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Abstract
Background Alterations in DNA methylation (DNAm) have been observed in patients with fatty liver, but whether 
they are cause or consequence remains unknown. The study aimed to investigate longitudinal association of 
epigenome-wide DNAm with liver fat content (LFC) in Chinese participants, and explore their temporal relationships.

Methods Data were obtained from 2 waves over a four-year time period of the Shanghai Changfeng Study 
(discovery, n = 407 and replication, n = 126). LFC and peripheral blood DNAm were repeatedly measured using 
quantitative hepatic ultrasonography and the 850 K Illumina EPIC BeadChip, respectively. Longitudinal and cross-
sectional epigenome-wide association studies (EWASs) were conducted with linear mixed model and linear 
regression model, respectively. Meta-analysis was performed using METAL. Cross-lagged panel analysis (CLPA) was 
carried out to infer temporal relationships between the significant CpGs and LFC.

Results Longitudinal EWAS identified cg11024682 (SREBF1), cg06500161 (ABCG1), cg16740586 (ABCG1), cg15659943 
(ABCA1) and cg00163198 (SNX19) significantly associated with LFC with P < 1e-7. Another 6 of the 22 previously 
reported CpGs were replicated in the present longitudinal EWAS. CLPA showed longitudinal effects of cg11024682 
(SREBF1) (β = 0.14 [0.06, 0.23]), cg16740586 (ABCG1) (β = 0.17 [0.08, 0.25]), cg06500161 (ABCG1) (β = 0.12 [0.03, 0.20]), 
cg17901584 (DHCR24) (β = -0.10 [-0.18, -0.02]), cg00574958 (CPT1A) (β = -0.09 [-0.17, -0.01]), cg08309687 (LINC00649) 
(β = -0.11 [-0.19, -0.03]), and cg27243685 (ABCG1) (β = 0.09 [0.01, 0.18]) on subsequent LFC. The effects were 
attenuated when further adjusting for body mass index. High levels of LFC led to alterations in DNAm of cg15659943 
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Background
The global prevalence of metabolic dysfunction-associ-
ated steatotic liver disease (MASLD) has increased 50.4% 
over the past 3 decades, and it is estimated to be 38.2% 
recently [1]. The incidence rate of MASLD was reported 
to be highest in Mainland China [2]. The presence of 
MASLD is influenced by geographical region, race, 
genomic variation and lifestyle factors [3]. For exam-
ple, genetic variant rs58542926 C > T of TM6SF2 was 
reported associated with the full spectrum of MASLD 
but lower blood lipid levels [4]. Further studies revealed 
that TM6SF2 mainly localizes to the smooth endoplas-
mic reticulum, and prevents MASLD by promoting bulk 
lipidation of apolipoproteins B-containing lipoproteins 
and very low-density lipoprotein exportation from liver 
[5, 6].

Epigenetic regulations, especially DNA methyla-
tion (DNAm), can also explain part of the variance of 
MASLD. Using liver biopsies, epigenome-wide associa-
tion study (EWAS) of MASLD reported that differences 
in DNAm can distinguish patients with advanced vs. mild 
MASLD [7, 8], and DNAm alterations associated with 
MASLD were partially reversible by bariatric surgery 
[9]. Nevertheless, liver biopsy is invasive, costly, and dif-
ficult to standardize and repeat. There have been grow-
ing interests in identifying biomarkers from non-invasive 
imaging techniques and peripheral blood to predict the 
onset and stratify the severity of MASLD. Using periph-
eral blood DNA and 450k BeadChip, the largest EWAS of 
MASLD enrolled 3400 European participants and identi-
fied a total of 22 CpGs associated with hepatic fat, such 
as CpGs annotated to ABCG1, SREBF1, SLC7A11 and so 
on [10]. An EWAS of peripheral leukocytes from 35 Chi-
nese MASLD patients and 30 healthy controls revealed 
that hypomethylation of ACSL4 and CPT1C was associ-
ated with MASLD [11].

However, prior studies mainly focused on cross-sec-
tional associations of DNAm with MASLD or hepatic 
fat, and were limited by smaller size of detected probes-
mostly less than 450,000. Ma et al. investigated poten-
tial causal association between the CpGs and MASLD 
using Mendelian randomization (MR) analyses, and 
observed a causal relationship between hypomethyl-
ated cg08309687 (LINC00649) and increased hepatic fat 

[10]. The relatively small-scale GWAS used might have 
led to insufficient statistical power in their MR analyses. 
Thus, this research was designed to investigate longitu-
dinal associations between DNAm at > 700,000 CpGs in 
peripheral blood and liver fat content (LFC) in a Chi-
nese cohort, and to assess temporal directional relation-
ships between DNAm of the significant CpGs and LFC 
using cross-lagged panel analysis. It is hypothesized that 
DNAm alterations of different CpGs might be driver or 
consequence of LFC change through various pathways.

Methods
Study population and design
The study population and design are presented in Fig. 1. 
Shanghai Changfeng Study focuses on the risk factors and 
management of chronic cardiometabolic traits among 
Chinese residents aged ≥ 45 years in Changfeng commu-
nity, Shanghai, China [12]. A total of 6595 residents were 
enrolled at baseline between 2009 and 2012, and 3343 
of them were revisited between 2014 and 2017. The dis-
covery cohort included 407 participants with complete 
DNAm data, among whom 358 and 405 had LFC data 
at baseline and at follow-up, respectively. Another 126 
participants with complete DNAm data were included 
in the replication cohort, among whom 97 and 125 had 
LFC data at baseline and at follow-up, respectively. In the 
longitudinal analyses, the discovery and the replication 
cohorts included 358 and 96 participants without miss-
ing data, respectively.

Measurement of LFC and BMI
Participants received face-to-face interviews and pro-
vided basic information including age and sex. Cur-
rent smokers were defined as smoking ≥ 1 cigarette/day 
for one or more years, and past smokers were defined 
as smokers that discontinued smoking for more than 6 
months. LFC was measured by trained interviewers using 
a quantitative hepatic ultrasonography and calculated 
as LFC (%) = 62.592*standardized ultrasound hepatic/
renal ratio + 168.076*standardized ultrasound hepatic 
attenuation rate-27.863 [13]. Body mass index (BMI) was 
obtained by dividing body weight by height squared (kg/
m2).

(ABCA1) (β = 0.13 [0.04, 0.21]), cg07162647 (β = -0.11 [-0.19, -0.03]), cg06500161 (ABCG1) (β = 0.10 [0.02, 0.18]), and 
cg27243685 (ABCG1) (β = 0.10 [0.02, 0.18]).

Conclusions Blood DNAm at SREBF1, ABCG1, DHCR24, CPT1A, and LINC00649 may be predictors of subsequent LFC 
change. The effects of DNAm at SREBF1 and ABCG1 on LFC were partially influenced by obesity. The findings have 
potential implications in understanding disease pathogenesis and highlight the potential of DNAm for early detection 
or intervention of fatty liver.

Keywords Liver fat content, DNA methylation, Cross-lagged panel analysis, Longitudinal study
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Blood DNA methylation profiling, quality control, and data 
preprocessing
Genomic DNA of the study participants was extracted 
from peripheral blood using a DNeasy Blood and Tissue 
Kit (Qiagen, Hilden, Germany), followed by estimation of 
purity and concentration using NanoDrop One spectro-
photometer and Qubit 3.0 Fluorometer (Thermo Scien-
tific, Waltham, MA, USA). An EZ DNA Methylation Kit 
(Zymo Research, Irvine, CA, USA) was used to perform 
bisulfite conversion of DNA from each sample. Methyla-
tion profiles of DNA were measured with Illumina Infin-
ium Methylation EPIC BeadChip (Illumina, San Diego, 
CA, USA).

Data quality control and preprocessing was conducted 
with the R package ChAMP separately in the discovery 
and the replication cohorts [14]. Probes were filtered 
out with the following criteria: detection P > 0.01, or > 3 
beads in ≥ 5% samples, or non-CpG, or SNP-related, or 
multi-hit, or non-autosomal. Multidimensional Scaling 
plot, density plot, and dendrogram plot generated using 
the function champ.QC were used to further assess data 
quality. The final clean methylation working dataset con-
tained 711,268 (discovery) and 740,701 (replication) 
autosomal CpG probes.

Beta value (β, 0–1 scale) was used to represent DNAm 
level of the CpGs, and normalization of the β value 
matrix was conducted with the BMIQ method [15]. 
Batch effects were estimated by using surrogate variable 
analysis, and were corrected by applying Combat [16] 
in ChAMP. CpG sites were mapped to human reference 
GRCh37 and annotated using IlluminaHumanMethyl-
ationEPICanno.ilm10b4.hg19. Leukocyte composition of 
each sample was estimated using the R package EpiDISH 
[17].

DNA methylation analysis
Longitudinal EWAS of LFC changes
For the 358 and the 96 participants in the two cohorts, 
DNAm and LFC were repeatedly measured. Longitudinal 
EWAS was performed using linear mixed models (LMM) 
in R package limma [18]. Methylation β value and LFC 
value were entered as the response and the independent 
variable, adjusting for age, sex, smoking and estimated 
leukocyte composition at baseline and at follow-up 
(model 1). Participant ID was entered as a random effect.

In literature reporting longitudinal EWAS of BMI, 
longitudinally changes in methylation and changes in 

Fig. 1 Study population and design
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BMI were used as independent and response variables 
[19]. Therefore, the association between longitudinally 
changes in DNAm and LFC was analyzed using multilin-
ear regression, adjusting for age, sex, follow up time, and 
smoking status and estimated leukocyte composition at 
baseline and at follow-up (model 1).

Cross-sectional EWAS of LFC
Cross-sectional EWAS was performed to analyze the 
associations between DNAm and LFC at baseline and 
at follow-up, respectively. A multiple linear regression 
model in limma was used, adjusting age, sex, smoking 
and estimated leukocyte composition (model 1).

For both longitudinal and cross-sectional analysis, BMI 
was additionally adjusted in model 2.

Replication study
In the replication cohort, longitudinal and cross-sectional 
EWAS was conducted, adjusting for the same covariates 
as those in the discovery cohort in model 1 and model 2.

EWAS meta-analysis
In longitudinal and cross-sectional EWAS, inverse-vari-
ance weighted fixed-effects meta-analysis that combined 
EWAS results from the discovery and the replication 
cohorts was conducted, using the computationally effi-
cient software METAL [20].

Epigenome-wide significant level was set at P < 1e-7 
with Bonferroni correction.

Look up of the 22 known CpGs in Changfeng population
Twenty-two CpGs were reported cross-sectionally asso-
ciated with hepatic fat in previous EWAS in European 
ancestry [10]. The CpGs were looked up in the present 
longitudinal EWAS meta-analysis results in model 1 to 
see whether they were also associated with LFC changes 
in individuals of Chinese ancestry. Associations between 
the 22 CpGs and LFC in cross-sectional EWAS meta-
analyses at baseline and at follow-up respectively in 
model 1 are also presented. The significance level was set 
at 2.3e-3 (0.05/22) using Bonferroni correction.

Methylation quantitative trait loci (meQTL) of CpGs
To explore the potential genetic basis of the identified 
and replicated CpGs, clumped meQTLs of the markers 
were looked up in the EPIGEN MeQTL Database [21].

Functional enrichment analysis
Twenty CpGs that were most significantly associated 
with LFC in the longitudinal meta-analysis in model 1 
were collected for the functional enrichment analysis. 
The CpGs were first annotated to their closest genes with 
the R package IlluminaHumanMethylationEPICanno.
ilm10b4.hg19 [22]. Then, the Gene Ontology (GO) [23], 

Reactome pathway [24], and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway [25] enrichment 
of the annotated genes were conducted using the R pack-
age clusterProfiler v4.8.1 [26] (one-tailed hypergeometric 
test).

Cross-lagged panel analysis (CLPA)
CLPA is widely used to examine directional influences 
between intercorrelated and longitudinally changing 
variables. To test the longitudinal bidirectional relation-
ship between LFC and DNAm, CLPA using longitudinal 
data of LFC and DNAm was performed, combining the 
two cohorts. Prior to analysis, LFC values were adjusted 
for age, sex, and smoking status by linear regression and 
residuals were Z-transformed; methylation β values were 
similarly processed but further adjusting for batch effects 
and estimated leukocyte composition (model 1). BMI was 
additionally adjusted in model 2. The analysis simultane-
ously estimated two cross-lagged path coefficients, which 
represent the effect of baseline LFC (or DNAm) on future 
DNAm (or LFC) at follow-up. Besides, temporal relation-
ships between DNAm of the CpGs and BMI in model 
1 are also presented. R package Lavaan with structural 
equation model was used to perform CLPA [27]. Model 
fitting was validated by a goodness-of-fit index > 0.90, 
a comparative fit index > 0.95, and a standardized root-
mean-square residual < 0.08 [28].

Statistical analysis
Numerical variables are presented as mean (standard 
deviation, SD) for symmetrical distributions, and median 
[quartile 1, quartile 3] for asymmetric distributions. 
Differences in normally and nonnormally distributed 
data were analyzed using Student’s t test and the Mann-
Whitney U test, respectively. Sex and smoking status are 
presented as n (%), and the chi-square test was used to 
compare proportions. All the statistical analyses were 
performed in the R statistical environment version 4.2.2. 
All reported p values are two-sided with a significance 
level of 0.05.

Results
Basic characteristics
The discovery cohort and the replication cohort had 
mean ages of 61.2 (SD: 7.29 years) and 61.9 (SD: 8.37 
years) at baseline, respectively. Approximately 58% and 
47% of the participants were female, respectively. The 
replication cohort had a slightly longer follow-up time 
than did the discovery cohort (4.39 years vs. 4.10 years). 
Baseline age, smoking status, BMI, LFC, and longitudinal 
change of LFC were comparable between the discovery 
and the replication cohorts (Table 1 and Additional File 1 
Supplementary Fig. 1).
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Longitudinal EWAS
Longitudinal EWAS of LFC using LMM in the discovery 
cohort revealed that hypermethylation of cg11024682 
(SREBF1), cg06500161 (ABCG1), and cg16740586 
(ABCG1) was significantly associated with increased LFC 
after adjusting for age, sex, and smoking status (Fig. 2A; 
Table 2), which was successfully replicated in the replica-
tion cohort (P < 0.05 with the same direction of effects). 
Longitudinal EWAS of LFC using LMM in the replication 
cohort identified no significant associations (Fig.  2B). 
The fixed-effects meta-analysis combining EWAS results 
from the discovery and the replication cohorts revealed 
5 significantly associated CpGs (P < 1e-7 with the same 
effect directions in the two cohorts), among which hyper-
methylation of cg15659943 (ABCA1) and cg00163198 
(SNX19) was also associated with increased LFC (Fig. 2C; 
Table  2). Further adjusting for BMI attenuated the 
strength of the associations but the 5 CpGs remained 
near significantly associated with LFC (Table 2).

Analysis of the association between longitudinal 
change of LFC and that of DNAm found that hypometh-
ylation of cg09154567 annotated to SULT4A1 was asso-
ciated with increased LFC in the replication cohort, but 
not significant in the discovery cohort or the meta-anal-
ysis (Additional File 1 Supplementary Fig. 2 and Table 2).

Functional enrichment
Functional enrichment analysis was conducted for the 
top 20 CpGs associated with LFC according to the lon-
gitudinal meta-analysis results (Table 3). Specifically, the 
enrichment of genes where the top CpGs located in terms 
of GO, KEGG, and Reactome pathways was checked. As 
a result, the following biological processes were signifi-
cantly enriched: lipid storage and transport (Fig.  3A-B), 
NR1H2 and NR1H3-mediated signaling (Fig.  3C), ABC 
transporters and cholesteral metabolism (Fig.  3D), and 
some other lipid-related functions and pathways.

Cross-sectional EWAS
Cross-sectional EWAS at baseline and at follow-up in the 
two cohorts was performed, respectively. EWAS in the 
meta-analysis at follow-up found that hypomethylation 
of cg07162647 and hypermethylation of cg11024682 
(SREBF1) and cg06500161 (ABCG1) were cross-section-
ally associated with higher LFC (Additional File 1 Supple-
mentary Fig. 3 and Table 2).

As shown in Additional File 1 Supplementary Table 1, 
the significant CpGs identified in the longitudinal analy-
ses were also cross-sectionally associated with LFC with 
consistent directionality and nominal P < 0.05 in the 
meta-analyses at baseline and at follow-up, respectively.

Further adjustment of BMI did not materially change 
the associations (Table  2 and Additional File 1 Supple-
mentary Table 1). A total of 8 meQTLs were found for 
the 6 CpGs identified in Changfeng population (Addi-
tional File 1 Supplementary Table 2).

Look up of the 22 previously known CpGs
Previous EWAS of hepatic fat in 1,496 participants from 
the Framingham Heart Study identified 58 significant 
CpGs with an FDR < 0.05, 22 of which were success-
fully replicated in 1,904 participants from another three 
cohorts in a sex- and age-adjusted model [10]. Eight of 
the 22 CpGs remained significant in the longitudinal 
EWAS using LMM in model 1 after Bonferroni correc-
tion, and were also nominally significant in the meta-
analyses in cross-sectional EWAS at baseline and at 
follow-up (Table  4). This suggested that alterations in 
DNAm detected in peripheral blood could be verified in 
different ethnic groups, and was associated not only with 
cross-sectional LFC variation but also with longitudinal 
LFC changes. A total of 9 meQTLs were found for the 6 
CpGs (except for cg11024682 and cg06500161) validated 
in Changfeng population (Additional File 1 Supplemen-
tary Table 3).

Table 1 Basic characteristics of the study participants
Discovery Replication
Baseline
(n = 358)

Follow-up
(n = 405)

Baseline
(n = 97)

Follow-up
(n = 125)

P†

Female, % 208 (58.1) 234 (57.8) 46 (47.4) 59 (47.2) 0.078
Age, years 61.2 (7.29) 65.5 (7.34) 61.9 (8.37) 66.8 (8.60) 0.407
Smoke, % 0.398
 Never 292 (81.6) 328 (81.0) 76 (78.4) 93 (74.4)
 Past 9 (2.5) 11 (2.7) 5 (5.2) 11 (8.8)
 Current 57 (15.9) 65 (16.0) 16 (16.5) 21 (16.8)
BMI, kg/m2 23.8 (2.96) 24.6 (3.08) 24.0 (2.44) 24.6 (3.05) 0.541
LFC, % 5.72

[2.21, 12.50]
5.75
[2.25, 14.28]

4.73
[1.75, 11.59]

5.87
[2.33, 12.33]

0.193

Follow-up time, years 4.10 (0.63) 4.39 (0.72) 0.003
LFC change, % 1.00 [-2.84, 6.45] 2.79 [-2.31, 7.64] 0.257
†P indicates the significance of differences between discovery and replication cohorts at baseline
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Fig. 2 Manhattan plot of the longitudinal association of peripheral blood-derived DNA methylation with LFC using LMM. Plot was generated using 
results from the sex-, age-, and smoking-adjusted model in the discovery cohort (A), the replication cohort (B), and meta-analysis (C)
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Cross-lagged panel analysis
CLPA was performed to investigate the longitudinal 
directional relationships between LFC and DNAm of the 
12 identified and replicated CpGs. In model 1 adjusting 
for age, sex, and smoking status, baseline hypermeth-
ylation at cg11024682 (SREBF1) (β = 0.14 [0.06, 0.23]), 
cg16740586 (ABCG1) (β = 0.17 [0.08, 0.25]), cg06500161 
(ABCG1) (β = 0.12 [0.03, 0.20]), cg27243685 (ABCG1) 
(β = 0.09 [0.01, 0.18]) and hypomethylation at cg17901584 
(DHCR24) (β = -0.10 [-0.18, -0.02]), cg00574958 (CPT1A) 
(β = -0.09 [-0.17, -0.01]), cg08309687 (LINC00649) (β = 
-0.11 [-0.19, -0.03]) predicted increased subsequent LFC; 
higher LFC led to hypermethylated cg15659943 (ABCA1) 
(β = 0.13 [0.04, 0.21]), cg06500161 (ABCG1) (β = 0.10 
[0.02, 0.18]), cg27243685 (ABCG1) (β = 0.10 [0.02, 0.18]) 
and hypomethylation at cg07162647 (β = -0.11 [-0.19, 
-0.03]) (Fig. 4).

Among the 12 identified and replicated CpGs, 
cg15659943 (ABCA1) (β = 0.07 [0.02, 0.11]) and 
cg11024682 (SREBF1) (β = 0.06 [0.01, 0.10]) showed 
longitudinal effects on subsequent increased BMI, and 
BMI was temporally associated with hypomethylation 
of cg00574958 (CPT1A) (β = -0.12 [-0.20, -0.05]) and 
cg08309687 (LINC00649) (β = -0.09 [-0.15, -0.03]) (Addi-
tional File 1 Supplementary Fig. 4).

In model 2 further adjusting for BMI, the temporal 
effects of cg11024682 (SREBF1), cg16740586 (ABCG1) 
and cg06500161 (ABCG1) on LFC were almost halved 
with p values of 0.076, 0.032, and 0.165, which indicated 
that the effects were partially influenced by increased 
obesity (Additional File 1 Supplementary Fig. 5). Tempo-
ral associations of other CpGs and LFC were not greatly 
changed (Additional File 1 Supplementary Fig. 5).

Discussion
The present research identified 5 CpGs associated with 
longitudinal change of LFC, another 1 CpG cross-sec-
tionally associated with LFC, and replicated another 6 
previously reported LFC-associated CpGs in longitudi-
nal EWAS in the sex-, age-, and smoking-adjusted model. 
Among the significant CpGs, 9 showed longitudinal 
directional associations with LFC, and 8 remained signif-
icant after further adjusting for BMI in model 2. The find-
ings are notable in not only identified/replicated DNAm 
of CpGs longitudinally associated with LFC in Chinese 
participants, but also distinguished between predictors 
and biomarkers.

Several cross-sectional EWASs have observed altered 
DNAm patterns collected from liver biopsies or periph-
eral blood samples of MASLD patients [29], but lon-
gitudinal EWASs of LFC are lacking. In accordance 
with previous studies, this study likewise showed that 
genes involved in lipid metabolism and biosynthesis 
pathways appeared to be the most prominent markers. Ta
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Cg15659943, at which DNAm is longitudinally associated 
with baseline LFC, is annotated to ABCA1. A mild but 
significant effect of baseline LFC on subsequent hyper-
methylation at cg06500161 and cg27243685 mapping to 
ABCG1 was observed. ABCA1 and ABCG1 are mem-
bers of the ABC transporter superfamily that are essen-
tial for the biogenesis of high-density lipoprotein (HDL) 
and reverse cholesterol transport. ABCA1 functions as 
an efflux pump of cholesterol from peripheral cells to 
apolipoprotein A-I and generates the nascent HDL, and 
ABCG1 facilitates subsequent cholesterol efflux to HDL 
for further maturation [30, 31]. These implicated that 
LFC alteration might regulate gene expression involved in 
reverse cholesterol transport via epigenetic mechanisms.

Cg00163198 is a novel EPIC array marker, and has 
been described to be related to incident type 2 diabetes 
[32] and cardiovascular health factors including BMI, 
blood pressure, glucose, and cholesterol levels [33]. It lies 
on the intronic region of the Sorting nexin 19 (SNX19) 
gene, which was found to be associated with liver 
enzymes, lipids, and body fat in a GWAS [34]. SNX19 
enables the binding of lipids and phosphatidylinositol, 
and plays important roles in insulin secretion [35]. CpG 
cg00163198 located in an active regulatory region and 
was significantly correlated with an eQTL of SNX19 
in the adipose tissue (eQTL P = 8.78 × 10− 22 by GTEx; 
meQTL P = 1.93 × 10− 13 by Pan-meQTL) [36]. This indi-
cates that the regulation between cg00163198 and SNX19 
is mediated by the eQTL and ultimately affects gene 
expression.

Evidence on causal relationships between DNAm and 
LFC or fatty liver is scarce to date. The present study did 
not conduct MR analysis due to the lack of large GWASs 
on LFC in Asian populations and insufficient statistical 
power. Previous studies applying CLPA reported that 
DNAm is a biomarker rather than a predictor or cause 
of BMI [37, 38], which was in accordance with the find-
ings of MR [19] and longitudinal enrichment analysis 
[39]. Using CLPA in a cohort with repeatedly measured 
data, this study demonstrated that baseline hypermeth-
ylation at cg11024682 (SREBF1) and the three CpGs 
(cg16740586, cg06500161, and cg27243685) investigated 
mapping to ABCG1 predicted increased subsequent LFC 
levels. DNAm at cg11024682 (SREBF1) was reported 
associated with hepatic fat [10], BMI [19, 40], type 2 dia-
betes [41], blood triglyceride levels [42, 43], serum liver 
enzyme levels [44], and cardiovascular health [33]. Meth-
ylation at CpGs mapping to ABCG1 was reported asso-
ciated with increased blood lipids, glucose, insulin, and 
increased risk of diabetes [45, 46]. DNAm of cg27243685 
was reported associated with hepatic fat [10, 47]. Animal 
studies demonstrated that Abcg1 played a pivotal role in 
preventing hepatic fat accumulation in mice challenged 
with high-fat diet [48].

The temporal effects of DNAm of CpGs at SREBF1 and 
ABCG1 on subsequent LFC were reduced after adjusting 
for BMI. This was consistent with the findings from the 
cross-sectional EWAS in another study [10] and was not 
unexpected, as obesity, diabetes, and lipid metabolism 
are established correlated with each other and are related 
with MASLD. BMI was positively associated with LFC in 

Table 3 Top 20 CpGs that most significantly associated with LFC in the longitudinal meta-analysis in model 1
CpG Chr POS UCSC_

RefGene
Gencode
BasicV12_Group

Relation
to_Island

Zscore P Effect Direction

cg11024682 17 17,730,094 SREBF1 Body S_Shelf 7.064 1.613E-12 ++
cg00163198 11 130,767,760 SNX19 Body OpenSea 6.32 2.608E-10 ++
cg06500161 21 43,656,587 ABCG1 Body S_Shore 6.2 5.642E-10 ++
cg16740586 21 43,655,919 ABCG1 Body S_Shore 5.804 6.465E-09 ++
cg15659943 9 107,631,656 ABCA1 Body OpenSea 5.352 8.702E-08 ++
cg03694857 2 152,568,384 NEB Body OpenSea 5.149 2.614E-07 ++
cg13449394 12 109,230,732 MIR619;SSH1 Body OpenSea 5.058 4.248E-07 ++
cg10819350 19 10,655,686 ATG4D Body S_Shore 5.047 4.496E-07 ++
cg07162647 19 40,466,275 OpenSea -5.026 5.014E-07 --
cg27243560 12 25,522,335 OpenSea 4.95 7.413E-07 ++
cg21137557 5 115,314,451 LVRN Body OpenSea -4.902 9.479E-07 --
cg00857282 6 16,130,727 MYLIP Body S_Shore 4.867 1.135E-06 ++
cg27243685 21 43,642,366 ABCG1 Body; 5’UTR S_Shelf 4.862 1.16E-06 ++
cg00574958 11 68,607,622 CPT1A 5’UTR N_Shore -4.792 1.655E-06 --
cg12748148 2 30,549,065 OpenSea -4.791 1.658E-06 --
cg13280734 11 57,252,275 SLC43A1 3’UTR S_Shore 4.779 1.763E-06 ++
cg12188928 17 27,309,139 SEZ6 Body N_Shelf 4.767 1.87E-06 ++
cg10558063 1 44,540,412 OpenSea 4.763 1.906E-06 ++
cg07504977 10 102,131,012 N_Shelf 4.743 2.107E-06 ++
cg07502358 13 78,168,218 SCEL Body OpenSea -4.725 2.297E-06 --
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Changfeng population with Spearman r = 0.32 (P < 2.2e-
16), and increased obesity might lie on the mechanistic 
pathway from DNAm of CpGs at SREBF1 and ABCG1 to 
increased LFC. In CLPA, BMI showed weak association 
with cg11024682 (SREBF1) and non-significant associa-
tions with the three CpGs (cg16740586, cg06500161, and 
cg27243685) of ABCG1. Together, the results indicated 
that the effects of DNAm of SREBF1 and ABCG1 were 
mediated by increased BMI as well as other mechanisms, 
for example, diabetes and lipid metabolism.

Results of CLPA illustrated that hypomethylation at 
cg08309687 (LINC00649) has a strong prospective effect 
on increasing LFC, which was in accordance with pre-
vious findings from MR analysis [10]. There were four 
meQTLs at LINC00649 for cg08309687 according to 
the EPIGEN MeQTL Database. A three-way associa-
tion by Ma et al. reported that 8% of the association of 
cg08309687 and hepatic fat was mediated by the expres-
sion of TMEM50B [10]. In addition, hypermethylation 

at cg17901584 (DHCR24) and cg00574958 (CPT1A) 
were putatively predictors for decreased LFC. DHCR24 
encodes 24-dehydrocholesterol reductase that is involved 
in the final step of cholesterol synthesis, converting des-
mosterol into cholesterol [49]. Cg17901584 was also 
reported associated with metabolic traits such as BMI 
[19], blood lipids [43], and type 2 diabetes [50].

Strengths and limitations
The strength of this study lies in its prospective nature 
with repeatedly measured data, and it adds value to 
EWAS of fatty liver by distinguishing between predic-
tors and biomarkers. This study has potential limitations. 
First, the modest sample size might result in limited 
statistical power to detect CpGs with small effect sizes. 
Second, the study used DNA from peripheral blood as 
liver tissues were unavailable. However, previous studies 
demonstrated that quantification of DNAm from periph-
eral blood or plasma cell-free DNA released by dying 

Fig. 3 Functional enrichment of the top 20 CpGs that most significantly associated with LFC. (A, B) Enrichment of the annotated genes in GO, where the 
x-axis represents the negative log p value of enrichment significance (A) and the number of genes overlapped with the functional term (B). (C, D) Enrich-
ment of the annotated genes in Reactome pathways (C) and KEGG pathways (D)
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hepatocytes could reflect the severity of MASLD and 
could be suggested as an alternative approach with high 
accuracy to stratify MASLD [11, 51]. Third, experiments 
are needed to explore the mechanisms involved.

Conclusions
In summary, differences in peripheral blood DNA meth-
ylation occur in interindividual variation and intrain-
dividual longitudinal change of LFC. Blood DNAm at 
SREBF1, ABCG1, DHCR24, CPT1A, and LINC00649 may 
be predictors of subsequent LFC change. The effects of 
DNAm at SREBF1 and ABCG1 were partially influenced 
by obesity, which implicates the importance of control-
ling body weight in preventing fatty liver. For clinical 
perspective, reversible alterations in DNA methylation 
result from various exposures and lead to changes in 
gene expression, distinguishing between predictors and 
biomarkers may be helpful in developing preventive and 
therapeutic strategies for fatty liver disease.

Table 4 Longitudinal and cross-sectional associations of 22 previously known CpGs with LFC in Changfeng population
CpG Chr POS UCSC_

RefGene
Gencode
BasicV12
_Group

Relation_
to_Island

Longitudinal Baseline Follow-up
P† Effect Direction P Effect

Direction
P Effect Direction

cg09469355 1 2,161,886 SKI S_Shore 5.76E-01 +- 4.45E-01 +- 3.20E-01 --
cg17901584 1 55,353,706 DHCR24 TSS1500; 5’UTR S_Shore 5.24E-04 -- 7.49E-03 -- 7.75E-03 --
cg03725309 1 109,757,585 SARS S_Shore 3.95E-01 +- 9.63E-01 -+ 5.65E-01 +-
cg14476101 1 120,255,992 PHGDH 5’UTR S_Shore 5.50E-01 -+ 2.02E-01 -+ 9.19E-01 -+
cg19693031 1 145,441,552 TXNIP 3’UTR; 5’UTR OpenSea 1.45E-04 -- 3.16E-02 -- 2.44E-03 --
cg06690548 4 139,162,808 SLC7A11 OpenSea 4.00E-01 -- 1.63E-01 -- 9.96E-01 -+
cg05119988 4 166,251,189 SC4MOL 5’UTR S_Shelf 3.57E-01 -- 2.77E-01 -- 3.61E-01 --
cg03957124 6 37,016,869 S_Shelf 8.56E-02 -- 7.81E-01 +- 1.21E-02 --
cg18120259 6 43,894,639 OpenSea 6.05E-02 -- 8.78E-02 -- 2.77E-01 -+
cg17501210 6 166,970,252 RPS6KA2 5’UTR OpenSea 9.33E-01 -+ 2.90E-01 ++ 2.46E-01 -+
cg21429551 7 30,635,762 GARS S_Shore 5.23E-01 ++ 8.57E-01 -+ 4.18E-01 ++
cg11376147 11 57,261,198 SLC43A1 3’UTR OpenSea 2.15E-01 -- 3.05E-01 -- 2.07E-01 --
cg00574958 11 68,607,622 CPT1A 5’UTR N_Shore 1.66E-06 -- 3.36E-02 -- 9.14E-06 --
cg26894079 11 122,954,435 ASAM 1stExon; 3’UTR OpenSea 9.82E-02 -- 3.72E-01 -- 8.29E-02 --
cg11024682 17 17,730,094 SREBF1 S_Shelf 1.61E-12 ++ 3.81E-05 ++ 4.89E-09 ++
cg14020176 17 72,764,985 SLC9A3R1 3’UTR OpenSea 9.36E-04 ++ 5.29E-02 ++ 8.95E-03 ++
cg19016694 17 80,821,826 TBCD 3’UTR S_Shelf 1.05E-01 -- 3.88E-01 -- 2.41E-01 --
cg15860624 19 3,811,194 ZFR2 Island 1.29E-01 ++ 5.57E-01 +- 3.24E-01 ++
cg08309687 21 35,320,596 TSS1500; 5’UTR OpenSea 1.32E-03 -- 1.21E-01 -+ 1.29E-03 --
cg27243685 21 43,642,366 ABCG1 5’UTR S_Shelf 1.16E-06 ++ 2.00E-03 +- 4.94E-05 ++
cg06500161 21 43,656,587 ABCG1 5’UTR S_Shore 5.64E-10 ++ 5.39E-03 ++ 2.17E-08 ++
cg02711608 19 47,287,964 SLC1A5 5’UTR;1stExon N_Shelf NA NA NA NA NA NA
†P < 2.3e-3 (0.05/22) are marked bold. Results in meta-analyses of the discovery and the replication cohorts are presented
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