7.72E−5, P = 229 

5.16E−4) (Figure 2F), with an OR/SD of 1.42 in PRSBMI (95% CI: 1.23–1.63, P = 230 

3.88E−5) (Table S14) and 1.45 in PRSHTN (95% CI: 1.26–1.66, P = 1.63E−5) (Table 231 

S14). In the highest quintile, the ORs for OrH peaked at 2.36 and 2.02 for PRSBMI and 232 

PRSHTN, respectively (Figure 2G; Table S14). 233 

We further compared gender disparities in above analysis and no statistically 234 

significant differences were detected between males and females (t-test with 235 

Bonferroni correction for multiple comparisons, P > 0.05) (Figure S3A and B), 236 
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suggesting little genetic influence to the higher risk in men as observed above.  237 

 238 

Least absolute shrinkage and selection operator MRS outperforms linear models 239 

and contributes to OrH risk profiling 240 

Three MRS methods [least absolute shrinkage and selection operator (LASSO), linear 241 

1, and linear 2] were compared using distinct NSPT sub-dataset for MRS tuning (n = 242 

2047) and testing (n = 1466), as well as the validation set for final examination (n = 243 

1071, see Materials and methods). We focused on 1506 CpGs for BMI, 77 for DBP, 244 

and 107 for SBP by reviewing prior EWAS results (Table S11) [10–22]. All MRSs 245 

were normally distributed (Kolmogorov–Smirnov normality test with Bonferroni 246 

correction for multiple comparisons, P > 0.05). Among the three methods, LASSO 247 

achieved the best performance across all phenotypes in MRS testing set (RBMI
2 =248 

8.48%, RDBP
2 = 1.61%, and RSBP

2 = 3.02%,) and validation set (RBMI
2 = 10.03%, 249 

RDBP
2 = 4.68%, and RSBP

2 = 3.70%) (Figure 3A; Table S15).  250 

When compared to the baseline models that included sex and age as predictors, 251 

the LASSO MRS showcased enhanced accuracy in validation set. Specifically, R2 252 

values increased from 18.28% to 26.86% for BMI, from 17.86% to 23.15% for DBP, 253 

and from 20.47% to 25.72% for SBP (Table 2). Notably, the MRSBMI exhibited a 254 

substantial difference between obesity and non-obesity individuals (P = 6.09E−11) 255 

(Figure 3B) and an OR/SD of 1.88 for obesity (95% CI: 1.57–2.24, P = 4.94E−9) 256 

(Table S14). In a five-quantile schema, the OR for obesity rose progressively across 257 

quintiles, reaching 5.77 in the highest quintile (Figure 3C; Table S14). This 258 

integration improved the AUC for obesity from 0.55 to 0.70 (Table 2). Similarly, 259 

MRS HTN revealed a clear differentiation between HTN and non-HTN groups (P = 260 

6.87E−21) (Figure 3D), with an OR/SD of 1.65 (95% CI: 1.43–1.89) (P = 3.85E−09) 261 

(Table S14). The ORs for HTN increased gradually across the five quantiles, peaking 262 

at 4.02 in the highest quintile (Figure 3E; Table S14). This integration improved the 263 

AUC for HTN from 0.70 to 0.73 (Table 2). When considering both MRSBMI and 264 

MRSHTN in the OrH model, there was an increase in AUC from 0.71 to 0.78 (Table 2). 265 
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Both of MRSBMI and MRSHTN demonstrated significant differentiation between OrH 266 

and non-OrH groups (P = 7.17E−16 and P = 3.83E−23, respectively) (Figure 3F), 267 

with an OR/SD of 1.52 in MRSBMI (95% CI: 1.31–1.77, P = 4.42E−06) (Table S14) 268 

and 1.72 in MRSHTN (95% CI: 1.46–2.02, P = 4.99E−8) (Table S14). In the highest 269 

quintile, the ORs for OrH peaked at 6.03 and 6.52 for MRSBMI and MRSHTN, 270 

respectively (Figure 3G; Table S14). 271 

Notably, males exhibited significantly higher MRS values than females for BMI 272 

and blood pressure (1.20E−41 < P < 5.08E−4) (Figure S3). These disparities may 273 

suggest the distinct influence of life styles and environmental exposures between 274 

genders in this cohort. 275 

 276 

Impact of metabolic and lifestyle factors on MRS predictions 277 

We conducted a grouping analysis on the MRS-predicted values to assess whether 278 

other metabolic and lifestyle factors were associated with discrepancies between the 279 

MRS predictions and the observed values of BMI, DBP, and SBP (Table S16). The 280 

results indicated that discrepancies between the predicted and observed values are 281 

indeed associated with specific metabolic and lifestyle factors. For the MRS 282 

predictions underestimated BMI group, participants tended to have healthier lipid 283 

profiles (higher HDL, lower TG and LDL) and better lifestyle scores. Conversely, 284 

overestimation group was associated with less favorable lipid profiles, higher FBG, 285 

and poorer lifestyle scores. Similar patterns were observed for DBP and SBP, where 286 

overestimation by the MRS was linked to higher TC, LDL, FBG, and lower lifestyle 287 

scores. These results indicate that metabolic health and lifestyle behaviors may 288 

influence the accuracy of MRS predictions for these cardiovascular risk factors. 289 

 290 

Multi-omics model improved OrH risk profiling 291 

We further integrated MRS and PRS in a multi-omics score and assessed its 292 

performance in predicting risk of obesity, HTN, and OrH in the validation set 293 

according to a five-fold cross-validation design. For obesity, adding MRSBMI to the 294 
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PRS model improved the AUC from 0.75 to 0.77 (Figure 4A; Table 2). This 295 

multi-omics score fairly classified 0.47% of the population as high risk (predicted 296 

probability > 0.6), who indeed showed a high prevalence of 80.00% (Figure 4B); 297 

meanwhile, it effectively identified 59.48% of the population as having a low risk 298 

(predicted probability < 0.1), who in fact had a low prevalence of 4.71%. 299 

Consequently, this indicates that our model is informative for 59.95% of the 300 

population in obesity risk profiling. For HTN, adding MRSSBP and MRSDBP to the 301 

PRS model improved the AUC from 0.74 to 0.76 (Figure 4C; Table 2). And it is 302 

informative for 31.75% of the population in HTN risk profiling, effectively 303 

classifying the high risk (8.50% > 0.6 with a 71.43% prevalence) and low risk 304 

(23.25% < 0.1 with a 6.02% prevalence) groups (Figure 4D). In particular, for OrH 305 

adding MRSBMI, MRSSBP, and MRSDBP to PRS boosted AUC from 0.75 to 0.80 306 

(Figure 4E; Table 2). This was informative for 43.89% of the population and 307 

effectively classified high risk (4.30% > 0.6 with a 63.04% prevalence) and low risk 308 

(39.59% < 0.1 with a 4.25% prevalence) groups (Figure 4F).  309 

 310 

Discussion 311 

In this study, we aimed to develop an accurate and effective prediction model for OrH 312 

by analyzing data from two general population cohorts, CAS and NSPT, totaling 7605 313 

individuals. We assessed the performance of ten methods for PRSs and three 314 

strategies for MRSs using a tuning–testing–validation approach. Additionally, we 315 

developed a multi-omics model to enhance prediction accuracy. Throughout our 316 

analysis, we also found distinct population characteristics among academics in our 317 

study. 318 

 319 

Factors related to gender disparity in disease prevalence among Chinese 320 

academics 321 

One unexpected observation in our study was the notably high prevalence of obesity, 322 

HTN, and OrH among males in Chinese academics. Therefore we reviewed 323 
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epidemiological data from the past three decades, which show significant changes in 324 

the prevalence of these conditions [45–50], most likely driven by China’s rapid 325 

economic growth and various risk factors, including economic status, gender, age, 326 

education, smoking, drinking, and inhabiting regions [51–56]. The M/F ratio for 327 

obesity has fluctuated between 0.6 and 1.3 in both urban and rural areas, with a 328 

marked disparity in urban areas (M/F = 1.9) and even more pronounced among 329 

academics (M/F = 3.8) (Table S3). For HTN, the M/F reached 2.9, significantly higher 330 

than in NSPT cohort and broader Chinese epidemiological studies, where it ranges 331 

from 1.1 to 1.3. 332 

The gender disparity in disease prevalence observed among Chinese academics 333 

aligns with findings from several studies. Research from the China Health and 334 

Nutrition Survey and the Chinese Center for Disease Control and Prevention indicated 335 

that women with higher education levels tend to have a lower BMI and reduced odds 336 

of being overweight, while men with higher education levels exhibit a higher BMI 337 

and increased odds of being overweight in China [57,58]. Similar patterns have been 338 

observed in studies from Brazil, Russia, India, China, South Africa (BRICS) 339 

economies [59] and Southern European countries [60,61], further highlighting the 340 

association between education levels and obesity, particularly among women. Some 341 

studies have also examined the impact of education on HTN, indicating that 342 

individuals with higher education levels generally have healthier blood pressure. A 343 

Mendelian randomization study using data from FinnGen and the UKB suggested a 344 

causal relationship between education level and HTN. For each SD increase in 345 

genetically predicted higher education, the risk of HTN decreases by 44% [62]. 346 

Additionally, a study involving approximately 1.28 million adults from the China 347 

Health Evaluation And risk Reduction through nationwide Teamwork (ChinaHEART) 348 

project found that as education level increases, there is a significant downward trend 349 

in SBP [63]. 350 

To explore the potential reasons for the significant sex disparity, we first examined 351 

the genetic possibility and found no significant genetic differences in the performance 352 
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of PRS. However, notable epigenetic differences were observed in MRS for the 353 

corresponding diseases between males and females. Consistent with previous studies 354 

linking higher MRS to poorer metabolic health [11,64], our analysis showed that male 355 

academics exhibit higher MRS on BMI, DBP, and SBP, along with their relatively 356 

unhealthy lifestyles and metabolic syndrome traits. These findings suggest that the 357 

observed gender disparity is likely influenced by the combined effects of metabolic 358 

health and epigenetic factors. 359 

We then briefly explored potential epigenetic explanations for the observed gender 360 

differences in disease prevalence. First, when examining regular physical activity, 361 

only minimal differences between sexes were found (Table S5), which aligns with 362 

data of a 15-year national survey [65]. Thus, physical activity does not provide a 363 

compelling explanation for the gender disparities observed in the CAS cohort. 364 

However, for other lifestyle factors and metabolic syndrome profiles, male academics 365 

showed significantly poorer parameters compared to their female counterparts (Tables 366 

S4 and S5). These differences are likely related to the more frequent social gatherings 367 

in males nationwide, such as dinners and drinking events, which are commonly 368 

associated with higher calorie expenditure and alcohol consumption [66]. Additionally, 369 

men may experience great social pressure as the primary bread-winners for their 370 

families, which is also likely associated with unhealthy lifestyle choices and an 371 

increased risk of metabolic-related diseases [67,68]. Considering the dominant male 372 

composition in academia (especially in full professors), one possible reason for the 373 

notably high M/F ratio at CAS (3.8) could be the intense academic pressure and heavy 374 

workload in males, which may largely boost unhealthy lifestyle habits. On the other 375 

hand, cultural attitudes in China tend to favor slimmer figures for women [47], and 376 

female academics may demonstrate greater self-discipline regarding their health as 377 

well as more resources and opportunities to maintain their body shapes [55], which 378 

further accentuate gender disparity in our cohort.  379 

 380 

Leveraging a multi-omics approach to enhance prediction analysis for OrH 381 
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profiling 382 

OrH, as a common comorbidity pattern, would exacerbate cardiovascular and 383 

cerebrovascular damage more aggressively than simple obesity and HTN. Especially 384 

its prevalence has shown a significant upward trend globally in the past 20 years. 385 

Although the integration of PRS and MRS demonstrates improved utility in various 386 

diseases, there still exists a deficiency in multi-omics prediction models for OrH. In 387 

this study, we developed such an approach for OrH prediction using both genomic and 388 

epigenomic signals, achieving an AUC as high as 0.80.  389 

We first developed effective PRSs for the Chinese population to predict BMI, DBP, 390 

and SBP by benchmarking five single-ancestry approaches (C+T, SCT, PRS-CS, 391 

LDpred2, and lassosum) and five multi-ancestry approaches (PRS-CSx, CT-SLEB, 392 

PolyPred-P+, JointPRS, and PROSPER). Among all methods, the top three with the 393 

highest accuracy are multi-ancestry methods across all traits. For BMI, the R2 values 394 

for the top three multi-ancestry methods ranged from 8.74% to 9.81%, compared to 395 

the best single-ancestry model, which achieved 6.36% in validation analysis (Table 396 

S12). Similarly, for DBP the highest R2 of multi-ancestry models was 5.18%, 397 

surpassing the best single-ancestry model of 3.28%. Our results well confirmed the 398 

outperformance of multi-ancestry PRS approaches over single-ancestry, and further 399 

demonstrated the enhanced generalizability of multi-ancestry PRS by leveraging 400 

shared genetic effects across different ancestries.  401 

Among multi-ancestry PRS models, PRS-CSx consistently exhibited strong 402 

performance, achieving the highest R2 for BMI and consistently ranking among the 403 

top three for both DBP and SBP in the validation set. This superior performance of 404 

complex traits across ancestries may be attributed to PRS-CSx’s advantage of 405 

Bayesian continuous shrinkage. Except for being only slightly (< 0.4%) behind 406 

PGS003882 and PGS005015 for SBP in the validation set, the PRS-CSx model 407 

developed in our study notably outperforms many published models in the PGS 408 

Catalog (116 PRSs for BMI, 72 for SBP, and 51 for DBP). These results further 409 

emphasize the potential of our PRS profiling for the Chinese population as a robust 410 
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and reliable tool for genetic risk prediction and precision medicine applications. 411 

Unlike genetic models, methylation data provides a real-time snapshot of an 412 

individual’s risk profile by capturing the epigenetic landscape, which reflects not only 413 

genetic susceptibility but also modifiable influences that contribute to disease 414 

progression, as reported in numerous studies [69,70]. Therefore we aimed to use MRS 415 

for potential disease prediction based on currently available baseline data. After 416 

feature selection and optimization across various methylation models, LASSO MRS 417 

demonstrated the best performance in predicting BMI, DBP, and SBP. Our results 418 

yielded similar or better R2 compared to previous studies (e.g., 10.03% for BMI vs. 419 

10.00% reported [29], and 4.68% for blood pressure vs. 3.99% reported [28]). 420 

Considering the environmental or lifestyle factors, these MRS models, especially with 421 

longitudinal data in the future, may provide valuable insights into an individual’s 422 

health status and potentially serve as early warnings for unhealthy conditions. 423 

Moreover, combining MRS with PRS enhances risk prediction by linking genetic 424 

susceptibility with current epigenetic states. Indeed with the AUC of 0.75 for PRS and 425 

0.78 for MRS, we observed an integrated AUC of 0.80 for OrH risk profiling, further 426 

confirming a shared molecular mechanism in obesity and HTN. This profiling may 427 

also fill a critical gap in individualized early warning for cardiovascular and metabolic 428 

disorders. By identifying high-risk individuals (risk score > 0.6) using multi-omics 429 

models, such as the 4.30% for OrH in CAS cohort, healthcare providers can 430 

implement more targeted preventive measures and treatment strategies to improve 431 

their health status.  432 

 433 

Conclusion 434 

This research reveals a notably high prevalence of obesity, HTN, and OrH among 435 

males but significantly lower prevalence among females in Chinese academics with 436 

characterizations of research career and higher education. These results considerably 437 

diverge from common patterns observed in Chinese epidemiological investigations. 438 
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Additional analysis indicates such large gender disparities are primarily associated to 439 

the complex interplay among epigenetic factors, lifestyle, and metabolic health, 440 

raising concerns about notably higher risks for males within Chinese academics. In 441 

omics analysis, PRS-CSx and LASSO in the MRS method demonstrate high potential 442 

as robust tools for risk assessment of obesity, HTN, and OrH. The integration of PRS 443 

and MRS further enhance the accuracy of the risk profiling, suggesting the 444 

effectiveness of multi-omics approach for improved personalized risk assessment 445 

strategies especially for OrH high-risk populations. 446 

 447 

Materials and methods 448 

Study population — CAS cohort 449 

This study involved 4092 Chinese participants from the CAS cohort, which was 450 

established in 2015 to target employees of the CAS in the Beijing region. Informed 451 

consent was obtained from all participants, and the study protocol was approved by 452 

the Ethics Committee of the Beijing Institute of Genomics (BIG) and associated 453 

hospitals. The cohort was highly educated, with 99.4% holding at least a university 454 

degree. Before undergoing clinical assessments, participants completed an online 455 

questionnaire that gathered information on factors such as gender, smoking status, 456 

alcohol consumption, tea intake, and sleep duration. Clinical health assessments, 457 

including anthropometric, physical, blood, urine, and imaging exams, were performed 458 

at designated hospitals, where 8 ml of blood was collected from each participant. The 459 

research protocol received approval from the Ethics Committee of the BIG, CAS 460 

(Approval Nos. 2015H023 and 2021H001), and the Ethics Committee of Beijing 461 

Zhongguancun Hospital (Approval No. 20201229). 462 

Recruitment occurred in two phases. Phase 1 (2015–2016) included 991 463 

participants, whose DNA samples were analyzed using 30X whole-genome 464 

sequencing (WGS), and all phenotypic data were collected at the General Hospital of 465 

Aviation Industry Corporation of China. Phase 2 (2020–2021) added 3101 466 

participants, whose DNA samples were analyzed using Illumina genotyping 467 
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microarrays, and phenotypic data were collected at Beijing Zhongguancun Hospital. 468 

In phase 2, 1071 individuals were designated as the CAS1k subgroup, designed to 469 

provide multi-omics data, with their samples analyzed using Illumina methylation 470 

microarrays. 471 

 472 

Study population — NSPT cohort 473 

The NSPT cohort is a population-based prospective cohort study consisting of 3523 474 

Han Chinese individuals from various regions of China, including Taizhou, Nanning, 475 

and Zhengzhou (1310 males and 2213 females, aged from 18 to 83 years old, mean ± 476 

SD = 50.21 ± 12.75). After quality control, 3513 participants remained for analysis, 477 

which included three phases: phase 1 (n = 690) in 2018, phase 2 (n = 776) in 2019, 478 

and phase 3 (n = 2047) in 2019. DNA methylation was assessed using the Illumina 479 

methylation microarray on blood samples. The study was approved by the Ethics 480 

Committee of Shanghai Institutes for Biological Sciences (ER-SIBS-261410), and 481 

written informed consent was obtained from all participants. 482 

 483 

Definitions of overweight, obesity, HTN, OrH, healthy lifestyle, and higher 484 

education 485 

Overweight was defined as a BMI between 24.0 and 27.9 kg/m2, while obesity was 486 

defined as BMI ≥ 28.0 kg/m2 according to China’s guidelines [71]. HTN was 487 

defined as either SBP ≥  140 mmHg, DBP ≥  90 mmHg, self-reported HTN 488 

diagnosis, or use of antihypertensive medications. Individuals with both a BMI ≥ 24 489 

and HTN were categorized as having OrH [72]. It is important to note that thresholds 490 

for defining obesity or HTN may vary across populations [73,74], and comparisons 491 

with studies using different criteria should be interpreted with caution. 492 

Healthy lifestyle factors were defined based on the China Kadoorie Biobank 493 

(CKB) criteria [75], which include not smoking, not engaging in excessive alcohol 494 

consumption, maintaining a healthy diet (daily fruit and vegetable intake), 495 

participating in regular physical activity, and having a BMI between 18.5 and 23.9 496 
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kg/m2 and a waist circumference of < 85 cm for males and < 80 cm for females. 497 

Participants earned a score of 1 for each criterion that they met and 0 for each one that 498 

they did not, resulting in a total score ranging from 0 to 6, representing their overall 499 

healthy lifestyle. Higher education was defined as having any college or university 500 

degree.  501 

 502 

WGS and microarray genotyping in CAS cohort 503 

WGS was performed at 30X coverage using the Illumina HiSeq 3000 (Illumina, San 504 

Diego, CA), and sequencing reads were aligned to the hg19 reference genome [76]. 505 

Variants were called using Genome Analysis Toolkit (GATK) [77] and annotated 506 

using ANNOVAR [78], with detailed methods for sample and library preparation 507 

reported previously [79]. 508 

Microarray genotyping was conducted using the Infinium Asian Screening Array 509 

+ MultiDisease-24 BeadChip (Illumina, San Diego, CA, USA). SNP genotypes were 510 

phased and imputed using the IMPUTE2 [80] based on the East Asian population in 511 

the 1000 Genomes Project [81,82].  512 

Quality control measures included removing individuals with gender mismatches, 513 

low genotyping call rates (< 97%), or abnormal heterozygosity (outside the mean ± 3 514 

SD range). For SNPs, we excluded those with imputation scores < 0.6 (in the CAS 515 

phase 2 cohort), Hardy–Weinberg equilibrium P < 1E−4, genotyping call rates < 98%, 516 

and minor allele frequency (MAF) < 1%. After these steps, 3,169,262 SNPs and 4092 517 

individuals were retained for analysis. 518 

 519 

Methylation microarray of CAS1k and NSPT cohort 520 

Both the CAS1k and NSPT cohorts’ DNA methylation data were generated using the 521 

Illumina Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA, USA). The 522 

raw array data were processed using the ChAMP package [83] in R to compute β 523 

values for methylation levels. Probes were filtered based on Illumina quality 524 

thresholds (bead count < 3 in > 5% of samples and 1% of samples with a detection P 525 
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value > 0.05). Batch effects were corrected using the ComBat [84,85] method, and 526 

cell-type heterogeneity was adjusted using the EpiDISH method [86]. After quality 527 

control, 751,015 CpGs were retained for the CAS1k cohort, and 811,876 CpGs were 528 

retained for the NSPT cohort. 529 

 530 

Construction and selection of PRS 531 

The PRS construction and selection followed a tuning–testing–validation design using 532 

the CAS cohort. The tuning set included 2030 participants from phase 2 (excluding 533 

CAS1k), the testing set had 991 participants from phase 1, and the validation set 534 

consisted of 1071 participants from CAS1k. 535 

PRSs for BMI, DBP, and SBP were derived using GWAS summary statistics from 536 

the UKB [87] (~ 450,000 Europeans) and BBJ [88,89] (~ 150,000 Japanese). Ten PRS 537 

methods were applied: C+T [34], SCT [35], PRS-CS [36], LDpred2 [37,38], lassosum 538 

[39], PRS-CSx [40], CT-SLEB [41], PolyPred-P+ [42], JointPRS [43], and PROSPER 539 

[44]. Hyperparameters were fine-tuned in the tuning set and evaluated in the testing 540 

and validation sets, with performance assessed by R2 and 95% CI using bootstrap 541 

resampling (k = 10,000, detailed in File S1). 542 

To assess the optimal PRS for East Asians, we compared it to existing scores in 543 

the PGS Catalog, selecting 48, 4, and 20 PRSs for BMI, DBP, and SBP, respectively, 544 

based on the required information. The best-performing PRS was then used for 545 

multi-omics prediction analysis in the validation set. In all PRS analyses, phenotypes 546 

were regressed on age, sex, and six genomic principal components, with residuals 547 

used for PRS modeling to calculate adjusted R2 values reflecting variance explained 548 

beyond potential confounders. 549 

 550 

Construction and selection of MRS 551 

The MRS construction and selection followed a tuning–testing–validation design 552 

using both NSPT and CAS1k cohort. The MRS tuning set included 2047 participants 553 

from phase 2 of the NSPT cohort, while the MRS testing set consisted of 1466 554 
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participants from the phase 1 and phase 3. The validation set was made up of 1071 555 

individuals from CAS1k. MRSs for BMI, DBP, and SBP were derived from findings 556 

in previous studies [10–22] resulting in final sets of 1506, 77, and 107 CpGs for BMI, 557 

DBP, and SBP, respectively (details provided in File S1). 558 

To construct the MRSs, we used three different methods: linear regression 1, 559 

which included all CpGs from the studies without filtering; linear regression 2, which 560 

selected only CpGs with a P value < 0.05; and LASSO regression, which applied 561 

penalized linear regression to optimize the model. Different CpG sets with 562 

corresponding beta coefficients were generated in the tuning set, then evaluated and 563 

validated in the testing and validation sets.  564 

The best-performing MRS was selected and applied to the validation set for 565 

multi-omics prediction analysis. In all MRS analyses, phenotypes were regressed on 566 

age, sex, and cell composition, with the residuals serving as the dependent variable for 567 

MRS modeling. This approach enabled us to report adjusted R2 values and 95% CI, 568 

calculated through bootstrap resampling (k = 10,000), that account for the variance in 569 

MRS explained beyond the confounding effects of age, sex, and cell composition. 570 

 571 

Grouping analysis on the MRS-predicted values 572 

A grouping analysis on the MRS-predicted values was performed in validation set to 573 

determine whether discrepancies between the MRS predictions and observed values 574 

for BMI, DBP, and SBP could be associated with metabolic and lifestyle factors. 575 

Participants were grouped based on quantiles of the prediction error (predicted minus 576 

observed). The groups included the lowest 10% quantile, where the MRS significantly 577 

underestimated the trait; the middle 80% quantiles, where the MRS predictions 578 

closely matched the observed values; and the highest 10% quantile, where the MRS 579 

significantly overestimated the trait. Metabolic factors, including HDL, LDL, TC, TG, 580 

FBG, and healthy lifestyle score, were compared across these groups using 581 

independent t-tests to identify significant differences between the underestimated, 582 

accurately predicted, and overestimated groups. 583 
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 584 

Multi-omics risk prediction 585 

The best-performing PRS and MRS were combined into multi-omics scores, and their 586 

prediction performance was assessed in the validation set using linear regression for 587 

continuous traits (BMI, SBP, and DBP) and logistic regression for binary traits 588 

(obesity, HTN, and OrH). These models were adjusted for age and sex as covariates. 589 

The performance was evaluated using a five-fold cross-validation design, which was 590 

trained on four parts and tested on the remaining one, and this process is repeated five 591 

times, each time using a different part of the data for testing. The AUC are averaged 592 

across the five iterations to provide a more generalized estimate of the model’s 593 

prediction power. This approach ensured a consistent and robust comparison of 594 

baseline (only sex and age), PRS, MRS, and multi-omics approaches. 595 

For continuous traits, separate models were developed using the corresponding 596 

PRS, MRS, or both (multi-omics) as predictors. For binary traits, obesity models used 597 

PRSBMI, MRSBMI, or both as predictors. HTN models incorporated either the average 598 

of PRSDBP and PRSSBP, the average of MRSDBP and MRSSBP, or both averages as 599 

predictors. For OrH, models included PRSBMI and the average of PRSDBP and PRSSBP, 600 

MRSBMI and the average of MRSDBP and MRSSBP, or all four predictors. 601 

Model performance was assessed using R2 for continuous traits and AUC for 602 

binary traits, calculated through 5-fold cross-validation within the validation set. All 603 

analyses were performed using R (version 4.0.3) and Python (version 3.6.4). 604 

 605 

Ethical statement 606 

The research protocol received approval from the Ethics Committee of the BIG, CAS 607 

(Approval Nos. 2015H023 and 2021H001), the Ethics Committee of Beijing 608 

Zhongguancun Hospital (Approval No. 20201229), the Ethics Committees of Fudan 609 

University (Approval No. 14117), and the Shanghai Institutes for Biological Sciences 610 

(Approval No. ER-SIBS-261410). Participants provided written informed consent 611 
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allowing use of their samples and data for medical research purposes, and these 612 

ethical regulations cover the work in this study. Written informed consent was 613 

obtained from all of the participants. 614 

 615 

Code availability 616 

C+T and SCT are available at 617 

https://github.com/privefl/bigsnpr/tree/cef0482c3c87ff51b63f5f2b0c896c75717ab92d618 

/vignettes. PRS-CS is available at https://github.com/getian107/PRScs. PRS-CSx: 619 

https://github.com/getian107/PRScsx. CT-SLEB is available at 620 

https://andrewhaoyu.github.io/CTSLEB/. JointPRS is available at  621 

https://github.com/LeqiXu/JointPRS. PROSPER is available at 622 

https://github.com/Jingning-Zhang/PROSPER. LDpred and lassosum are available at 623 

https://privefl.github.io/bigsnpr/articles/LDpred2.html. PolyPred-P+ is available at 624 

https://github.com/omerwe/polyfun. The code has also been submitted to BioCode at 625 

the National Genomics Data Center (NGDC), China National Center for 626 

Bioinformation (CNCB) (BioCode: BT007949), which is publicly accessible at 627 

https://ngdc.cncb.ac.cn/biocode/tools/BT007949.   628 

 629 

Data availability 630 

The raw sequencing data of the CAS cohort have been deposited in the Genome 631 

Sequence Archive [90] at the National Genomics Data Center (NGDC), China 632 

National Center for Bioinformation (CNCB) (GSA: CRA000631) that are publicly 633 

accessible at https://ngdc.cncb.ac.cn/gsa. The genome sequence has been deposited in 634 

the Genome Warehouse [91] at the NGDC, CNCB (GWH: GWHAAAS00000000) 635 

that is publicly accessible at http://bigd.big.ac.cn/gwh. Additionally, the methylation 636 

data from CAS cohort have been deposited in the Open Archive for Miscellaneous 637 

Data at the NGDC, CNCB (OMIX: OMIX004333) that are publicly accessible at 638 

https://ngdc.cncb.ac.cn/omix. The methylation data from NSPT have been deposited 639 
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in the OMIX at the NGDC, CNCB (OMIX: OMIX004363) that are publicly 640 

accessible at https://ngdc.cncb.ac.cn/omix. 641 
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Figure legends 951 

Figure 1  Prevalence of obesity, HTN, and OrH across age groups and healthy 952 

lifestyle scores by gender 953 

A.–C. Prevalence of obesity (A), HTN (B), and OrH (C) in males (red) and females 954 

(green) across different age groups in the CAS cohort (n = 4092). D. Distribution of 955 

healthy lifestyle scores by gender in the CAS1k multi-omics cohort (n = 1071). The 956 

healthy lifestyle score, ranging from 0 (least healthy) to 6 (most healthy), is calculated 957 

as the sum of six binary criteria: non-smoking, no excessive alcohol consumption, 958 

daily intake of fruits and vegetables, regular physical activity, BMI between 18.5 and 959 

24, and waist circumference < 85 cm for males and < 80 cm for females. BMI, body 960 

mass index; HTN, hypertension; OrH, overweight-related hypertension; CAS cohort, 961 

Chinese Academy of Sciences cohort. 962 

 963 

Figure 2  Performance of PRSs for BMI, DBP, and SBP as well as their 964 

association with obesity, HTN, and OrH 965 

A. The R2 values (Y-axis) represent the proportion of phenotypic variance explained 966 

by PRS for BMI, DBP, and SBP across different combinations of GWAS and methods 967 

(X-axis) in the testing dataset (n = 991, upper panel) and the validation dataset (n = 968 

1071, lower panel). Each bar corresponds to a specific method, as indicated by the 969 

color-coded legend. The phenotype was regressed on age, sex, and six PCs, and the 970 

residual from this regression was used as the dependent variable in the PRS modeling 971 

analyses. B. Boxplot of PRS for BMI (PRS_BMI) in control vs. obesity case groups. 972 

C. OR for obesity across quintiles of PRS_BMI, with the lowest 20% quintile serving 973 

as the reference group. D. Boxplot of PRS for HTN (PRS_HTN) in control vs. obesity 974 

case groups. E. OR for HTN across quintiles of PRS_HTN, with the lowest 20% 975 

quintile serving as the reference group. F. Boxplot of PRS for BMI (PRS_BMI) and 976 

HTN (PRS_HTN) in control vs. OrH case groups. G. OR for OrH across quintiles of 977 

PRS_BMI and PRS_HTN, with the lowest 20% quintile serving as the reference 978 
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group. ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05. DBP, diastolic 979 

blood pressure; SBP, systolic blood pressure; PRS, polygenic risk score; PC, principal 980 

component; OR, odds ratio; GWAS, genome-wide association studies; C+T, clumping 981 

and thresholding; SCT, Stacked C+T; PROSPER, polygenic risk scores with penalized 982 

regression followed by ensemble learning; UKB, UK Biobank; BBJ, BioBank Japan. 983 

 984 

 985 

Figure 3  Performance of MRSs for BMI, DBP, and SBP as well as their 986 

association with obesity, HTN, and OrH 987 

A. The R2 values (Y-axis) represent the proportion of phenotypic variance explained 988 

by the MRSs for BMI, DBP, and SBP across different methods (X-axis). Results are 989 

shown for the testing dataset (n = 1466, upper panel) and the validation dataset (n = 990 

1071, lower panel). Each bar corresponds to a specific method, as indicated by the 991 

color-coded legend. The phenotype was regressed on age, sex, and cell component 992 

proportions, and the residual from this regression was used as the dependent variable 993 

in the MRS modeling analyses. B. Boxplot of MRS for BMI (MRS_BMI) in control 994 

vs. obesity case groups. C. OR for obesity across quintiles of MRS_BMI, with the 995 

lowest 20% quintile serving as the reference group. D. Boxplot of MRS for HTN 996 

(MRS_HTN) in control vs. obesity case groups. E. OR for HTN across quintiles of 997 

MRS_HTN, with the lowest 20% quintile serving as the reference group. F. Boxplot 998 

of MRS for BMI (MRS_BMI) and HTN (MRS_HTN) in control vs. OrH case groups. 999 

G. OR for OrH across quintiles of MRS_BMI and MRS_HTN, with the lowest 20% 1000 

quintile serving as the reference group. ****, P < 0.0001; ***, P < 0.001, **, P < 1001 

0.01; *, P < 0.05. MRS, methylation risk score; LASSO, least absolute shrinkage and 1002 

selection operator. LR_005, linear regression using only significant CpG sites with P 1003 

< 0.05; LR_all, linear regression using all available CpG sites. 1004 

 1005 

Figure 4  The prediction performance for obesity, HTN, and OrH using 1006 
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multi-omics models in the validation set 1007 

A. The AUC for obesity was assessed using a 5-fold cross-validated logistic 1008 

regression model. The predictors included age and sex (M0), age, sex, and PRS (M1), 1009 

age, sex, and MRS (M2), and age, sex, PRS, and MRS (M3) in the validation set (n = 1010 

1071). B. In the multi-omics prediction model (M3), further focus was placed on 1011 

individuals with extreme prediction probabilities for obesity. The bars represent the 1012 

number of participants within specific prediction probability intervals, with the blue 1013 

bar indicating low risk (< 0.10) and the red bar indicating high risk (> 0.60). The 1014 

orange line represents the prevalence in each interval. C. and D. The same approach 1015 

was applied to the multi-omics prediction model for HTN. E. and F. The approach 1016 

was also applied to the prediction model for OrH. AUC, area under the curve. 1017 

 1018 

Table 1  Baseline characteristics of participants in the study 1019 

Table 2  The performance of different models for obesity, HTN, and OrH in the 1020 

validation set 1021 
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Table 1  Baseline characteristics of participants in the study 

 

Characteristics Total 

 Obesity (BMI ≥ 28)  HTN (SBP ≥ 140 or DBP ≥ 90)  OrH (BMI ≥ 24 with HTN) 

  Control Case P  Control Case P  Control Case P 

CAS cohort N 4092  3724 368   3314 778   3572 520  

Age, years 39.42 ± 10.11  39.18 ± 10.10 41.81 ± 9.93 5.76E−06  38.05 ± 9.35 45.27 ± 

11.10 

6.18E−59  38.42 ± 9.63 46.27 ± 

10.69 

2.20E−54 

Male, n (%) 1955 (47.78%)  1669 (44.82%) 286 (77.72%) 3.60E−33  1388 (41.88%) 567 (72.88%) 2.52E−72  1534 (42.95%) 421 (80.96%) 8.50E−59 

Higher education 4067 (99.39%)  3700 (99.36%) 367 (99.73%) 0.60   3303 (99.67%) 764 (98.20%) 0.12   3554 (99.50%) 513 (98.65%) 0.05 

SBP, mmHg 118.17 ± 14.26  117.10 ± 13.69 129.05 ± 15.34 1.08E−48  114.03 ± 10.78 135.84 ± 13.78 1.22E−256  115.34 ± 11.99 137.63 ± 13.41 7.13E−206 

DBP, mmHg 76.57 ± 10.95  75.83 ± 10.56 84.12 ± 

11.94 

6.65E−42  73.35 ± 8.48 90.31 ± 9.59 2.22E−303  74.43 ± 9.44 91.26 ± 9.24 3.69E−234 

BMI, kg/m2 23.80 ± 3.26  23.14 ± 2.44 30.48 ± 3.01 0  23.34 ± 3.05 25.75 ± 3.40 2.12E−68  23.27 ± 2.98 27.42 ± 2.78 1.64E−157 

NSPT cohort N 3513  2970 543   2314 1199   2741 782  

Age, years 50.21 ± 12.75  50.34 ± 13.01 49.49 ± 

11.21 

0.2  47.26 ± 13.03 55.89 ± 9.99 1.03E−52  50.03 ± 12.95 52.40±9.75 5.07E−03 

Male, n (%) 1304 (37.12%)  1064 (35.82%) 240 (44.20%) 2.47E−04  783 (33.84%) 521 (43.45%) 2.75E−08  957 (34.91%) 353 (45.14%) 2.25E−07 

Higher education 439 (12.49%)  372 (12.53%) 67 (12.34%) 0.96  391 (16.90%) 48 (4.00%) 1.10E−27  403 (12.42%) 37 (4.73%) 1.57E−13 
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SBP, mmHg 129.47 ± 20.41  128.24 ± 20.43 136.17 ± 18.98 2.26E−14  118.16 ± 11.26 151.29 ± 15.91 3.55E−284  127.71 ± 19.81 150.88 ± 14.70 1.32E−62 

DBP, mmHg 80.65 ± 11.79  79.68 ± 11.50 85.98 ± 

11.91 

5.92E−26  75.02 ± 8.27 91.54 ± 9.77 2.63E−224  79.57 ± 11.22 93.87 ± 

10.47 

1.50E−74 

BMI, kg/m2 24.49 ± 3.54  23.44 ± 2.62 30.24 ± 2.12 0  23.97 ± 3.41 25.50 ± 3.59 3.76E−23  24.00 ± 3.16 30.52 ± 2.11 9.31E−182 

Note: Characteristics of participants in the CAS (n = 4092) and NSPT cohort (n = 3513), stratified by HTN, obesity, and OrH, are presented. The 

table includes the distribution of higher education, age, sex, SBP, DBP, and BMI for both control and case groups. Values are presented as mean 

± standard deviation and n (%) for characteristics. Statistical significance (P) for differences between cases and controls is indicated. The 

self-reported clinically diagnosed HTN or use of anti-hypertensive medication were indluded as HTN case. BMI, body mass index; DBP, 

diastolic blood pressure; SBP, systolic blood pressure; HTN, hypertension; OrH, overweight-related hypertension; CAS cohort, Chinese 

Academy of Sciences cohort; NSPT cohort, National Survey of Physical Traits cohort. 
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Table 2  The performance of different models for obesity, HTN, and OrH in the validation set 

Model BMI SBP DBP Obesity HTN OrH 

Baseline model 18.28% (13.79%–22.48%) 20.47% (16.02%–24.63%) 17.86% (13.69%–21.84%) 0.55 (0.51–0.59) 0.70 (0.66–0.73) 0.71 (0.68–0.75) 

PRS model 26.54% (21.71%–31.01%) 22.71% (18.10%–26.81%) 21.21% (16.51%–25.31%) 0.75 (0.70–0.79) 0.74 (0.71–0.77) 0.75 (0.72–0.78) 

MRS model 26.86% (22.52%–31.00%) 25.72% (20.87%–29.89%) 23.15% (18.42%–27.42%) 0.70 (0.65–0.74) 0.73 (0.69–0.76) 0.78 (0.74–0.81) 

Multi-omic model 33.98% (29.12%–38.52%) 27.58% (22.76%–31.61%) 26.02% (21.42%–30.61%) 0.77 (0.72–0.81) 0.76 (0.73–0.79) 0.80 (0.77–0.83) 

Note: The performance of baseline model (only with age and sex), PRS model (with age, sex, and PRS), MRS model (with age, sex, and MRS) 

and multi-omic model (with age, sex, PRS, and MRS) was evaluated using R2 for BMI, DBP, and SBP and the AUC for obesity, HTN, and OrH. 

All metrics and 95% confidence intervals were determined using a five-fold cross-validation approach in validation set (n = 1071). PRS, 

polygenic risk score; MRS, methylation risk score; AUC, area under the curve.  
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2 Construction and selection of PRS

 tuning (CAS phase 2 without CAS1k)-testing (CAS phase 1)-validation (CAS1k) design

 tuning (NSPT phase 3)-testing (NSPT phase 1 + Phase 2)-validation (CAS1k) design

3 Construction and selection of MRS 4 Multi-omics analysis
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