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A B S T R A C T

Skin wrinkles result from intrinsic aging processes and extrinsic influences, including prolonged exposure to
ultraviolet radiation and tobacco smoking. Hence, the identification of wrinkles holds significant importance in
skin aging and medical aesthetic investigation. Nevertheless, current methods lack the comprehensiveness to
identify facial wrinkles, particularly those that may appear insignificant. Furthermore, the current assessment
techniques neglect to consider the blurred boundary of wrinkles and cannot differentiate images with varying
resolutions. This research introduces a novel wrinkle detection algorithm and a distance-based loss function
to identify full-face wrinkles. Furthermore, we develop a wrinkle detection evaluation metric that assesses
outcomes based on curve, location, and gradient similarity. We collected and annotated a dataset for wrinkle
detection consisting of 1021 images of Chinese faces. The dataset will be made publicly available to further
promote wrinkle detection research. The research demonstrates a substantial enhancement in detecting
subtle wrinkles through implementing the proposed method. Furthermore, the suggested evaluation procedure
effectively considers the indistinct boundaries of wrinkles and is applicable to images with various resolutions.
1. Introduction

Wrinkles are structural changes due to a decrease in the elasticity of
the facial skin. The factors contributing to this shift can be attributed to
intrinsic elements associated with the normal aging process and extrin-
sic factors, including prolonged exposure to ultraviolet radiation [1]
and tobacco smoking [2]. Hence, wrinkles hold significant relevance
within dermatology [3–5] and medical aesthetics [6–8]. Nevertheless,
automated detection of facial wrinkles is still a challenging task. The
paradigm of wrinkle detection technologies and how to objectively and
properly assess the quality of wrinkle detection are still open questions.

Wrinkles are considered line segments arranged randomly in space
and modeled as different patterns in different studies. In studies of skin
aging, wrinkles are considered a textural feature [9]. In the detection
task, wrinkles are treated as an edge with fuzzy boundaries [10,11].
Traditionally, in prior studies, the conventional method involves utiliz-
ing first- or second-order derivatives for fundamental edge detection,
such as Gabor filters [12] or Hessian filters [10,13,14]. Due to these
filters cannot perceive high-level semantic information in the image,
they will detect all edges without discrimination. This causes other
edges in the image to be mistaken for wrinkles. Thus, these methods are
limited to particular facial areas, such as the forehead. Deep learning
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has gained significant popularity in recent years for various computer
vision applications because of its capacity to extract complex semantic
information from images at several levels automatically [15–20]. Vari-
ous semantic segmentation models, including Unet [21], Unet++ [22–
24], and GCN [25,26] techniques, are employed to identify wrinkles.
While these methods do provide flexibility in application scenarios, the
recognition process may overlook some insignificant wrinkles due to
wrinkles’ narrow morphology.

Therefore, this paper presents a novel method for wrinkle detection.
The proposed method, similar to recent studies, employs a neural
network comprised of an encoder and a decoder. However, unlike
other methods that commonly use level-by-level upsampling in seman-
tic segmentation tasks, the decoder in the proposed method utilizes
multilevel fusion, which is widely used in edge detection tasks [27–
29]. This allows the decoder to preserve multilevel semantic infor-
mation during decoding better, thus providing a better perception of
insignificant wrinkles. Additionally, the paper proposes a distance-
based loss function based on the representation of wrinkles in an
image. Previous studies have shown that wrinkles exhibit a ridge-
valley-ridge pattern [10], where valleys are darker in the image and
ridges are brighter and closer to the color of the skin, resulting in
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Fig. 1. Wrinkle patterns under different shooting conditions. The red line in the third
column of the figure indicates the skeleton line, and the thick gray line indicates the
uncertainty region.

blurred borders. The dice loss function, commonly applied in semantic
segmentation tasks, is often criticized for its limited capacity to capture
edge details [30]. This deficiency is compounded by the presence of
blurred borders, which further exacerbates the problem. Therefore, the
proposed method generates a distance map as a mask based on the
dice loss function centered on the skeleton lines (valleys) to compute a
weighted loss based on the distance to enhance the perception of edges.

In addition to the detection method, the evaluation of detection
performance is also an issue that needs to be investigated. In this study,
we consider the fuzzy boundary of wrinkles as a representation of
uncertainty [31]. As shown in Fig. 1, the skeleton line to be detected
can be considered as a certainty region. The region between the skele-
ton line and facial skin, the fuzzy boundary, can be regarded as an
uncertainty region. In a previous study, Batool et al. evaluated wrinkles
using detection rate, false alarm rate, and miss rate [32]. This method
sets up a dilation region based on the certainty region and assumes
that all predictions within the dilation region are correct, which is not
an entirely rigorous approach. The Jaccard similarity index (JSI) [33]
is currently the most popular tool for evaluating wrinkles. Similar to
the Dice score [34] used for semantic segmentation, the JSI assessment
method dilates the skeleton lines of the wrinkles before calculating the
overlap ratio [13,35]. The JSI considers the uncertainty region to some
extent but still has flaws. First, the weighting of the certainty region
should differ from that of the uncertainty region in the assessment.
Dilating the skeleton line is equivalent to changing the uncertainty
region into a certainty region. Second, the scale of dilation could not
be determined. The number of pixels occupied by wrinkles is different
for images with different resolutions. Therefore, using the same dilation
scale for images of different resolutions is unreasonable.

Based on the above observations, this study proposes an assess-
ment method that utilizes skeleton lines. The method is based on the
concept introduced by JSI, in which a dilation region is established.
The prediction performance is assessed by calculating the similarity
between the annotated and predicted skeleton lines within the region.
The similarity metrics used are curve similarity, location similarity,
and gradient similarity. The proposed method assigns a weight to
the predicted skeleton line within the uncertainty region rather than
classifying it as either correct or incorrect. Additionally, the method
determines the dilation scale based on images of various resolutions.

The main contribution of this work is summarized as follows:

1. A network and a loss function have been proposed for the
purpose of wrinkle detection, with a focus on enhancing the
detection of insignificant wrinkles.

2. A novel evaluation method for wrinkle detection has been pro-
posed. This approach is capable of discerning between certainty
and uncertainty regions, as well as offering distinct schemes for
images with varying resolutions.

3. We collected and annotated the first publicly available wrinkle
detection dataset.
2

The remainder of this paper is organized as follows. In Section 2,
we introduce and analyze existing wrinkle detection methods and
commonly used evaluation metrics. Section 3 describes the dataset
used in this study. The proposed detection methods and assessment
metrics are described in Section 4 and Section 5, respectively. In
Section 6, experiments are organized to demonstrate the performance
of the detection methods and to analyze the rationality of the proposed
assessment metrics. Finally, the conclusions are presented in Section 7.

2. Related works

2.1. Wrinkle detection method

In the initial stages of exploration, conventional edge detection
methods, such as Gabor filters [6,12], Markov point processes [32,
36,37], and Hessian Hybrid filters (HHF) [10,14,38], were utilized to
identify wrinkles. Ng et al. applied the Frangi filter to the gradient
map in the 𝑦-direction and subsequently set a threshold to extract
wrinkles [13]. Similarly, Yap et al. modified HHF and devised a wrinkle
annotator [14]. However, the selection of parameters poses a challenge
for traditional methods, such as the choice of Gaussian kernel scales in
HHF techniques. In a study by Yap et al. two Gaussian kernel scales
were chosen for two datasets with varying resolutions. On the other
hand, the absence of semantic information often results in traditional
methods for detecting all edges in an image without discrimination.
Consequently, early research efforts have mainly concentrated on spe-
cific regions of the face, such as the detection of transverse forehead
lines.

Recently, the advancement of deep learning in computer vision
has revolutionized the conventional approach to wrinkle detection.
The acquisition of semantic information in images by neural networks
significantly reduces the perception of non-wrinkled edges [39]. During
the iterative training process, models can selectively filter the edge
information they wish to detect. Therefore, several semantic segmen-
tation models, such as Unet [21], Unet++ [22], and GCN [25], have
been employed to identify wrinkles. Li et al. for instance, employed
GCN to detect facial nasolabial folds using the entire face as input [26].
Likewise, Sabina et al. utilized a modified Unet network to accomplish
the same objective [40]. Furthermore, convolutional neural networks
have also demonstrated strong performance in several full-face wrinkle
detection tasks [11,23].

Despite the enhanced flexibility in applications, existing methods
are still inadequate for detecting insignificant wrinkles. This is because
wrinkles, particularly insignificant wrinkles, have an elongated shape
and are more challenging to recognize compared to typical semantic
segmentation targets. In addition, the Dice loss function used in the
segmentation task is deficient in the perception of edges. Hence, this
study introduces a novel network architecture along with a newly
formulated loss function for wrinkle detection.

2.2. Wrinkle assessment metrics

Evaluation criteria for wrinkle detection should consider smaller
certainty regions while also considering uncertainty areas. Wrinkles are
typically thin, making traditional area detection evaluation methods,
such as IoU, unsuitable. Such methods are unable to assess predicted
wrinkles within the region of uncertainty. In a previous study, Batool
et al. first proposed an evaluation method for wrinkle detection [32].
They set a dilated region around the detected wrinkle, and the part
of the annotated wrinkle that falls within the area is correctly de-
tected. The ratio of all correctly predicted annotated wrinkles to the
total annotated wrinkles was defined as the detection ratio (𝑟𝑑𝑒𝑡𝑒𝑐𝑡).
Meanwhile, the 1− 𝑟𝑑𝑒𝑡𝑒𝑐𝑡 was defined as the missing ratio (𝑟𝑚𝑖𝑠𝑠). Then
they dilate the annotated wrinkle in the same way, and the part of the
detected wrinkle that does not fall within this region is considered a
false detection. The false alarm ratio (𝑟 ) is the ratio of all false
𝑓𝑎𝑙𝑠𝑒
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Fig. 2. Four degrees of dilation were performed on the wrinkled skeleton line. The
red and green lines represent the annotated and predicted wrinkles, respectively. The
yellow line indicates the overlapping part.

detections to the background of the whole image. These three metrics
have also been used in some later studies [37,41]. Following this,
Ng et al. adopted a comparable but more concise technique for their
evaluation [13]. They executed simultaneous dilation of the predicted
skeleton lines and the annotated skeleton lines at the same scale, and
subsequently, they evaluated the overlap between these two regions
using JSI. JSI is currently the most widely evaluated method for wrinkle
detection tasks [35].

Although both assessment methods are widely used, their rational-
ization still has limitations. Firstly, the dilation region considers the
uncertainty region of wrinkles, but it is not rigorous to consider the
predicted skeleton lines within this region as correct. Instead, it is
more appropriate to assign these skeleton lines a reasonable weight.
Secondly, determining the dilation scale is another issue that needs to
be addressed. As demonstrated in Fig. 2, the performance of different
dilation scales varies, and increasing the dilation results in higher
overlap and JSI. Therefore, finding a reasonable threshold is a chal-
lenge that needs to be overcome. This investigation introduces a novel
evaluation approach that employs skeleton lines to assess wrinkles. The
method evaluates the similarity between the predicted and annotated
skeleton lines within a reasonable dilation range. The approach is
inspired by [42,43] and aims to provide a more accurate assessment
of wrinkles.

3. Wrinkle detection dataset

Research on wrinkle detection has been carried out for decades,
but there is currently no dataset dedicated to wrinkle detection. Com-
monly used datasets include Bosphorus [44], FG-Net [45], FERET [46],
MORPH [47], and PAL [48]. These datasets are intended to be used in
other tasks such as age estimation and face recognition. Researchers
have typically selected a small subset of these datasets in past stud-
ies and annotated them themselves. Currently, there are no publicly
available wrinkle annotation datasets available.

We collect various high-resolution face images from different sources
and annotate entire face regions. The informed consent was obtained
from the volunteers. This research program was conducted with the
approval of the Ethics Committee of Fudan University (Ethics Research
Approval No. 85), Shanghai, China and followed the principles of the
Declaration of Helsinki. In addition, to protect privacy, we covered the
volunteers’ eyes, noses and mouths. The covered area is determined by
connecting landmarks point by point, and the detection of landmarks
uses the API of Face++.

Totally 1021 images of frontal faces were collected in several cities
across China, which were captured with different digital cameras in
various stable indoor environments. The age distribution of the volun-
teers ranged from 25 to 80 years old. Resolution and lighting conditions
are not uniform between images due to different shooting locations.
Resolution ranges from 1000 × 700 to 2640 × 1700.

Before image annotation, we first invite dermatologists to grade
wrinkles to screen out wrinkles that can significantly reflect skin quality
3

for annotation. Afterward, we asked three coders to independently
annotate the skeleton lines of wrinkles based on the grading criteria.
The annotation standard is that each coder draws a single-pixel line that
they think is the darkest color. All annotation work is done on the iPad.
Dermatologists select the final annotation results from the annotation
results of the three coders.

4. Wrinkle detection method

4.1. Network structure

In this section, we present a new approach for detecting full-face
wrinkles. The architecture of our method is depicted in Fig. 3. It consists
of an encoder–decoder structure, with the encoder comprising four
stages that extract four levels of semantic features. Between each pair of
stages, a downsampling operation is performed, which involves convo-
lution with a kernel size of 3 and a stride size of 2. This reduces feature
map size by half, and the network depth is increased accordingly. The
depths of the network for the four stages are 32, 64, 160, and 256.
The decoding process for each stage includes an attention structure
and a convolution operation. Note that the attention structure used
here is the same as in stages. Specifically, stages 2–4 are upsampled
to their original size using a bilinear interpolation operation, and four
outputs are concatenated to produce the final predicted mask through
a convolution operation.

The encoder employs a consistent structure for every stage. The
structure is inspired by [49] and comprises attention and feedforward
modules in sequence. The attention module contains two convolutions
with an attention structure in between. The attention structure com-
prises three branches, each utilizing a convolution with a large-scale
kernel to extend the long-range receptive field. The feedforward mod-
ule implements a bottleneck structure consisting of expansion followed
by compression, with an expansion coefficient of 4. The repetitions
for the four stages are 3, 3, 5, and 2, respectively. The output of
the network is represented as a map that shows the distribution of
probabilities. The skeleton lines are obtained by extracting them from
a binary image generated with a threshold of 0.5, which is the outcome
of the wrinkle detection process. The extraction algorithm for skeleton
lines is borrowed from [50].

4.2. Loss function

In previous wrinkle detection studies, the dice loss function is the
most commonly employed:

𝐿𝑑𝑖𝑐𝑒 = 1 −
2
∑𝑁

𝑖=1 𝑔𝑖𝑝𝑖
∑𝑁

𝑖=1 𝑔𝑖 +
∑𝑁

𝑖=1 𝑝𝑖
, (1)

where 𝑁 denotes all pixels. 𝑔 and 𝑝 denote the ground truth and the
predicted mask, respectively.

The dice loss function aims to maximize the overlap between the
positive samples from two distributions. Nevertheless, it disregards the
predicted wrinkles within the uncertainty region, as illustrated in Fig. 4.
The green line, representing the predicted wrinkles, has minor inter-
sections with the red line, meaning the annotated wrinkles. Predictions
made within the uncertainty region are considered incorrect, resulting
in a substantial loss value. This evaluation technique overlooks the
fuzzy boundaries and is not reasonable enough.

This study proposes a distance-based loss function, followed by [30,
51]. Employing the annotated skeleton line as the central line, a
distance map is generated by evaluating the radial distance from the
surrounding pixels to the center, as depicted in Fig. 4. The pixel values
in the map progressively decrease with increasing distance from the
skeleton line. The formula for the loss function is presented below:

𝐿𝑑𝑖𝑠𝑡 = −
2
∑𝑁

𝑖=1 𝑔
𝑑𝑖𝑙𝑎𝑡𝑒
𝑖 𝑝𝑖𝑑𝑖

∑𝑁 𝑑𝑖𝑙𝑎𝑡𝑒 ∑𝑁 , (2)

𝑖=1 𝑔𝑖 + 𝑖=1 𝑝𝑖
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Fig. 3. A general overview of the proposed wrinkle detection method. The flow of this task is demonstrated in the left section, with the right upper part detailing the initiation
stage’s specific operations and the lower section outlining the subsequent four stages’ specific operations.
Fig. 4. The left line signifies a simulated wrinkle. The center red line represents
annotated wrinkles, while the green line depicts predicted wrinkles. The right-hand
side exhibits a gradual thick line, which serves as the distance map.

where 𝑔𝑑𝑖𝑙𝑎𝑡𝑒 denotes the dilated ground truth, while 𝑑 denotes the
distance map. In this study, the radius of dilation is set to 3. Losses
are calculated for each of the 4 stage maps as well as the fused map,
and the overall loss is the aggregate of these 5 losses.

5. Skeleton line-based wrinkle assessment metric

The assessment metrics designed in this study aim to objectively
evaluate the differences in wrinkle morphology, location, and edge
gradients between annotations and predictions through the skeleton
line. The overview is shown in Fig. 5.

First, we divide the annotated skeleton lines 𝐴𝑠𝑙 into single line
segments according to the nodes at the intersections between wrinkles.
Thereafter, these single line segments are subdivided sequentially such
that the longest does not exceed MaxLength and those shorter than
MinLength are discarded, as follows:

𝐴𝑠𝑙 =
∑

𝑖∈𝑁
𝐴𝑠𝑙
𝑖 , (3)

where 𝐴𝑠𝑙
𝑖 ∈ [𝑀𝑖𝑛𝐿𝑒𝑛𝑔𝑡ℎ,𝑀𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ]. This study set MinLength and

MaxLength to 5 and 20, respectively.
After segmentation is complete, region dilation is performed on the

𝐴𝑠𝑙
𝑖 to divide a tolerable error region for the predicted wrinkle. Since

wrinkles have uncertainty areas, even if the predicted skeleton line is
offset compared to the annotated skeleton line, it cannot be negated
entirely. Of course, it is equally unreasonable to consider wrinkles in
the dilated area to be correct predictions. Each pixel on 𝐴𝑠𝑙

𝑖 is extended
outward with a radius 𝑟 as follows:

𝐴𝑠𝑙𝑑
𝑖 = 𝑑𝑖𝑙𝑎𝑡𝑒(𝐴𝑠𝑙

𝑖 , 𝑟) (4)

This denote that the 𝐴𝑠𝑙
𝑖 is expanded from 1 single pixel to a width of

2𝑟 + 1 pixels. All predicted skeletal line segments 𝑃 𝑠𝑙 within the 𝐴𝑠𝑙𝑑
4

𝑖 𝑖
are queried and eligible to participate in the evaluation. Next, we will
go over the specific evaluation methods for each segment.

5.1. Curve similarity

Curve similarity is used to evaluate the morphology of 𝐴𝑠𝑙
𝑖 and 𝑃 𝑠𝑙

𝑖 ,
which can also be considered wrinkles’ direction. Specifically, 𝐴𝑠𝑙

𝑖 and
𝑃 𝑠𝑙
𝑖 can be regarded as a scatter arrangement of pixels within 𝐴𝑠𝑙𝑑

𝑖 , and
we use two cubic curves to fit 𝐴𝑠𝑙

𝑖 and 𝑃 𝑠𝑙
𝑖 , respectively.

{

𝐴𝑠𝑙𝑐
𝑖 = 3(𝑎1, 𝑏1, 𝑐1, 𝑑1)

𝑃 𝑠𝑙𝑐
𝑖 = 3(𝑎2, 𝑏2, 𝑐2, 𝑑2),

(5)

where 𝑎, 𝑏, 𝑐, and 𝑑 represent the fitting parameters. In the cubic
equation 3, 𝑎, 𝑏, and 𝑐 are parameters that determine the direction
of the curve, so we measure the difference between the two curves by
the vector 𝑉𝑎 = [𝑎1, 𝑏1, 𝑐1] and the vector 𝑉𝑝 = [𝑎2, 𝑏2, 𝑐2].

𝑐𝑠𝑖 = |

𝑉𝑎 ⋅ 𝑉𝑝
|𝑉𝑎| ⋅ |𝑉𝑝|

|, (6)

where 𝑐𝑠𝑖 ∈ [0, 1] characterizes the curve similarity, and 𝑐𝑠𝑖 equals 1
when the two curves overlap. Fig. 6 shows the fit of the two wrinkles.

5.2. Location similarity

The location similarity assesses the positional relationship between
the two skeletal lines 𝐴𝑠𝑙

𝑖 and 𝑃 𝑠𝑙
𝑖 . First, similar to curve similarity,

we also use a function to fit the pixel points, as shown in Fig. 7. The
difference is that the location similarity uses a linear function because
fitting pixel points using curves is more about depicting the skeleton
line orientation, which is difficult to reflect the overall position. Hence,
a linear function is preferable. Following fitting, the area enclosed by
the two fitted lines is used to measure the distance between 𝐴𝑠𝑙

𝑖 and
𝑃 𝑠𝑙
𝑖 . We can describe the location similarity as follows.

𝑙𝑠𝑖 = 1 −
2 × 𝐴𝑃 𝑠𝑙−𝑎𝑟𝑒𝑎

𝑖

𝑠𝑢𝑚(𝐴𝑠𝑙𝑑
𝑖 )

, (7)

where 𝐴𝑃 𝑠𝑙−𝑎𝑟𝑒𝑎
𝑖 represents the area enclosed by the two fitted lines.

Note that there is a possibility that 𝐴𝑠𝑙
𝑖 and 𝑃 𝑠𝑙

𝑖 will cross to enclose two
areas. In this case, 𝐴𝑃 𝑠𝑙−𝑎𝑟𝑒𝑎

𝑖 takes the absolute value of the difference
between the two areas. Because the area resulting from the crossover is
not positively correlated with the distance, the slope also plays a role
in the size of the area. For example, when the midpoints of two lines
intersect in an X-shape, the size of the area is only related to the slope
and not the location. Accordingly, the 𝑙𝑠 of these two lines is equal to 1.
𝑖
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Fig. 5. A general overview of the proposed wrinkle detection assessment method. Following the segmentation and dilation of annotated wrinkles, the predicted wrinkle segments
located within the dilated region were assessed.
Fig. 6. The green dots represent pixels that annotate wrinkles, and the red dots
represent pixels that predict wrinkles. The two curves are obtained via pixel fitting.

Fig. 7. The green and red dots indicate annotated and predicted pixels, respectively.
Two lines are obtained by fitting the pixels using two linear functions.

In addition, 𝑠𝑢𝑚(𝐴𝑠𝑙𝑑
𝑖 ) denotes the total number of pixels of 𝐴𝑠𝑙𝑑

𝑖 , which
can also be interpreted as the total area of 𝐴𝑠𝑙𝑑

𝑖 . Since the maximum
possible value of the area enclosed by 𝐴𝑠𝑙

𝑖 and 𝑃 𝑠𝑙
𝑖 is half of 𝑠𝑢𝑚(𝐴𝑠𝑙𝑑

𝑖 ),
the numerator is set to be two times of 𝐴𝑃 𝑠𝑙−𝑎𝑟𝑒𝑎.
5

𝑖

5.3. Gradient similarity

Gradient similarity is used to measure the difference when 𝑃 𝑠𝑙
𝑖 is in

a certainty region, uncertainty region, and outside the wrinkles. This
is the most significant difference between our and previous evaluation
methods, which confounded the expanded certainty area with the
uncertainty area. Given an image denoted as 𝑰 ∈ Rℎ×𝑤, the certainty
region of wrinkles presents a lower gray value on 𝑰 , while the skin
outside the wrinkles has a higher gray value. The uncertainty region
is in the middle. Based on this observation, we define the gradient
similarity as:

𝑔𝑠𝑖 = 1 − 2 ×
𝑒𝑥𝑝(𝑡) − 1
𝑒𝑥𝑝(𝑡) + 1

, (8)

where 𝑡 denotes the absolute value of the difference between the
average grayscale values of 𝐴𝑠𝑙

𝑖 and 𝑃 𝑠𝑙
𝑖 at corresponding positions

on 𝑰 . Specifically, we query the corresponding pixels of 𝐴𝑠𝑙
𝑖 and 𝑃 𝑠𝑙

𝑖
on 𝑰 , calculate the average gray value of these two groups of pixels
separately, and then make the difference.

𝑡 = 𝐴𝑏𝑠(𝑠𝑢𝑚(𝑰(𝐴𝑠𝑙
𝑖 ))∕𝑛 − 𝑠𝑢𝑚(𝑰(𝑃 𝑠𝑙

𝑖 ))∕𝑛) (9)

Since there is a significant grayscale difference between the uncertainty
region and beyond the wrinkles, 𝑔𝑠𝑖 can reflect whether the position of
𝑃 𝑠𝑙
𝑖 is in the uncertainty region.

Based on the above, we give the wrinkle similarity scores as follows:

𝑤𝑠𝑠𝑖 = 𝑤1 ⋅ 𝑐𝑠𝑖 +𝑤2 ⋅ 𝑙𝑠𝑖 +𝑤3 ⋅ 𝑔𝑠𝑖, (10)

where 𝑤1, 𝑤2, and 𝑤3 denote the weights of the three similarity metrics,
respectively, and 𝑤1+𝑤2+𝑤3 = 1. In this study, we set all three weights
to 1∕3. Since all 3 similarity scores are between 0 and 1, 𝑤𝑤𝑠𝑖 ∈ [0, 1].

After calculating the segmentation score, we give the global score
of the whole face, which uses a pixel-level strategy. Specifically, 𝑤𝑠𝑠𝑖
computes the score of 𝑃 𝑠𝑙

𝑖 . We believe all the pixels contained in 𝑃 𝑠𝑙
𝑖 to

be scored as 𝑤𝑠𝑠𝑖. From this, we can describe the total score 𝑁 ⋅ 𝑤𝑠𝑠𝑖
of all pixels in the detected line segments, where 𝑁 denotes the total
number of pixels in 𝑃 𝑠𝑙

𝑖 . The final predicted scores of the whole face
are represented as follows:

𝑊𝑆𝑆 =

∑

𝑃 𝑠𝑙
𝑖 ∈𝑃 𝑠𝑙 𝑁𝑖 ⋅𝑤𝑠𝑠𝑖
∑

𝑁
, (11)
𝐴𝑠𝑙
𝑖 ∈𝐴𝑠𝑙 𝑖
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Fig. 8. Evaluation of the Proposed Method’s Detection Performance: The original image is presented in the first column, followed by the four stages of the map in columns 2 to
5. The fused map is depicted in column 6, and the skeleton line extracted from the fused map is shown in column 7. The final column is the annotations.
Table 1
Objective evaluation results of the proposed and compared methods. Bold is the best performance.

Dilation 3 Dilation 5 Dilation 7

HHF UNet UNet++ GCN Proposed HHF UNet UNet++ GCN Proposed HHF UNet UNet++ GCN Proposed

ACC .888 .993 .993 .992 .992 .851 .988 .987 .987 .989 .824 .984 .983 .982 .988
F-measure .036 .178 .109 .068 .436 .053 .226 .143 .095 .561 .064 .251 .163 .112 .615
Dice .036 .173 .084 .065 .434 .053 .219 .110 .091 .560 .064 .244 .126 .107 .613
JSI .019 .099 .046 .035 .283 .028 .130 .062 .051 .395 .033 .147 .072 .060 .449
WDice .063 .166 .079 .057 .523 .111 .238 .120 .099 .712 .145 .267 .137 .121 .779

CDice .066 .172 .081 .059 .548 .118 .245 .121 .103 .740 .154 .271 .137 .124 .802
LDice .055 .137 .064 .046 .439 .094 .202 .099 .080 .618 .123 .235 .119 .101 .696
GDice .068 .189 .093 .067 .574 .121 .266 .137 .114 .768 .157 .294 .155 .137 .829
where 𝑊𝑆𝑆 denotes the pixel-level mean score of the predicted skele-
ton lines in the extended region 𝐴𝑠𝑙𝑑 . In other words, 𝑊𝑆𝑆 is the
composite score that can consider both the certainty and uncertainty
regions.

5.4. Wrinkle assessment metric

Although 𝑊𝑆𝑆 can evaluate two close wrinkles, 𝐴𝑠𝑙 and 𝑃 𝑠𝑙, it can-
not describe over-detection. Because some of the predicted wrinkles are
not inside 𝐴𝑠𝑙𝑑 . To solve this problem, we borrow the traditional region
evaluation method. Given that the total pixels of the image is 𝑁(𝑰), the
pixels occupied by 𝐴𝑠𝑙𝑑 are 𝑁(𝐴𝑠𝑙𝑑 ). The traditional evaluation metrics
true positive (TP), false negative (FN), true negative (TN), and false
positive (FP) can be re-expressed in the following form.

𝑊 𝑇𝑃 = 𝑊𝑆𝑆 ⋅𝑁(𝐴𝑠𝑙𝑑 )

𝑊𝐹𝑁 = (1 −𝑊𝑆𝑆) ⋅𝑁(𝐴𝑠𝑙𝑑 )

𝑊 𝑇𝑁 = 𝑁((1 − 𝐴𝑠𝑙𝑑 ) ∩ (1 − 𝑃 𝑠𝑙))

𝑊𝐹𝑃 = 𝑁((1 − 𝐴𝑠𝑙𝑑 ) ∩ 𝑃 𝑠𝑙),

(12)

where 1−𝐴𝑠𝑙𝑑 denotes the background region outside of 𝐴𝑠𝑙𝑑 , and 1−𝑃 𝑠𝑙

is the same. From this, we depict the final evaluation metrics as follows:

𝑊𝐷𝑖𝑐𝑒 = 2 ×𝑊 𝑇𝑃
2 ×𝑊 𝑇𝑃 +𝑊𝐹𝑃 +𝑊𝐹𝑁

(13)

6. Experience and analysis

6.1. Experimental details

The experiments were conducted on the dataset we provided. In the
wrinkle detection algorithm, we randomly divide all 1021 images into
a training set and a test set according to the ratio of 7 to 3, i.e., 714
images in the training set and 307 in the test set. To resist overfitting,
we use data augmentation strategies during training, including random
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rotation (−𝜋, 𝜋) and random flip (horizontal and vertical). Meanwhile,
due to the increase in memory cost of the graphics card caused by the
large original resolution, we used a resize operation to downsample the
images to 512 × 768. Before training, the images were normalized by
subtracting the mean and dividing by the standard deviation.

In this experiment, all models are trained for 300 epochs. The
learning rate is set to 1e−4 and decays by half every 100 epochs.
Adam [52] is used as the optimizer. The batch size is set to 2. The model
framework is designed and trained using Pytorch [53]. An NVIDIA RTX
4090 graphics card was used to perform the arithmetic required for the
model development.

6.2. Experiment results

In this section, we first evaluate and analyze the wrinkle detection
results. Subsequently, we experimentally illustrate the rationality of the
proposed assessment method.

6.2.1. Wrinkle detection results
The results of the proposed method’s segmentation performance are

depicted in Fig. 8. It is evident that the shallow network stage incor-
rectly detects some non-wrinkled edges, such as hairs. As the network
deepens, the high-level semantic features improves the recognition of
wrinkles with greater accuracy. The third and fourth stages exhibit
sufficient quality to disregard non-wrinkled edges. As the semantic
features progressively enhance, the model demonstrates a decreased
responsiveness to low-level semantic information, such as edges. Con-
sequently, the fourth stage presents with indistinct boundaries. The
multi-stage fusion approach resolves this issue by preserving both rich
edge information and high-level semantic information simultaneously.

We evaluated the proposed method by comparing it with the current
state-of-the-art wrinkle detection techniques. These techniques encom-
pass the HHF, GCN, UNet, and UNet++ methods. Apart from HHF,
which employs traditional techniques, the other three methods apply
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Fig. 9. Comparison with previous research methods. The first column is the original image. The following five columns show the detection performance of HHF, UNet, UNet++,
GCN, and the proposed method, respectively. The last column is the annotation.
the same training parameter settings as the proposed method. The
performances of the methods are shown in Fig. 9. HHF indiscriminately
identifies all edges in the images, leading to a significant amount of ir-
relevant information in its detection results. In contrast, the other three
methods perform adequately in detecting more apparent wrinkles, such
as forehead wrinkles. However, they fail to detect full-face wrinkles
comprehensively; thus, they may fail to detect less obvious wrinkles,
such as eye wrinkles.

To objectively evaluate the detection results of wrinkles, we use
both the traditional evaluation method and the evaluation method
proposed in this paper. The metrics used in the evaluation include the
following:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝐷𝑖𝑐𝑒 = 2 × 𝑇𝑃
𝐹𝑃 + 𝐹𝑁 + 2 × 𝑇𝑃

𝐽𝑆𝐼 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

,

(14)

where TP, FP, TN, and FN are true positive, false positive, true negative,
and false negative, respectively. In addition, we take the proposed
curve similarity, location similarity, and gradient similarity separately
to evaluate the results, denoted as 𝐶𝐷𝑖𝑐𝑒, 𝐿𝐷𝑖𝑐𝑒, and 𝐺𝐷𝑖𝑐𝑒. by setting
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𝑤1, 𝑤2, and 𝑤3, respectively, to 1. Since wrinkles have uncertainty
regions, we extended the certainty region, i.e., the skeleton line, by
three scales in the evaluation. The skeleton line is expanded outward
by 1, 2, and 3 pixels, and the expanded wrinkle coarseness is 3-pixel,
5-pixel, and 7-pixel, respectively.

Table 1 showcases the results, which indicate that the three se-
mantic segmentation algorithms exhibit superior performance com-
pared to traditional methods. Among these algorithms, UNet outper-
forms UNet++ and GCN. The proposed method demonstrates the best
performance.

6.2.2. Assessment methods
As described in the previous sections, evaluating the dilated wrinkle

skeleton line by JSI would, on the one hand, treat the dilated region as
a certainty region and, on the other hand, would fail to determine the
extent of dilation. As shown in Fig. 10, we demonstrate the changes
in various evaluation metrics during the dilation of wrinkles up to 15
pixels. All metrics are evaluated on the predicted results of the proposed
detection method. In addition, considering that multiple resolutions
are covered in the dataset and span a wide range, we divided the
data into 3 groups, which were evaluated separately: low-resolution,
medium-resolution, and high-resolution. This was done because there
is a difference in the number of pixels occupied by wrinkles on images
with different resolutions. The higher the image’s resolution, the more
pixels the wrinkles occupy and the larger the area to be dilated. In this
experiment, images with resolutions less than or equal to 1000 × 700 in
the data are defined as low resolution. Images greater than 1000 × 700
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Fig. 10. Growth trend of each assessment metric as dilation increases.
Table 2
The data were divided into three resolution groups—the growth of each evaluation metric as the dilation increases. In the WDice vs. Dice comparison, red font indicates
faster growth, whereas green font indicates slower growth.

Low-resolution Medium-resolution High-resolution
3-5 5-7 7-9 9-11 11-13 13-15 3-5 5-7 7-9 9-11 11-13 13-15 3-5 5-7 7-9 9-11 11-13 13-15

Dice .108 .043 .027 .023 .015 .012 .129 .054 .035 .029 .017 .015 .138 .064 .043 .037 .021 .018
JSI .110 .048 .033 .028 .019 .016 .114 .055 .038 .033 .020 .018 .111 .059 .042 .039 .023 .020

WDice .143 .037 .018 .014 .009 .007 .208 .068 .032 .022 .013 .010 .214 .093 .052 .038 .018 .014
and less than or equal to 2000 × 1400 are medium resolution. Images
larger than 2000 × 1400 are defined as high resolution.

As can be seen from Fig. 10, both JSI and Dice exhibit a nearly
smooth upward trend regardless of the resolution. This phenomenon
arises because JSI and Dice treat the dilation region as a certainty
region. This also leads to the inability to determine the extent of
the dilation. On the other hand, the proposed evaluation method has
a significant rising saturation phenomenon on all three groups. And
there is a significant difference in the location of saturation, i.e., the
group with higher resolution will saturate at the location with greater
dilation.

The saturation phenomenon arises due to the limitations of the three
similarity assessment metrics, as they do not grow indefinitely with
dilation. The metrics for CDice and GDice do not grow further because
an increase in dilation does not modify the curvature characteristics
or the positional relationship between the predicted and annotated
wrinkles. For GDice, once the dilation reaches the non-wrinkled area,
the wrinkles mistakenly identified as existing in the non-wrinkled
region receive a minuscule gradient similarity score, which leads to the
cessation of further growth in GDice.

According to the above, it is possible to determine how many pixels
need to be dilated by determining the location of the saturation point.
Table 2 shows more precisely the growth of the metrics as the dilation
increases. Since Dice treats the dilation region as a certainty region like
JSI, and since our proposed metric references the calculation of Dice
(equivalent to Dice that is weighted for 3 regions), we take the amount
of growth of Dice with dilation as a reference. In the low-resolution
group, WDice grows faster than Dice when the dilation width is less
than 5, while WDice appears to increase saturated when the dilation
width is greater than 5. Therefore, it is reasonable to conclude that 5
pixels is the best dilation width for low-resolution images. Similarly, the
medium-resolution group is 7 pixels, while the high-resolution group is
11 pixels.

7. Conclusion

This study introduces a pioneering technique for detecting wrinkles
and a corresponding assessment metric. The proposed method utilizes
a multi-stage fused edge detection network and a distance-based loss
function, which offers a heightened perception of insignificant wrinkles
and, thus, a more comprehensive detection of facial wrinkles. The
suggested assessment method employs curve, location, and gradient
similarity to evaluate the predicted wrinkles. This method distinguishes
between certainty and uncertainty regions, making the assessment
more rational. Furthermore, the method provides a reasonable dilation
range based on the location of the saturation point, which is applicable
8

to images with different resolutions.
The advancement of imaging equipment presents the potential for
increasingly higher-resolution photographs. Wrinkles will increasingly
transition from an edge pattern to a regional pattern, representing a
promising future research direction.
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