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A B S T R A C T   

Ambient PM2.5 exposure has been recognized as a major health risk and related to aging, cardiovascular, res-
piratory and neurologic diseases, and cancer. However, underlying mechanism of epigenetic alteration and 
regulated pathways still remained unclear. The study on methylome effect of PM2.5 exposure was quite limited in 
Chinese population, and cohort-based study was absent. The study included blood-derived DNA methylation for 
3365 Chinese participants from the NSPT cohort. We estimated individual PM2.5 exposure level of short-medium- 
, medium- and long-term, based on a validated prediction model. We preformed epigenome-wide association 
studies to estimate the links between PM2.5 exposure and DNA methylation change, as well as stratification and 
sensitive analysis to examined the robustness of the association models. A systematic review was conducted to 
obtain the previously published CpGs and examined for replication. We also conducted comparison on the DNA 
methylation variation corresponding to different time windows. We further conducted gene function analysis and 
pathway enrichment analysis to reveal related biological response. We identified a total of 177 CpGs and 107 
DMRs associated with short-medium-term PM2.5 exposure, at a strict genome-wide significance (P < 5 × 10− 8). 
The effect sizes on most CpGs tended to cease with the exposure of extended time scale. Associated markers and 
aligned genes were related to aging, immunity, inflammation and carcinogenesis. Enriched pathways were 
mostly involved in cell cycle and cell division, signal transduction, inflammatory pathway. Our study is the first 
EWAS on PM2.5 exposure conducted in large-scale Han Chinese cohort and identified associated DNA methyl-
ation change on CpGs and regions, as well as related gene functions and pathways.   

1. Introduction 

Air pollution is an environmental hazard that has been globally 
recognized as a major health risk and resulted in millions of deaths 
(Landrigan et al., 2018). Ambient PM2.5, the fine particulate matter with 

an aerodynamic diameter less than 2.5 μm, is one of the toxic air 
pollution components and a concern that has been associated with death 
(Lim et al., 2020) and aging (Yin et al., 2021), and multiple 
tissue-specific diseases including cancer (Wu et al., 2021), cardiovas-
cular (Hayes et al., 2020), respiratory (Zhao et al., 2020) and neurologic 
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diseases (Shou et al., 2019). Meanwhile, biological responses resulted 
from PM2.5 exposure were reportedly involved inflammation (Chu et al., 
2019), oxidative stress (Piao et al., 2018), and mitochondrial dysfunc-
tion (Gao et al., 2022). PM2.5 can be inhaled deeply into the lung, 
penetrate the epithelium and reach the cardiovascular system (Brook 
et al., 2010), and previous epidemiological studies in the field of 
epigenetic effects have identified PM2.5 exposure associated DNA 
methylation (DNAm) patterns as well as the underlying disruption or 
regulation mechanism, yielding valuable insights on the systematic ef-
fects of PM2.5 exposure. For instance, investigation on global methyl-
ation level (De Prins et al., 2013) or differential methylation in key 
regulatory regions (Tantoh et al., 2020) demonstrated the epigenetic 
effects of PM2.5 exposure. In addition, a few epigenome-wide association 
studies (EWAS) identified DNAm alteration on specific CpGs related to 
PM2.5 exposure, and linked to genes involved in inflammation, oxidative 
stress and respiratory function (Breton et al., 2016; Chi et al., 2016; Dai 
et al., 2017; de FC Lichtenfels et al., 2018; Eze et al., 2020; Gao et al., 
2019; Li et al., 2018; Mostafavi et al., 2018; Panni et al., 2016; Plusquin 
et al., 2017; Sayols-Baixeras et al., 2019; Wang et al., 2022; Zhong et al., 
2017). 

While these studies collectively contribute to the understanding of 
the epigenetic effects of PM2.5 exposure, heterogeneity existed in both 
the diverse study designs and the findings (detailed in section 3.4). 
Specifically, previous studies observed PM2.5 exposure with a variety of 
time windows, from hours, days, monthly, yearly, up to 10 years, and in 
multiple time windows, as well as in pre-pregnancy. However, little 
conclusion had been drawn on comparing the shared or different pattern 
of short-, medium- and long-term PM2.5 exposure. Additionally, het-
erogeneity might also result from various race or population, which 
could act as confounders of both PM2.5 level and DNAm profiles. As most 
of the studies has been conducted in Caucasian in Europe or America, 
understanding of the methylome effect of PM2.5 exposure in Chinese 
population was limited, and especially, cohort-based study was absent. 
Therefore, the link between PM2.5 exposure and DNAm in Chinese is far 
from clear and needs to be adequately investigated. Facing the gap of the 
existing literature and seeking to fill in the puzzle for more compre-
hensive knowledge, our study contributes to the field by performing 
EWASs on PM2.5 exposure conducted in large-scale Han Chinese cohort, 
as well as the first study leveraging DNAm effect of PM2.5 exposure from 
1 month to 10 years. 

With a sample size of 3365 Han Chinese individual, we used a vali-
dated prediction model and generated individual-level PM2.5 exposure 
measurement of various time windows from short-medium- to long- 
term. We performed EWAS on PM2.5 exposure and identified differen-
tial DNAm sites and regions. A systematic review was conducted to 
obtain the previously published CpGs, which were examined for repli-
cation in our study. Also, we investigate how DNAm varies corre-
sponding to short-medium-, medium- and long-term exposure. We 
furtherly overlapped the identified genes with previous associated 
studies and performed enrichment analysis, to reveal the underlying 
mechanism and response to PM2.5 exposure. 

2. Material and methods 

2.1. Study population 

Our study was conducted in the Nation Survey of Physical Traits 
(NSPT) cohort, which was a population-based cohort study which 
enrolled participants of Chinese nationality in four sampling times from 
different suburban regions of China: Taizhou, Jiangsu in August 2015; 
Zhengzhou, Henan in July 2017; Nanning, Guangxi in March 2018 and 
Taizhou, Jiangsu in March 2019 (Figure S1.A). Individuals were 
recruited as volunteers by random selection, and those with any critical 
illness were excluded from recruitment. Residential street address of 
each participant at the time point of recruitment was collected by 
questionnaire and used for PM2.5 prediction. The individual DNAm level 

was obtained using the Illumina Infinium Methylation EPIC BeadChips 
from blood samples, with 811,876 CpG probes retained after quality 
control. Outputs were the beta values that represent the percentage of 
methylation for every CpG probe (detailed in Supplementary). Cova-
riates incorporated in our study were collected by the personal ques-
tionnaire which includes sex, age, smoking status, smoke pack year, 
passive smoking, alcohol consumption, education and household in-
come. BMI was derived from on-site measured height and weight. Ge-
netic principal components (PCs) were calculated by principal 
component analysis on genotypes, to reveal and adjust for potential 
population structure. Blood leukocytes fractions (B cells, CD4+ and 
CD8+ T cells, NK cells, monocytes and neutrophils) were estimated 
based on DNAm measurement using EpiDISH (Zheng et al., 2018). A 
total of 3365 individuals with complete street address, matched DNAm 
data and other individual information were included for follow-up 
analysis (Figure S1.B). The study was approved by the Ethics Commit-
tees of Fudan University (14117) and the Shanghai Institutes for Bio-
logical Sciences (ER-SIBS-261410), and all participants provided written 
informed consents. 

2.2. PM2.5 exposure assessment 

2.2.1. PM2.5 predictions 
PM2.5 concentrations were estimated by random forest method at a 

daily level and 1 km × 1 km resolution during 2005–2019 in mainland 
China with full spatiotemporal coverage. The details of model devel-
opment and evaluation process were described and published in previ-
ous studies (Meng et al., 2021; Shi et al., 2023) and summarized here. 
Random forest models were trained with ground PM2.5 measurements 
served as a dependent variable, and Multi-Angle Implementation of 
Atmospheric Correction aerosol optical depth (MAIAC AOD), MERRA-2 
simulated PM2.5 concentrations, meteorological parameters, land use 
data and population density served as independent variables. The 
overall ten-fold cross validation R2 and root-mean-square error (RMSE) 
values between PM2.5 measurements and predictions at daily level of 
random forest models were 0.84 and 16.08 μg/m3, respectively. The 
monthly and annual mean PM2.5 concentrations were calculated for 
each grid cell at 1-km spatial resolution. The PM2.5 concentrations of 
grid cells were assigned to each participant according to the individual 
residence information. 

2.2.2. Derived PM2.5 exposure in different time windows 
To optimize exposure windows, monthly mean PM2.5 concentrations 

in the prior 12 months of sampling points and annual mean PM2.5 
concentrations in the prior 10 years of sampling points were predicted 
for each participant. Based on the monthly mean PM2.5 predictions in 12 
months, we calculated the mean value of each ascending time windows, 
from the current month of the sampling point, to the previous 12 months 
by a one-month step, and defined these measurements as short-medium- 
term PM2.5 exposure. In the following analysis, the PM2.5 exposure level 
in the current month of sampling points was described as “the current 
month”, the one month prior to the sampling points as “the previous 
month”, and the average from current to the X month prior as “X months 
prior”. 

We also inferred the one-year and one-year-prior PM2.5 predictions 
as medium-term exposure, and the average of prior ten years measure-
ment (described as “10 years prior”) as long-term exposure. The derived 
short-to-medium-, medium- and long-term exposures were included in 
the following EWAS analysis. 

2.3. Statistical analysis 

2.3.1. Epigenome-wide association analysis 
We conducted EWAS using a generalized linear regression model 

(GLM) to capture the correlation between DNAm level at each probe and 
PM2.5 exposure with limma R package (Ritchie et al., 2015). Age, sex, 
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smoking status (not, former and current smoker), smoke pack year, BMI, 
sampling points (Taizhou2015; Zhengzhou2017; Nanning, 2018 and 
Taizhou2019), blood leukocytes fractions and the first ten genetic PCs 
were included as covariates in the EWAS model. Multiple testing was 
corrected for by using a commonly recognized epigenome-wide signif-
icance threshold P = 5 × 10− 8. We performed a comparative association 
test using generalized linear mixed effect regression model (GLMEM) 
with duplicateCorrelation() function from limma, by incorporating 
sampling points as random effect terms instead of fixed effect term in 
prior GLM, to account for non-independence within the sample. 

Moreover, we furtherly performed subgroup stratified EWASs and 
meta-analysis, to investigate heterogeneity across different sampling 
points (Supplementary section 2). We also conducted sensitive analysis 
to investigate the confounding effect of the covariate choice in EWAS 
model, by excluding each covariate in the primary model, as well as 
additionally including potential factors (Supplementary section 3). 

2.3.2. Differentially methylated regions (DMRs) 
In addition to the analyses of effect on individual CpG, we performed 

DMR analyses to investigate the effect of PM2.5 exposure on regional 
methylation. We applied two algorithms, dmrff (Suderman et al., 2018) 
and comb-p (Pedersen et al., 2012). Both methods used the result of 
summary statistic data of EWAS on single probe level as input. In details, 
for comb-p, DMRs with Sidak-corrected p-value below 0.01 and 
including at least three probes within 500 bp were considered signifi-
cant. Dmrff function starts by identifying all candidate regions and then 
shrinks the regions by calculating statistics for all sub-regions. Regions 
composed of at least 1 nominal significant CpG and consistent direction 
of effect within 500bp as the candidate region. P < 0.01 after the 
Benjamini-Houchberg adjustment was considered as significant. To 
reduce false positives, we leverage the results identified by both 
methods as DMRs. 

Moreover, to estimate if PM2.5 exposure affects DNAm level on 
specific genomic regions, we calculated the arithmetic mean of beta- 
values across all probes in each of the regions (gene bodies, pro-
moters, CpG islands, shelves, shores, and OpenSeas) and defined as 
regional methylation level. Regional annotation was performed with 
annotatr R package (Cavalcante and Sartor, 2017). Multivariable linear 
regression models were used to test the association between PM2.5 
exposure and regional methylation levels, adjusted with the same 
covariates in the EWAS models. 

2.4. Functional analysis on identified markers 

PM2.5 associated CpGs were assigned to genes using annotatr R 
package. The mapped genes were annotated with related traits from 
previous association studies, by querying against EWAS atlas (https 
://ngdc.cncb.ac.cn/ewas/atlas), EWAS catalog (http://ewascatalog. 
org/) and GWAS catalog (https://www.ebi.ac.uk/gwas/) databases. 
We furtherly performed enrichment analysis on PM2.5 associated genes 
on Metascape (https://metascape.org/) to identified enriched pathway. 

3. Results 

The NSPT cohort consisted of 3365 Han Chinese individuals, of 
which 524 were recruited in Taizhou in 2015, 951 in Zhengzhou in 
2017, 1402 in Nanning in 2018 and 488 in Taizhou (2019). Matched 
PM2.5 exposure level, blood sample and other personal information were 
available for all participants. The population consisted of 1253 (37.24%) 
male participants and 2112 (62.76%) female participants, and aged 
from 18 to 83 years old (mean ± SD = 50.29 ± 12.62). A total of 484 
(38.63%) of the male participants and 2086 (98.77%) female partici-
pants were non-smoker. Characteristics summary of all personal infor-
mation were shown in Table 1. 

Table 1 
Characteristics summary of individual in NSPT cohort.    

Pooled Taizhou, 2015 Zhengzhou, 2017 Nanning, 2018 Taizhou, 2019 

Sample size, N  3365 524 951 1402 488 
Sex, N (%)  

Female 2112 (62.76) 316 (60.30) 567 (59.62) 889 (63.41) 340 (69.67)  
Male 1253 (37.24) 208 (39.40) 384 (40.38) 513 (36.59) 148 (30.33) 

Age, Mean (sd)  50.29 (12.62) 48.19 (12.75) 43.88 (13.29) 54.60 (11.06) 52.63 (9.21) 
BMI, Mean (sd)  24.51 (3.54) 24.66 (3.68) 25.13 (3.67) 23.75 (3.29) 25.33 (3.38) 
Smoke status, N (%)  

Never smoker 2570 (76.37) 385 (73.47) 723 (76.02) 1083 (77.25) 379 (77.66)  
Former smoker 149 (4.43) 31 (5.92) 39 (4.10) 63 (4.49) 16 (3.28)  
Current smoker 646 (19.20) 108 (20.61) 189 (19.87) 256 (18.26) 93 (19.06) 

Smoke pack year, Mean (sd)  5.38 (15.51) 5.02 (13.44) 4.06 (11.88) 6.4 (18.73) 5.42 (13.25) 
Passive smoking  

Yes 1789 (53.16) 284 (54.20) 441 (46.37) 788 (56.20) 276 (56.56)  
No 1576 (46.84) 240 (45.80) 510 (53.63) 614 (43.80) 212 (43.44) 

alcohol consumption, N (%)  
Rarely 2755 (81.87) 400 (76.34) 800 (84.12) 1164 (83.02) 391 (80.12)  
Once a week 199 (5.91) 26 (4.96) 84 (8.83 76 (5.42) 13 (2.66)  
2-3 times a week 82 (2.44) 0 (0) 33 (3.47) 37 (2.64) 12 (2.46)  
>3 times a week 313 (9.30) 98 (18.70) 25 (2.63) 118 (8.42) 72 (14.75)  
NA 16 (0.48) 0 (0) 9 (0.95) 7 (0.50) 0 (0) 

Education, N (%)  
Uneducated 291 (8.65) 86 (16.41) 23 (2.42) 97 (6.92) 85 (17.42)  
Primary 862 (25.62) 131 (25.00) 110 (11.57) 467 (33.31) 154 (31.56)  
Junior secondary 1270 (37.74) 192 (36.64) 305 (32.07) 586 (41.80) 187 (38.32)  
Senior secondary 535 (15.90) 64 (12.21) 209 (21.98) 222 (15.83) 40 (8.20)  
Tertiary and above 405 (12.03) 51 (9.73) 303 (31.86) 29 (2.07) 22 (4.51)  
NA 2 (0.06) 0 (0) 1 (0.11) 1 (0.07) 0 (0) 

Annual Household income in CNY, N (%)  
<2500 47 (1.40) 7 (1.34) 3 (0.32) 36 (2.57) 1 (0.20)  
2500–4999 64 (1.90) 7 (1.34) 2 (0.21) 53 (3.78) 2 (0.41)  
5000–9999 162 (4.81) 17 (3.24) 23 (2.42) 116 (8.27) 6 (1.23)  
10,000–19,999 284 (8.44) 21 (4.01) 53 (5.58) 189 (13.48) 21 (4.30)  
20,000–34,999 480 (14.26) 65 (12.40) 125 (13.14) 238 (16.98) 52 (10.66)  
>35,000 1953 (58.04) 403 (76.91) 733 (77.08) 480 (34.24) 337 (69.06)  
NA 375 (11.14) 4 (0.76) 12 (1.26) 290 (20.68) 69 (14.14)  
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3.1. PM2.5 exposure level across all time windows 

The distribution of the calculated mean PM2.5 exposure level sug-
gested an increasing trend in variation as the time window expand 
(Fig. 1A). When stratified by sample subgroups, the inter-group variants 
escalated in longer timescale exposure, corresponding to the raising 
trend in pooled data. Meanwhile, the intra-group variants revealed 
relatively minor alteration in each time window for all sub-groups, 
except the Zhengzhou 2017, with exceeding variations in most time 
windows (Fig. 1B, Figure S2). The difference of PM2.5 exposure and low- 
to-moderate inter-group overlap suggested an inter-group heterogeneity 
and spatially differed seasonal patterns, which could be explained by the 
seasonal, years and geographical difference. While the exposure levels 
peaked in November to February, and decreased in July and August in 
all region, the distribution showed unsynchronized peaks according to 
the recruitment time, as well as different levels according to geograph-
ical regions and years (Fig. 1B, Figure S2). Compared to the WHO (Or-
ganization, 2021) and national guideline (2012), the PM2.5 exposure 
levels in Taizhou (2015), Zhengzhou 2017; Taizhou 2019 were all 
higher than the recommended annual air quality guideline level (35 
μg/m3), while in Nanning (2018), the exposure levels were comparative 
to the guideline level. Also, we observed a relatively higher correlation 
for time windows within 4 months or above, but rather lower correlation 
between 2 sides (Fig. 1C). 

3.2. Epigenome-wide analyses 

EWAS identified methylation levels on 175 CpGs significantly asso-
ciated (P < 5 × 10− 8) with PM2.5 exposure in four short-medium time 
windows, of which 50 CpGs associated with exposure of the current 
month, 48 CpGs associated with exposure of the previous month, 147 
CpGs associated with exposure of 1 month prior and 23 CpGs with 
exposure of 2 month prior, respectively (Fig. 2 and Table S1A). Meta- 
analysis on the subgroup stratification EWASs additionally identified 2 
CpGs (Supplementary section 2 and Table S1A). We furtherly performed 
a regression test on the 177 identified CpGs using generalized linear 
mixed effect model (GLEME). By incorporating sampling points as 
random effect terms in GLMEM, we observed that the betas were less 
differential from zero, but overall concordant between GLM and GLMEM 
utility. P values on several CpGs were reduced, which resulted in a total 
of 37 CpGs remained genome-wide significant (Figure S3, Table S2). 
Taken together, the identified CpGs in EWAS with GLM were overall 
robust in a GLMEM regression. Moreover, EWAS on medium- and long- 

term PM2.5 exposure collectively identified one significant CpG 
cg03801758 (Figure S4, Table S1B), which however, were lack of sig-
nificance in the prior EWASs on short-medium-term exposure (P >
0.05). To enhance clarity on the epigenetic effect of short-medium PM2.5 
exposure, we included the 177 CpGs associated with PM2.5 exposure in 
four short-medium time windows as the primary outcome for follow-up 
analysis. 

After subgroup stratification, 23 of the 177 CpGs showed inter-group 
consistency, with betas at same direction and nominal significance (P <
0.05) (Figure S5.A), and a total of 67 CpGs shared betas with same di-
rection across all sub-groups. Meanwhile, several CpGs showed diverse 
methylation alteration across the 4 subgroups. Specifically, a proportion 
of CpGs were significantly associated in samples from Nanning (2018) 
subgroup, while showed negligible or reversed effect in other subgroups 
(Figure S5.B). 

Sensitive analysis with the leave-one-out tests demonstrated that the 
effect sizes on the identified CpGs were robust to intrinsic and extrinsic 
factors including age, sex, smoking (both active and passive smoking), 
BMI, population genetic PCs, alcohol consumption, education level and 
household income. On the other hand, the effect sizes on several CpGs 
were sensitive to blood leukocytes fractions, which implies that different 
blood cells may exhibit varying patterns of methylation changes on the 
identified CpGs, in response to PM2.5 exposure, suggesting a blood-cell- 
type specific effect of PM2.5 exposure (Figure S6). 

3.3. Comparison on methylation effect across moving time windows of 
PM2.5 exposure within one year 

Of the 177 CpGs, 66 were associated with at least 2 short-medium- 
term exposure and 8 were associated with all four short-medium-term 
exposure, with genome-wide significance. We conduct a further com-
parison on the identified CpGs across moving time windows within 1 
year as well as one-year-medium- and 10-years-long-term (Fig. 3). All 
CpGs showed consistent beta direction in response to short-medium- 
term PM2.5 exposure within 3 months. With the extension of time 
scale, the effect size on most CpGs tended to drift towards zero and did 
not reach nominal significant (P > 0.05). Additionally, one CpG, 
cg03801758, was found significant and showed hypermethylation effect 
with 9 months average exposure and above, including 1-year mid-term 
exposure and 10-years long-term exposure (Fig. 3, Figure S4, Table S1B). 
This CpG cg03801758 also reached nominal significance (P < 0.05) in 
previous 2–9 months average exposure but was not significant (P >
0.05) within one month prior. 

Fig. 1. Distribution of PM2.5 exposure level across time windows. (A) Bar plot of the overall distribution of PM2.5 exposure level. (B) Bar plot of the distribution 
of PM2.5 exposure level in each subgroup. (C) Correlation of PM2.5 exposure level across time windows. 
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3.4. replication of previously published CpGs associated with PM2.5 

For independent replication, we examined for validation on the re-
ported CpGs from the previous EWAS on PM2.5 exposure. Based on the 
search strategy (described in Supplementary section 4), we initiated 
from 14 manuscripts of studies on DNAm effect of PM2.5 or PM2.5 
component (Table S3). Afterwards, following the inclusion criterion, we 
finally included 2 EWASs that focused on 1-month PM2.5 exposure 
(Panni et al., 2016; Wang et al., 2022), and 3 EWASs on 1-year PM2.5 
exposure (Chi et al., 2016; Dai et al., 2017; Plusquin et al., 2017). We 
obtained the reported CpGs from the studies, of which 1657 CpGs from 
(Panni et al., 2016), 2498 from (Wang et al., 2022), 5 from (Chi et al., 
2016), 10 from (Plusquin et al., 2017), and 17 from (Dai et al., 2017) 
were included in NSPT study. An overlap of 11 CpGs were both reported 
in the two studies on 1-month average PM2.5 exposure (Table S4), and 
none overlap were reported in the 3 EWASs on 1-year PM2.5 exposure. 
The 177 identified CpGs from NSPT cohort did not overlap with the 
previously published ones. We furtherly performed a validation test to 
see if the previously published CpGs could be replicated in our results 
with betas in consistent direction and at a nominal significance (P <
0.05). A total of 208 out of 1657 and 281 out of 2498 previously pub-
lished CpGs were replicated in our short-medium-term EWAS, and 3 out 
of 37 replicated in medium-term EWAS results. Specifically, 

cg15297799, which were reported by both two previous studies, were 
replicated in all 4 short-medium-term EWASs, while another 3 CpGs 
were replicated by one of the short-medium-term EWASs, and the other 
7 CpGs were not replicated (Figure S7, Table S4). 

Permutation tests on the replication revealed that the reported 1- 
month exposure associated CpGs from (Panni et al., 2016) were signif-
icantly differential methylated compared to background CpGs (Pt.test <

0.01), and up to 9328 out of 10,000 iterations determined the signifi-
cance (Fig. 4); while the replication on 1-month exposure associated 
CpGs from (Wang et al., 2022) and on 1-year exposure associated CpGs 
did not pass the permutation tests, with Pt.test > 0.05 for the majority of 
the iterations (results not shown). 

3.5. Differentially methylated regions (DMRs) analysis 

In addition to CpG-level EWAS study, we also focus on DMR analysis 
to raise the statistical power of detecting methylation changes by 
combining information from multiple CpGs rather than evaluating sites 
one by one (Breton et al., 2017). By applying dmrff and comb-p, we 
identified 107 overlapped DMRs in relation to short-medium-term PM2.5 
exposure, and mapped to 80 genes (Table S5C). A set of 9 genes (KDM2B, 
KLF1, LAX1, NR0B2, RASSF2, TLDC2, TRIB1, VKORC1L1, ZBTB48) an-
notated by significant DMRs was consistently observed across four 

Fig. 2. Manhattan plot of EWAS on PM2.5 exposure in four short-medium time windows. The red line corresponds to the genome-wide significant threshold (P 
≤ 5 × 10− 8). Significant CpGs were plotted in red. Yellow and green represented chromosomes. 

Fig. 3. Comparison of effect size estimate on identified CpG across time windows. The columns represented for a total of 178 CpGs, of which 177 CpGs 
associated with short-medium-term exposure, and one cg03801758 on the rightmost column. Red and blue represented hypermethylation and hypomethylation in 
response to PM2.5 exposure, respectively. 
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exposure windows and another 14 genes (ACOT7, C5orf63, DHFR, 
FAM13A, FGD4, GFOD1, HVCN1, IGF1R, KLHDC7B, LDLRAD3, PSMD13, 
SLC12A4, SMG6, VTI1A) were observed in at least 3 exposure windows. 
Although a DMR does not necessarily contain significant CpGs, we 
spoted that 6 significant CpGs (cg03144560, cg20323725, cg04272309, 
cg10653259, cg06304167, cg26136776) identified in EWAS were also 
located within DMRs. 

Moreover, by leveraging the genomic region annotation, we tested 
for association on the average methylation level of genomic compo-
nents, and spotted significantly hypo-methylation on promoters, gene 
bodies and CpG shores, associated with short-medium-term PM2.5 
exposure (Table S6). 

3.6. Gene annotation and enrichment analysis 

The associated markers were mapped to 134 genes (Table S7). By 
leveraging databases of association studies, we overlapped the mapped 
genes with previous related GWAS and EWAS (Fig. 5 and Table S7). A 
total of 48 genes had been previously reported affected by PM2.5 or 
PM2.5 element exposure, which revealed certain consistency between 
our results and previous studies on PM2.5 exposure. In addition, we 
observed a series of genes associated with nitrogen dioxide (NO2) 
exposure or other chemical exposure, and 43 genes reported in EWAS on 
tobacco smoking, electronic cigarettes as well as on smoking initiation, 
cessation and maternal smoking. Meanwhile, many of the genes were 
reportedly associated with various health outcomes in prior EWASs or 
GWASs, including aging, immune-related traits and inflammation dis-
ease, metabolic disease, nervous system diseases and cancers. 

These results suggested that PM2.5 exposure might share DNAm 
alteration patterns or downstream gene regulation with other airborne 
pollutant and chemical pollutants such as NO2 and smoking. The bio-
logical response related to PM2.5 exposure might also affect the devel-
opment of aging, immune and inflammation disease, metabolic disease, 
neurodegenerative disease and cancers. 

We conducted enrichment analysis for assigned genes from EWASs 
and DMRs. The top enriched pathways included cell cycle, actin filament 
reorganization, cell division and intracellular signal transduction as well 
as signal pathway involving rho GTPase and IL-18. Other pathways 
included the regulation of cell adhesion and migration, sulfur compound 
and phosphate as well as modification-dependent macromolecule 
metabolic process, lysosome, forebrain development, cellular compo-
nent organization, organelle disassembly and maternal process involved 
in female pregnancy (Fig. 6). Moreover, we observed a set of five genes 
PTPN12 (cg19643792), UBB (cg00960580), EPS15L1 (cg14210191), 
PTEN (cg01740552) and ITCH (cg18058448) enriched on EGF/EGFR 
signaling pathway (Table S8), which has been recently reported as a key 
mechanism of the tumor-promoting effect of PM2.5 exposure (Hill et al., 
2023). 

4. Discussion 

We proposed a workflow with a) modeled prediction on individual 
level PM2.5 exposure measurements based on cohort data of healthy 
participants, b) epigenome wide association study to identity related 
DNAm change, c) sensitive analysis to investigate robustness and het-
erogeneity, d) association analysis to test the methylation change at 
clusters of CpG sites within genomic regions and e) follow-up functional 
analysis to reveal underlying biological mechanism. To our knowledge, 
this study is the first cohort-based EWAS on PM2.5 exposure in Chinese 
population. With a relatively large sample size and solid statistic power, 
we identified epigenome-wide significant signals associated with indi-
vidual PM2.5 exposure level from CpG-level EWASs and cluster-level 
DMR analyses. 

Overall, gene annotation suggested that PM2.5 exposure related 
genes involved in aging, immunity, inflammation and carcinogenesis, 
metabolic disease and nervous system related diseases. These showed 
consistent patterns that have been observed in previous studies (Wang 
et al., 2020; Yin et al., 2021; Zhou et al., 2016). Specifically, a large 

Fig. 4. Permutation tests on the replication of 1657 reported CpGs. (A) Violin plots of single permutation test. T-score of 1657 CpGs was the ratio of beta to its 
standard error obtained from our EWAS results, and a larger absolute T-score represented more significance. P value was derived from one-sided t-test between T- 
scores of 1657 reported CpGs and 1657 random CpGs. (B) Histograms of 10,000-times-iterated permutation tests. Red dot line represented significance of P = 0.05. N. 
sig represented the number of tests revealed more significance for reported CpGs than random. 
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proportion of the identified genes were associated with immune-related 
traits and inflammation disease, which were well-recognized mecha-
nism induced by PM2.5 exposure, and documented in both previous 
mechanistic and epidemiological studies. For example, Yang et al. re-
ported PM2.5 exposure exacerbated asthma, of which the effect was 
regulated by interleukins (Yang et al., 2020). A noticeable association 

between PM2.5 exposure and rheumatoid arthritis have been proposed 
(Adami et al., 2021; Park et al., 2021) and also highlighted by a most 
recent EWAS study on PM2.5 exposure (Wang et al., 2022). And Liu, 
Cong et al. pointed a positive association between PM2.5 exposure and 
diabetes mellitus type 2 risk, which may be explained by the fact that 
PM2.5 exposure-induced inflammatory response increase may insulin 

Fig. 5. Venn diagram of genes identified from EWAS on PM2.5 exposure and overlapping with previous association studies. Bold and superscripts indicated 
that the gene was previously reported to be associated with certain traits. 

Fig. 6. Enriched pathways of PM2.5 exposure related genes. Enrichment analysis was conducted on the mapped genes. The P value was derived by comparing the 
observed frequency of genes involving in a pathway term with the frequency expected by chance. 
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antagonism (Liu et al., 2022). Besides, many identified genes were also 
reported to be related with nervous system diseases. Previous epidemi-
ological studies have shown that air pollution may cause systemic 
inflammation, microglia activation, oxidative stress and neuro inflam-
mation (Haghani et al., 2020) which provides a biological rationality 
and potential mechanism for the observed association between exposure 
and subsequent risk of neurodegenerative and neurodevelopmental 
diseases. Several studies have revealed that exposure to PM2.5 are linked 
to an increased risk of metabolic disorders in mice model (Ran et al., 
2021). Additionally, we found overlaps between the identified genes 
and the associated genes from previous EWAS on PM2.5 exposure, NO2 
exposure and smoking, as well as multiple chemical exposure, suggest-
ing that various toxicological particles might be related in epigenomic 
effect, trigger similar biological responses likewise, or even share certain 
risks on health outcomes. 

Enrichment analysis identified biological functions related to cell 
cycle, cell division and inflammatory pathway. Oxidative stress induced 
by PM2.5 is considered to be an important mechanism of PM2.5 mediated 
toxicity. We also observed several compounds metabolic processes were 
significantly enriched. Many organic chemicals on the surface of PM2.5 
can be metabolized and activated into reactive electrophilic metabolites, 
which may produce or increase intracellular reactive oxygen species 
(Suo et al., 2020; Torres-Ramos et al., 2011). Due to the exposure of 
PM2.5, reactive oxygen species interact with biological macromolecules 
(such as plasma lipid, protein and DNA), producing various adverse 
effects on cells, damage cellular structure and function, and result in 
triggering the disturbance of cellular response, such as cell adhesion and 
migration. Several significant pathways and underlying mechanism 
have been adequately supported by previous studies. A most recent 
study reported that the interaction of PM2.5 exposure and mutation on 
the driver gene EGFR significantly promote the incidence of lung cancer 
(Hill et al., 2023). We observed a gene set enriched in EGF/EGFR 
signaling pathway and specifically, the coding protein of EPS15L1 
participated in the phosphorylation of EGFR and regulated the activa-
tion of downstream signaling. These findings support the 
tumor-promoting role for PM2.5 exposure in EGFR driven lung cancer, 
suggesting a mechanism mediated by DNAm modification. Jeong et al. 
identified a possible mechanism of PM2.5 exposure induced lung 
toxicity, involving growth factor receptor (Jeong et al., 2017). Pan et al. 
have demonstrated the toxicity of Pb, one of the PM2.5 elements, which 
induced an overexpression of Rho GDP-dissociation inhibitor 2 
(RhoGDI2) in mice (McCracken et al., 2010). What’s more, neuro-
development is a most concerning health outcome affected by PM2.5 
exposure, and increasing evidence have revealed PM2.5 exposure may 
damage the developing brain and contribute to neurodevelopmental 
disorders. 

On top of the identified genes and pathways, our study provided 
insight in the effect of PM2.5 exposure on DNAm across different time 
windows. To date, most of the studies focused on PM2.5 exposure of 
single period, and only a very limited number of studies investigated the 
shared and differed pattern across short-, medium- and long-term PM2.5 
exposure (Gao et al., 2019; Mostafavi et al., 2018; Panni et al., 2016). 
Sergi et al. performed a replication test between previously published 
short-term exposure associated CpGs and 10 years PM2.5 exposure 
(Sayols-Baixeras et al., 2019). Although daily measurement on PM2.5 
was absent in our study, and thus we failed to examine the effect of 
short-term PM2.5 exposure within monthly time window, we did obtain 
the broadest range of time windows, including monthly, annual and 
10-years exposure. We found the methylation levels on the identified 
CpG sites changed acutely only under short-medium-term PM2.5 expo-
sure. Meanwhile, the one CpG associated with medium-term exposure 
did not response to short-medium-term exposure. This suggested that 
the short-medium-term exposure and medium-to long-term exposure 
may trigger different biological response. We also noticed that 
short-medium-term PM2.5 exposure was associated with a relatively 
larger amount of CpGs compared with medium- or long-term exposure. 

Such pattern was supported by results from previous studies as well. 
Panni et al. and Wang et al. identified 1819 and 2717 CpGs associated 
with monthly PM2.5 exposure (Panni et al., 2016; Wang et al., 2022), 
respectively, while EWAS on medium- and long-term exposure reported 
association of no more than double digits (Chi et al., 2016; Dai et al., 
2017; Plusquin et al., 2017). This might suggest that the methylome 
effect of PM2.5 was mostly temporary and did not retain for a period over 
one year. Additionally, experimental and observational studies both 
indicated association between methylation changes and rapid PM2.5 
exposure even under days or hours. (Bellavia et al., 2013; Bruniquel and 
Schwartz, 2003; Chen et al., 2016). Previous studies reported human 
erythrocytes normally have a life span of 100–120 days. Changes in 
methylation levels brought about by the renewal of blood cells may have 
corresponding with our results that most significant CpGs were identi-
fied from exposure window within 2 months to some extent (Muzy-
kantov, 2010). However, it is worth discussing that a residence-based 
long-term PM2.5 prediction might be less accurate if an individual was 
based at multiple places during the long period, and thus the prediction 
was not able to reflect the true long-term PM2.5 exposure levels. 

We conducted multiple sensitive analyses to assess the robustness of 
the identified CpGs (detailed in Supplementary). To explore the influ-
ence of samples in each sub-group, we compared the results from pooled 
data, with the effect size estimates from group stratified EWAS and the 
leave-one-group-out models (Fig. S5). Combined, we found that the 
identified CpGs from pooled data were mostly affected by samples from 
Nanning and Zhengzhou groups. A relatively modest sample size in 
Taizhou (2015) group might lead a low statistic power to detect the 
differential methylation level. Also, there were disparities on PM2.5 
exposure levels across subgroups, as well as a confounding effect of 
subpopulation on methylation profiles, which might result in the het-
erogeneity, even though we have adjusted the group index as covari-
ance. Such confounding effects of subgroups were mixed and hardly 
distinguishable, which we speculated might partially resulted from 
regional PM2.5 components difference, supported by (Dai et al., 2017) 
that different particulate components of PM2.5 have various methylation 
targets. Despite of heterogeneity, several CpGs shared consistency be-
tween the two main subgroup, Nanning and Zhengzhou, and also 
reached significance in meta-analysis. Besides, sensitive analysis 
revealed that the effect size estimated of the identified CpGs were not 
confounded by any of the covariates, except blood leukocytes fractions 
(Fig. S6). This demonstrated the robustness of the methylation change 
on the identified CpGs. 

We performed a comprehensive review on previous EWASs on PM2.5 
exposure, followed by replication test and permutation test. Heteroge-
neity existed across studies, as little overlap was observed on reported 
CpGs from each study, nor between our identified CpGs and previous 
results. This might result from population disparity, different measure-
ment on PM2.5 exposure, or any unmeasured confound. PM2.5 exposure, 
as a general measurement of fine particles, might masked the complexity 
of toxicology of various component, and led to study-specific results (Dai 
et al., 2017; Wang et al., 2022). Also, as pointed out by Mostafavi et al. 
methylation change induced by PM2.5 might be subtle and thus likely to 
be undetected with limited statistical power (Mostafavi et al., 2018). 
Nevertheless, a moderate proportion of identified CpGs from (Panni 
et al., 2016) were replicated in our results, and permutation test deter-
mined that the significance was not arisen by random chance. And 
despite lacking overlap on associated CpGs with published ones, we 
identified genes that has been previously reported associated with PM2.5 
exposure, which suggested that methylome effect of PM2.5 exposure 
might share similarity on gene level across studies and cohorts. 

We would like to acknowledge the limitation of this study. First of 
all, we only collected the residential address at the time point of 
recruitment, but not the whole address history for the past 10 years. 
Therefore, there was a potential misclassification risk for the residence- 
based PM2.5 prediction, especially for medium- and long-term, as the 
prediction might be less accurate if an individual was based at multiple 
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places during the period. Also, the disparity between ambient PM2.5 
measurement and individual PM2.5 exposure could be affected by the 
frequency of outdoor activity, as those who were more outdoor active 
would expose to more severe ambient PM2.5, which might bring error to 
exposure measurement. Secondly, the epigenetic effects of mid- and 
long-term PM2.5 exposure were much less significant compared to 
short-medium-term exposure. We reasoned that the limited dispersion of 
sampling points and residency could resulted in less variation of me-
dium- and long-term PM2.5 exposure (Fig. 1), which might not be suf-
ficient enough to identified potential associated CpGs in EWASs. 
Thirdly, gene expression and immune markers were not available in the 
current stage of NSPT cohort, and thus we were not capable to examine 
the role of identified CpGs in gene expression regulation or immune 
reaction with paired omics data. Fourthly, DNAm was profiled in blood 
leukocytes; the role of identified CpGs, genes or pathways may not apply 
in all PM2.5 associated health outcomes, especially tissue-specific dis-
eases. Last but not least, the inconsistency across subgroups and time 
windows, as well as the lack of cross-study replication or external vali-
dation implied a potential risk of false positive finding. More valid 
studies are expected to cross examinate the methylation effect of short-, 
intermediate- and long-term PM2.5 exposure. 

Our study did show certain notable strengths. For one, we applied a 
validated prediction model to obtain individual PM2.5 exposure. It was 
more cost efficient and practical compared with trial study with labo-
ratory conditions or personal monitoring devices, which made it 
possible to measure PM2.5 exposure in cohort study, and performed 
EWAS with a relatively large sample size and statistical power. It was 
also more precise than station monitoring measurement, with higher 
spatial resolution. Besides, we conducted a proper systematic review, 
aiming at leveraging the current understanding on the methylome effect 
of PM2.5 exposure. What’s more, we made comparison on the exposure 
from monthly to 10 years’ time window, and provided advanced insight 
in the pattern of methylation change induced by short-, medium- and 
long-term PM2.5 exposure. 

5. Conclusions 

In conclusion, this study conducted the first EWASs of monthly 
exposure in Han Chinese population. With a relatively large sample size 
and adequate statistic power, we identified 177 CpGs and 107 DMRs 
associated with short-medium-term PM2.5 exposure. PM2.5 associated 
markers were related to aging, immunity, inflammation and carcino-
genesis, as well as various toxicological particles. Enriched pathways 
were mostly involved in cell cycle and cell division, signal transduction, 
inflammatory pathway, biological compound metabolic process, cell 
adhesion and migration as well as forebrain development and maternal 
process. 

Building upon the insights gleaned from this study, several promising 
avenues for future research emerge. Firstly, given the adaptability and 
flexibility of our PM2.5 exposure prediction model, future investigations 
conducted in cohorts with larger and mixed population could be bene-
ficial to achieve more enhanced results. Secondly, comparative studies 
across diverse demographic groups could shed light on the observed 
disparity across the findings of existing EWASs on PM2.5. Additionally, 
longitudinal studies are warranted to explore the dynamic of the 
epigenetic effects of PM2.5 exposure. Lastly, grounded in findings of 
pathways acknowledged by ours and prior studies, further investigations 
through multi-omics integration will be beneficial, to advance the un-
derstanding on how DNAm mediate the biological response of PM2.5 
exposure. 

CRediT authorship contribution statement 

Xiyang Cai: Conceptualization, Data curation, Formal analysis, 
Methodology, Visualization, Writing – original draft, Writing – review & 
editing. Qinglin Song: Formal analysis, Visualization, Writing – original 

draft, Writing – review & editing. Xia Meng: Data curation, Formal 
analysis, Methodology, Writing – review & editing. Kaixuan Li: Formal 
analysis. Su Shi: Formal analysis, Methodology. Li Jin: Resources, Su-
pervision. Haidong Kan: Conceptualization, Supervision, Writing – re-
view & editing. Sijia Wang: Conceptualization, Supervision, Writing – 
review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The summary data were provided in the attached supplementary. 

Acknowledgements 

This work is supported by the Strategic Priority Research Program of 
Chinese Academy of Sciences (Grant No. XDB38020400), the National 
Natural Science Foundation of China (NSFC) (92249302, 82030103), 
Shanghai Science and Technology Commission Excellent Academic 
Leaders Program (22XD1424700), CAS Young Team Program for Stable 
Support of Basic Research (YSBR-077), and the Human Phenome Data 
Center of Fudan University. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envres.2024.118276. 

References 

Adami, G., Viapiana, O., Rossini, M., Orsolini, G., Bertoldo, E., Giollo, A., Gatti, D., 
Fassio, A., 2021. Association between environmental air pollution and rheumatoid 
arthritis flares. Rheumatology 60, 4591–4597. 

Bellavia, A., Urch, B., Speck, M., Brook, R.D., Scott, J.A., Albetti, B., Behbod, B., 
North, M., Valeri, L., Bertazzi, P.A., 2013. DNA hypomethylation, ambient 
particulate matter, and increased blood pressure: findings from controlled human 
exposure experiments. J. Am. Heart Assoc. 2, e000212. 

Breton, C.V., Gao, L., Yao, J., Siegmund, K.D., Lurmann, F., Gilliland, F., 2016. 
Particulate matter, the newborn methylome, and cardio-respiratory health outcomes 
in childhood. Environmental epigenetics 2, dvw005. 

Breton, C.V., Marsit, C.J., Faustman, E., Nadeau, K., Goodrich, J.M., Dolinoy, D.C., 
Herbstman, J., Holland, N., LaSalle, J.M., Schmidt, R., et al., 2017. Small-magnitude 
effect sizes in epigenetic End points are important in children’s environmental health 
studies: the children’s environmental health and disease prevention research 
center’s epigenetics working group. Environ. Health Perspect. 125, 511–526. 

Brook, R.D., Rajagopalan, S., Pope III, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V., 
Holguin, F., Hong, Y., Luepker, R.V., Mittleman, M.A., 2010. Particulate matter air 
pollution and cardiovascular disease: an update to the scientific statement from the 
American Heart Association. Circulation 121, 2331–2378. 

Bruniquel, D., Schwartz, R.H., 2003. Selective, stable demethylation of the interleukin-2 
gene enhances transcription by an active process. Nat. Immunol. 4, 235–240. 

Cavalcante, R.G., Sartor, M.A., 2017. annotatr: genomic regions in context. 
Bioinformatics 33, 2381–2383. 

Chen, R., Meng, X., Zhao, A., Wang, C., Yang, C., Li, H., Cai, J., Zhao, Z., Kan, H., 2016. 
DNA hypomethylation and its mediation in the effects of fine particulate air 
pollution on cardiovascular biomarkers: a randomized crossover trial. Environ. Int. 
94, 614–619. 

Chi, G.C., Liu, Y., MacDonald, J.W., Barr, R.G., Donohue, K.M., Hensley, M.D., Hou, L., 
McCall, C.E., Reynolds, L.M., Siscovick, D.S., 2016. Long-term outdoor air pollution 
and DNA methylation in circulating monocytes: results from the Multi-Ethnic Study 
of Atherosclerosis (MESA). Environ. Health 15, 1–12. 

Chu, C., Zhang, H., Cui, S., Han, B., Zhou, L., Zhang, N., Su, X., Niu, Y., Chen, W., 
Chen, R., 2019. Ambient PM2. 5 caused depressive-like responses through Nrf2/ 
NLRP3 signaling pathway modulating inflammation. J. Hazard Mater. 369, 
180–190. 

Dai, L., Mehta, A., Mordukhovich, I., Just, A.C., Shen, J., Hou, L., Koutrakis, P., 
Sparrow, D., Vokonas, P.S., Baccarelli, A.A., 2017. Differential DNA methylation and 
PM2. 5 species in a 450K epigenome-wide association study. Epigenetics 12, 
139–148. 

de Fc Lichtenfels, A.J., Van Der Plaat, D.A., de Jong, K., van Diemen, C.C., Postma, D.S., 
Nedeljkovic, I., van Duijn, C.M., Amin, N., la Bastide-Van Gemert, S., De Vries, M., 

X. Cai et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.envres.2024.118276
https://doi.org/10.1016/j.envres.2024.118276
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref1
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref1
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref1
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref2
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref2
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref2
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref2
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref3
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref3
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref3
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref4
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref4
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref4
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref4
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref4
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref5
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref5
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref5
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref5
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref6
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref6
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref7
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref7
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref8
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref8
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref8
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref8
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref9
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref9
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref9
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref9
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref10
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref10
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref10
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref10
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref11
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref11
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref11
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref11
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref12
http://refhub.elsevier.com/S0013-9351(24)00180-4/sref12


Environmental Research 247 (2024) 118276

10

2018. Long-term air pollution exposure, genome-wide DNA methylation and lung 
function in the LifeLines cohort study. Environ. Health Perspect. 126, 027004. 

De Prins, S., Koppen, G., Jacobs, G., Dons, E., Van de Mieroop, E., Nelen, V., Fierens, F., 
Panis, L.I., De Boever, P., Cox, B., 2013. Influence of ambient air pollution on global 
DNA methylation in healthy adults: a seasonal follow-up. Environ. Int. 59, 418–424. 

Eze, I.C., Jeong, A., Schaffner, E., Rezwan, F.I., Ghantous, A., Foraster, M., Vienneau, D., 
Kronenberg, F., Herceg, Z., Vineis, P., 2020. Genome-wide DNA methylation in 
peripheral blood and long-term exposure to source-specific transportation noise and 
air pollution: the SAPALDIA study. Environ. Health Perspect. 128, 067003. 

G, 2012. 环境空气质量标准 [S]. 
Gao, X., Colicino, E., Shen, J., Kioumourtzoglou, M.-A., Just, A.C., Nwanaji-Enwerem, J. 

C., Coull, B., Lin, X., Vokonas, P., Zheng, Y., 2019. Impacts of air pollution, 
temperature, and relative humidity on leukocyte distribution: an epigenetic 
perspective. Environ. Int. 126, 395–405. 

Gao, M., Liang, C., Hong, W., Yu, X., Zhou, Y., Sun, R., Li, H., Huang, H., Gan, X., 
Yuan, Z., 2022. Biomass-related PM2. 5 induces mitochondrial fragmentation and 
dysfunction in human airway epithelial cells. Environ. Pollut. 292, 118464. 

Haghani, A., Morgan, T.E., Forman, H.J., Finch, C.E., 2020. Air pollution Neurotoxicity 
in the adult brain: emerging concepts from experimental findings. J Alzheimers Dis 
76, 773–797. 

Hayes, R.B., Lim, C., Zhang, Y., Cromar, K., Shao, Y., Reynolds, H.R., Silverman, D.T., 
Jones, R.R., Park, Y., Jerrett, M., 2020. PM2. 5 air pollution and cause-specific 
cardiovascular disease mortality. Int. J. Epidemiol. 49, 25–35. 

Hill, W., Lim, E.L., Weeden, C.E., Lee, C., Augustine, M., Chen, K., Kuan, F.-C., 
Marongiu, F., Evans Jr., E.J., Moore, D.A., 2023. Lung adenocarcinoma promotion 
by air pollutants. J.N. 616, 159–167. 

Jeong, S.C., Cho, Y., Song, M.K., Lee, E., Ryu, J.C., 2017. Epidermal growth factor 
receptor (EGFR)—MAPK—nuclear factor (NF)-κB—IL8: a possible mechanism of 
particulate matter (PM) 2.5-induced lung toxicity. Environ. Toxicol. 32, 1628–1636. 

Landrigan, P.J., Fuller, R., Acosta, N.J., Adeyi, O., Arnold, R., Baldé, A.B., Bertollini, R., 
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