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Abstract
Estimating individual age from DNA methylation at age associated CpG sites may provide key information facilitating 
forensic investigations. Systematic marker screening and feature selection play a critical role in ensuring the performance 
of the final prediction model. In the discovery stage, we screened for 811876 CpGs from whole blood of 2664 Chinese indi-
viduals ranging from 18 to 83 years of age based on a stepwise conditional epigenome-wide association study (SCEWAS). 
The SCEWAS identified 28 CpGs showing genome-wide significant and independent effects. Further restricting this panel 
to 10 most informative CpGs showed a tolerable loss of information. A linear model consisting of these 10 CpGs could 
explain 93% of the age variance  (R2 = 0.93) in the training set (n = 2664). In an independent test set of Chinese individuals 
(n = 648), this model also provided highly accurate predictions  (R2 = 0.85, mean absolute deviation, MAD = 3.20 years). 
The model was additionally validated in a public dataset of multiple ancestral origins (86 Europeans, 14 Asians, and 273 
Africans) and the prediction accuracy reduced significantly  (R2 = 0.85, MAD = 6.21 years), as might be expected due to 
different genomic backgrounds, sample sizes, and age ranges. Our 10 CpG model also outperformed the recently proposed 
9-CpG model constructed in 390 Chinese males  (R2 = 0.79 in test set). We also demonstrated that our SCEWAS approach 
outperformed the traditional EWAS and the elastic net approach in obtaining a small set of most age informative CpGs. 
Overall, our systematic genome-wide feature selection identified a small panel of 10 CpGs for accurate age estimation with 
high potential in forensic applications.

Keywords DNA methylation · Age prediction · Forensic DNA phenotyping · Epigenome-Wide Association Study · East 
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Introduction

The utilization of age-associated CpG markers for accurate 
age estimation holds promise in various contexts. Such infor-
mation proves valuable in narrowing the focus of investiga-
tions involving suspects, thereby enhancing the efficiency 
of forensic inquiries [1–3]. Over the past few decades, a 
multitude of studies with a forensic orientation have centered 
on CpG-based age prediction.

Weidner et al. investigated three CpG sites (ITGA2B, 
ASPA, and PDE4C) using pyrosequencing technology in a 

cohort of 69 European subjects, achieving a mean absolute 
deviation (MAD) of 4.5 years [4]. Similarly, Zbiec-Piekar-
ska et al. examined seven CpG sites within ELOVL2, obtain-
ing a MAD of 5.03 years in a discovery set of 303 samples 
and 5.75 years in a validation set of 124 samples from a 
Polish cohort [5]. The same group further developed a model 
comprising 41 CpG sites, trained on 300 samples and tested 
on 120 Polish samples, achieving a MAD of 3.9 years [6]. 
Turning attention to three CpG sites (ELOVL2, ZNF423, 
CCDC102B) in 535 Korean subjects, Park et al. attained a 
MAD of 3.16 years [7]. Jung et al. developed a multiplex 
methylation SNaPshot assay targeting five CpG sites within 
the ELOVL2, FHL2, KLF14, MIR29B2CHG/C1orf132 and 
TRIM59 genes. Using a combined model trained on 100 
Korean samples each from blood, saliva, and buccal swabs, 
the assay was tested on an additional 50 Korean samples per 
tissue type, achieving a MAD of 3.844 years [8]. In a study 
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by Feng et al., evaluation of nine age-related CpG sites using 
EpiTYPER technology on 65 Chinese males resulted in a 
linear regression model for age prediction, achieving a MAD 
of 2.49 years [9]. In a broader approach, Li et al. proposed 
a regression model involving 83 CpG sites in a cohort of 90 
Chinese children and adolescents, validated with a remark-
able MAD of 0.62 across 89 test datasets [10].

These investigations highlight the strong potential of 
age-associated CpGs for forensic age estimation. However, 
methodological improvements are needed, as many studies 
have focused on a limited set of candidate sites rather than 
conducting a comprehensive genome-wide analysis. Further-
more, the issue of redundant information among markers 
has seldom been addressed. The preponderance of marker 
discovery studies relied on data from the Illumina 450 K 
array chip, which has notably fewer markers compared to the 
850 K array. Moreover, the geographical bias in the popula-
tions studied, primarily of European or American origin, 
warrants attention [11]. The representation of well-sized 
studies in East Asian populations, encompassing a wide age 
spectrum and both genders, has been notably limited.

Materials and methods

The national survey of physical traits cohort

The National Survey of Physical Traits cohort (NSPT) is a 
population-based prospective cohort study to explore the 
environmental and genetic factors associated with physi-
cal traits and diseases. The NSPT cohort study was con-
ducted with the official approval of the Shanghai Institutes 
for Biological Sciences (ER-SIBS-261410). The NSPT 
totally collected samples of 3,523 Han Chinese individu-
als from three sites (i.e., Taizhou, Nanning, and Zheng-
zhou). All individuals provided written informed consent. 
Phenotype quality controls were conducted together with 
other projects, after which, this study included a total of 
3312 individuals. All samples were measured for DNA 
methylation using the Illumina Infinium HumanMethyla-
tion850 BeadChip but in three different batches, where 
the first batch (n = 648) was measured in 2018 and second 
batch (n = 732) and third batch (n = 1932) were separately 
measured in 2019. In this study, we used the combined 
sets of the second and the third batches as the training set 
(n = 2664) and used the first batch as the test set (n = 648). 
Therefore, the samples used in our model building and test 
are completely independent.

Blood samples from three Chinese cities (Zhengzhou, 
Taizhou, Nanning) were sent to Fudan University Taizhou 
Institute of Health Sciences for storage at − 80 °C until 
DNA extraction. DNA extraction was performed using a 
TGuide M48 Automated nucleic acid extractor (MGBio, 

Shanghai, China). Genome-wide DNA methylation was 
profiled using the Infinium MethylationEPIC BeadChips 
(Illumina). Five hundred nanogram of genomic DNA from 
each whole blood sample was bisulfite converted using 
the EZ DNA Methylation Kit (Zymo Research). Bead-
Chips were processed following the manufacturer guide 
and protocol for Infinium MethylationEPIC array. DNA 
was hybridized to BeadChips and single base extension 
were performed using a Freedom EVO robot (Tecan). 
BeadChips were subsequently imaged using the iScan 
Microarray Scanner (Illumina). Illumina.idat files were 
then processed with the minfi[12] Bioconductor package1 
without background correction (although background cor-
rection reduces bias it does so at the expense of increased 
variance, which is generally something to be avoided, 
unless the DNAm data are used for copy-number estima-
tion). Probes with SNPs were removed using the drop-
LociWithSnps function from minfi. This function uses the 
SNP information provided by Illumina and UCSC Com-
mon SNP tables (including version 132, 135, 137, 138, 
141, 142, 144, 146, and 147) with preset MAF (0 is the 
default value and was used here) to filter SNP CpGs. X 
and Y chromosome data are often excluded from large-
scale genomic and epigenomic analyses due to the analyti-
cal complexities arising from dosage differences between 
XX and XY individuals and the effects of X-chromosome 
inactivation (XCI) on the epigenome [13]. For the purpose 
of age prediction modeling, the large pool of autosomal 
CpG markers is sufficient. Therefore, we excluded probes 
from the X and Y chromosomes in our analysis. We fur-
ther used the Illumina definition of β values and derived P 
values of detection for the rest of probes by comparing the 
total intensity U + M to that of the background distribu-
tion (given by negative control probes), as implemented 
in minfi. β values with P values of detection greater than 
0.01 were set to NA. Of note, the threshold of detection 
(P < 0.01) is more stringent than the P < 0.05 threshold 
used in the other cohorts, partly because sample coverages 
were very high, allowing for a more stringent threshold 
while also retaining a high coverage over probes. Only 
probes with less than 5% missing values were retained. 
The missing β values were then imputed with the impute.
knn function (using k = 5) in R. Type-2 probe bias was 
corrected using Beta-Mixture Quantile Normalization 
(BMIQ) [14]. Based on principal component analyses, we 
found a significant slide/beadchip effect. Therefore, we 
used ComBat[15] on M-values (logit of β values) to cor-
rect for the slide effect and then transformed the M-values 
back to β values. After quality control, 811,876 CpGs were 
retained. Our methylation data has been uploaded to both 
the OMIX platform (https:// ngdc. cncb. ac. cn/ omix/ relea se/ 
OMIX0 04363) and the NODE platform (https:// www. biosi 
no. org/ node) under accession number OEP002902. Due 
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to the Regulations on the Management of Human Genetic 
Resources in China, the data is currently listed as "Una-
vailable" on OMIX while the registration process with the 
Human Genetic Resource Management Platform of MOST 
is ongoing. If access to the data is required before this pro-
cess is complete, please contact the corresponding author 
via email. We ensure that all data usage requests will be 
managed in strict compliance with the Regulations on the 
Management of Human Genetic Resources in China.

EWAS Atlas data

In order to validate our prediction model using external data, 
we downloaded the data from EWAS Atlas (https:// ngdc. 
cncb. ac. cn/ ewas/ atlas). This data contains blood methylation 
data of 373 individuals of mixed ancestral origins (86 Euro-
peans, 14 Asians, and 273 Africans). The methylation data 
was generated using Infinium MethylationEPIC BeadChips. 
The quality controls of methylation data have been described 
in details previously [16, 17]. In brief, signal intensities of 
type I probes between arrays were normalized using an in-
house reference-based method called GMQN2. BMIQ was 
used to correct the bias associated with technical differences 
between Type I and Type II array designs. Probes with high 
detection P-values (by default, the threshold is set at 2.2e-16, 
which is the smallest number that can be stored by the float-
ing system in R program) were removed and samples with 
more than 20% of the probes with high detection P-values 
were removed.

Stepwise conditional epigenome‑wide association 
studies (SCEWAS)

The initial epigenome-wide associated study (EWAS) of 
chronological age was performed using linear model using 
limma [18]. Methylation beta values were rank normalized 
prior to the EWAS to ensure that all CpGs follow the normal 
distributions using the qnorm function of R,qnorm(

rank(x)−.5

length(x)
) . 

We included 5 genomic CpG PCs as covariates in our EWAS 
due to the observation that genomic CpG PCs showed highly 
significant association with age (Table S1), which might be 
expected as a large proportion of CpGs in the genome are 
significantly associated with age. Additional covariates 
included sex, BMI, cell fractions (CD8 + T cells, CD4 + T 
cells, NK, B cells, monocytes, Neutrophils), sampling loca-
tion, slide, and batch. Genome-wide significance threshold 
was set as p < 6.16e-8 based on Bonferroni correction of 0.8 
million CpGs.

The initial EWAS provided a large number of age associ-
ated CpGs. To obtain a small panel of CpGs for accurate age 
prediction, which would require each CpG in this panel has 

independent contribution to the prediction, we developed a 
computational pipeline of SCEWAS. SCEWAS is carried 
out in an iterative manner, where the in next round EWAS, 
the most significant CpG from the previous round EWAS 
is added as a covariate, until no CpGs can be identified at 
the genome-wide significance level. In total, SCEWAS iter-
ated 28 times. In this way, SCEWAS guarantees the most 
significant CpG from a next round EWAS has an effect that 
is independent of the CpGs identified from all previous 
rounds of EWAS, thus minimizing the redundant informa-
tion between CpGs. In the forensic application, the desired 
trade-off between the number of markers and the model 
performance often differs from the theoretical optimal, i.e., 
fewer markers are preferred once the loss of accuracy  (R2) 
is tolerable. This is mainly because of practical reasons as 
DNA obtained at a crime scene is often trace, contaminated 
or mixed. Such DNA is preferably analyzed using platforms 
such as EpiTYPER[19] or bisulfite multiplex amplicon 
sequencing [20] by targeting on a small set of CpG mark-
ers. Therefore, we decide to stop the SCEWAS if the loss of 
 R2 (ΔR2 = 0.2%) between the current model and the model 
in a previous EWAS iteration was tolerable.

Simply selecting significant CpGs based on their asso-
ciation p-values from the initial EWAS can also results in a 
small panel. Another commonly used method is elastic net, 
which linearly combines the L1 and L2 penalties of the lasso 
and ridge methods. In our study, we compared the perfor-
mance of SCEWAS with traditional EWAS and elastic net. 
The elastic net analysis was carried out only for the CpGs 
which were genome-wide significant in our initial EWAS, 
using the R package glmnet and the same set of covariates. 
The optimal value of Lambda in the elastic net was deter-
mined by tenfold cross-validations (λ = 0.443, alpha = 0.4).

Prediction analysis

Multiple regression (MR) is the most used statistical tech-
nique in prediction modeling to examine the linear relation-
ship between multiple independent variables and a depend-
ent variable, enabling the assessment of their combined 
effects on prediction. MR was constructed using lm function 
in R.We used Akaike Information Criterion (AIC), AIC∼2 k 
+ nln(∑i = 1n(yi − E(yi))2) to rank all significant CpGs from 
SCEWAS, where k is the number of CpGs, n is the sample 
size, and E(yi) is the fitted value. For comparing different 
modeling methods, a support vector machine (SVM) was 
constructed using the svm function in R package ‘e1071’ 
with fine-tuned parameters (cost = 100, gamma = 0.001) 
and an artificial neural network (ANN) was constructed 
using the nnet function in R package ‘nnet’ with parameters 
(size = 10, decay = 0.01, maxit = 1000, linout = T, trace = F). 
Model performance was evaluated using a range of accuracy 
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measurements for comparison in previous works, includ-
ing median absolute deviation (MEAD), MAD, age vari-
ance explained by the methylation markers  (R2), correlation 
between the predicted and observed values (r), root mean 
square error (RMSE), and the proportions of correct predic-
tion within an error range of ± 5 and/or 6 years. All statistical 
analyses were conducted using R scripting unless otherwise 
specified.

Results

SCEWAS

The discovery cohort comprised 2,664 Chinese indi-
viduals aged 18–83 years (mean age = 48.6 ± 13.1 years, 
33.8% male, Table S2). The initial EWAS in this cohort 
(N = 2,664) identified 51,348 CpG sites significantly 
associated with age at the genome-wide level (6.32%, 
P ≤ 6.16e-8, Fig.  S1-S2). The high proportion of age-
associated CpGs and a notable genomic inflation factor 
(λ = 2.1) are consistent with prior studies [7, 10, 21, 22], 
indicating extensive age-related changes in methylation 
across the genome. By conditioning on the most significant 
CpGs from the initial EWAS, our subsequent SCEWAS 
analysis identified 28 CpGs across 28 distinct genomic 
regions that independently and significantly associated 

with age, explaining 94.8% of the variance in age (Fig. 1A, 
Fig. S1-S2, Table S3). Repeating the SCEWAS analysis 
without including epigenomic principal components as 
covariates identified 31 significant CpGs (Table S5), 12 
of which overlapped with the initial 28 CpGs. Since the 
explanatory power of these 31 CpGs (94.8%) was compa-
rable to that of the initial 28 CpGs, we opted to use the 28 
CpGs for subsequent modeling to maintain a conservative 
approach.

In our SCEWAS, the most significant CpG is identified 
in ELOVL2 (cg16867657, P < 1E-300), which showed a 
strong positive correlation with age and explained 83.2% 
age variance (Fig. S4-S5, Table S3). This CpG has been 
repeatedly reported as the strongest marker associated with 
age in previous studies [5, 7, 10, 23–26]. The other 27 CpGs 
were located in or nearby AUH, C1orf96, MIR29B2CHG/
C1orf132, C1orf201, CCDC102B, EXD2, FAM118B, 
FHL2, FIGN, GRM2,KIAA0430, KLF14, PAK6, PIGU, 
PRICKLE2,,PTH2R, RNF180, RP11-398F12.1, SFMBT1, 
SST, SPAG6 and TRIM59, in the descending order of 
their association significance in the SCEWAS (Table S3).
The majority of these loci (KLF14, PAK6, GRM2, FHL2, 
MIR29B2CHG/C1orf132, CCDC102B, RNF180, KIAA0430, 
TRIM59, PIGU, PTH2R, PRICKLE2, AUH, C1orf201, 
SFMBT1, C1orf96, RP11-398F12.1, FAM118B, EXD2, 
SST, FIGN, RP11-573G6.8, 25/28) has been associated with 
age in previous EWASs, confirming the reliability of our 

Fig. 1  A) Manhattan plots of the conditional epigenome-wide asso-
ciation of chronological age. The red points represent the independ-
ent and significant CpG sites. The red line represents the significance 
threshold (P < 6.16e-8). B) Feature selection outcomes from the back-
ward stepwise regression (BSR). The BSR selection was conducted 

beginning with a total of 25 markers that were proposed by condi-
tional EWAS and multiple regression as the theoretical marker set. 
The red and orange dots represent the model fitting results from the 
BSR selecting in training and validation set, respectively. The purple 
dashed line represents the iteration in which the Δr2 > 0.2%
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findings [21, 23, 24, 27–33]. In a multiple regression analy-
sis, 25 out of the 28 CpGs showed nominally significant 
(P < 0.05) association with age, which together explained 
93.9% age variance (Table S5). This confirms that most of 
our identified CpGs indeed having independent effects. Note 
that sex was not significant in simple and multiple regres-
sion analysis, thus not further considered in the subsequent 
analysis.

Prediction model building

In forensic applications, the desired trade-off between the 
number of CpG markers and the model performance often 
differs from the theoretical optimal, i.e., fewer markers 
are preferred as long as the loss of accuracy  (R2) is toler-
able. We therefore further reduced our panel to 10 most 
age-informative CpGs (see method), which together in 
a MR model explained 92.6% age variance in the dis-
covery cohort (Fig. 1B, Table 1). These 10 CpGs were 
located in or close to ELOVL2, KLF14, CCDC102B, 
MIR29B2CHG/C1orf132, FHL2, GRM2, RNF180, RP11-
573G6.8, PTH2R, and STPG1, in the descending order of 
significance. Half of these CpGs showed positive corre-
lations and others showed negative correlations with age 
(Fig. S3-S5). Although 9 out of these 10 CpGs have been 
reported in previous EWAS, our model has a novelty. This 
is because a large number of CpGs over the genome are 
associated with age, as demonstrated in previous EWASs 
and our current study, i.e., more than 6% of the CpGs over 
the genome showed genome-wide significant association 
with age. It is thus not surprising that 9 out of the 10 
CpGs in our age prediction model have been reported for 
association with age in previous EWASs. However, con-
sidering age prediction modeling, five out of the 10 CpGs 

in our age prediction model have been used in previous 
age prediction models, while the remaining 5 represent 
novel markers for constructing age prediction models 
(Table S6).

We compared the fitness of the linear models con-
structed using the CpGs selected from our proposed SCE-
WAS, top-associated CpGs of EWAS, and elastic net under 
different numbers of CpGs. Constructing linear models by 
simply accumulating the CpGs according to their associa-
tion p-values from EWAS performed the worst (Figure S5, 
Table S7), as it ignores the correlations between CpGs. It 
was obvious that the fitness of the elastic net was lower 
than that of SCEWAS for all models ranging from 2 to 
25 CpGs and higher than that of EWAS for most models 
within this range (Figure S5). For example, considering 
10 selected CpGs, the model using CpGs from SCEWAS 
 (R2 = 0.93) showed higher fitness than the model using 
CpGs from elastic net  (R2 = 0.90) and EWAS  (R2 = 0.90). 
These results convincingly demonstrated the efficiency of 
SCEWAS in obtaining a small set of most age informative 
markers.

Using 10 CpGs as predictive markers, MR, SVM, and 
ANN-based models were established in the training set 
(n = 2664). A model fitting analysis showed that the MR and 
the machine learning models had similar fitness  (R2

MR = 0.93; 
 R2

SVM = 0.92;  R2
ANN = 0.90; Fig. 2A, Table 2).

In addition, the fitness of our 10-CpG age prediction 
linear model was assessed in samples of different age 
groups, genders, and sampling locations (Table S8-S10). 
The results showed that the fitness reduced slightly in the 
elderly individuals (≥ 56 years old,  R2 = 0.32, Table S8), 
which is consistent with the previous findings [6, 7, 9]. Sex 
and different sampling locations had no significant impact 
on model fitness (Table S9-S10).

Table 1  The top 10 CpGs from 
SCEWAS in the training set 
(N = 2664)

Rank
CpGs

Region Gene Simple regression Multiple regression

Beta P Beta P Accumulative  R2

(Intercept) – – – – 20.99 5.12E-27 –
1 cg16867657 6p24.2 ELOVL2 163.32 0.00E + 00 54.11 4.14E-115 83.16%
2 cg08097417 7q32.2 KLF14 244.71 0.00E + 00 44.68 2.37E-56 85.14%
3 cg13552692 18q22.1 CCDC102B −128.48 0.00E + 00 −24.80 7.27E-55 88.52%
4 cg10501210 1q32.2 C1orf132 −97.66 0.00E + 00 −18.16 1.39E-54 89.87%
5 cg06639320 2q12.2 FHL2 148.18 0.00E + 00 27.12 1.44E-49 90.66%
6 cg26079664 3p21.2 GRM2 88.15 2.29E-316 10.20 1.69E-24 91.23%
7 cg07850154 5q12.3 RNF180 −117.16 1.76E-228 −17.39 4.44E-24 91.75%
8 cg18537454 10p12.2 RP11-573G6.8 51.32 5.26E-37 13.65 4.01E-23 92.03%
9 cg01949324 2q34 PTH2R −110.49 9.83E-227 −15.09 7.65E-23 92.30%
10 cg21531089 1p36.11 STPG1 −99.39 0.00E + 00 −11.38 3.43E-21 92.55%
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Model test in an independent Chinese sample

The test set included 648 Chinese individuals (19–71 years 
old, mean age = 55.52 ± 10.27 years, 54.0% males, Table S2). 
Applying the 28-CpGs MR model to predict age produced 
highly accurate prediction results  (R2 = 0.86, MAD = 3.07, ± 5 
years accuracy = 0.84, ± 6 years accuracy = 0.89). Applying 
the 10-CpG MR model to predict age also produced highly 
accurate prediction results  (R2 = 0.85, MAD = 3.20, ± 5 
years accuracy = 0.80, ± 6 years accuracy = 0.89, Fig. 2B, 
Table 2). As expected, the top ranked predictor was iden-
tified as cg16867657 in ELOVL2, which alone explained 
68.4% age variance (Fig. 1B). The accuracy of applying the 
10-CpG SVM and ANN models to predict age in the vali-
dation set resulted in similar or reduced accuracies (SVM: 
 R2 = 0.85, MAD = 3.15, ± 5 years accuracy = 0.80, ± 6 years 

accuracy = 0.86; ANN:  R2 = 0.79, MAD = 3.40, ± 5-year accu-
racy = 0.79, ± 6-year accuracy = 0.85; Table 2).

The prediction analysis was conducted in subgroups of 
age, sex, and sampling locations (Table S8-S10). The predic-
tion accuracy was slightly reduced in elderly individuals (≥ 65 
years old, MAD = 4.16, ± 5 year accuracy = 0.64, ± 6 year 
accuracy = 0.76, Table S8), similar between males and females 
(Male: MAD = 3.13, ± 5 year accuracy = 0.82, ± 6 year accu-
racy = 0.89; Females: MAD = 3.26, ± 5 year precision = 0.78, ± 6 
year precision = 0.85, Table S9), and similar between different 
sampling locations (Nanning: MAD = 3.42, ± 5 years accu-
racy = 0.76, ± 6 years accuracy = 0.83; Taizhou: MAD = 2.96, ± 5 
years accuracy = 0.84, ± 6 years Accuracy = 0.91; Zheng-
zhou: MAD = 3.07, ± 5 years accuracy = 0.84, ± 6 years accu-
racy = 0.90, Table S10). These results are also consistent with 
previous findings [5, 7, 34].

Fig. 2  Scatter plots for chronological  age against predicted age. A) Training set (n = 2664), B) Test set (n = 648). The black line is the fitted 
regression line. Different genders are indicated using colors (red: Male, blue: Female)

Table 2  Performance of the 
10-CpG model in predicting age 
in training (n = 2664) and test 
(n = 648) sets

N: number of samples; MAD: mean absolute deviation; MEAD: median absolute deviation;
RMSE: root mean square error; r: pearson correlation;
R2: variation explained; 5 yrs: prediction accuracy of ± 5 years deviation;
6 yrs: prediction accuracy of ± 6 years deviation; BSR: backward step-wise regression;
MR: multiple regression; SVM: support vector machine; ANN: artificial neural network

Dataset N Method MAD MEAD 5yrs 6yrs RMSE r R2

Training 2664 MR 2.73 11.11 0.86 0.91 3.59 0.96 0.93
Testing 648 MR 3.20 10.32 0.80 0.87 4.17 0.92 0.85
Training 2664 SVM 2.64 11.61 0.87 0.92 3.51 0.96 0.92
Testing 648 SVM 3.15 11.86 0.80 0.86 4.17 0.92 0.85
Training 2664 ANN 2.96 11.35 0.84 0.90 4.20 0.95 0.90
Testing 648 ANN 3.40 11.19 0.79 0.85 4.87 0.89 0.79
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Model test in individuals of mixed ancestral origins 
(European, African and Asian)

We also tested our 10-CpG model in a public data set [16, 
17]. This test set included 373 individuals (18–69 years old, 
mean age = 45.00 ± 13.10 years, 55.2% males, 73.2%Afri-
can, 23.1% European). The prediction accuracy of our 
10-CpG MLR model was slightly reduced in individuals of 
mixed ancestral origins (European, African and Asian) as 
well as in each ancestral group  (R2 European = 0.84, MAD 
European = 6.07,  R2 Africa = 0.86, MAD Africa = 6.21,  R2 
Asian = 0.95, MAD Asian = 7.35), as might be expected 
due to different genomic backgrounds, sample sizes and 
age ranges. Further validations of our model in non-Asian 
populations with larger sample sizes are warranted in future 
studies.

Comparison with previous DNAm age prediction 
studies

To date, there are 20 age prediction models based on meth-
ylation markers (Table S11). The prediction accuracies in 
terms of  R2 ranged from 0.71–0.96 and in terms of MAD 
ranged from 2.60–7.87 years old [2, 5–7, 9, 23, 24, 26, 29, 
33–42]. Besides, the majority (95%) of the test set sample 
size was between 40 and 583 as well as the gender and age 
distribution were unknown. The highest  R2 in Europeans 
was obtained by Freire-Aradas et al. [34] based on 7 meth-
ylation sites in 725 training set  (R2 = 0.96) and by Vidaki 
et al.[2] based on 16 methylation sites in 694 training set 
 (R2 = 0.96, Table S11). As for Chinese, the highest  R2 was 
obtained by Feng et al.[9]  (R2 = 0.92) in 390 males.

We compared our 10-CpG model with the 9-CpG model 
proposed by Feng et al., which represents the currently most 
accurate model for age prediction of males in Chinese popu-
lations. Because the prediction accuracies may differ due to 
different sample sizes and different phenotype distribution, 
for a fair comparison we reconstructed the 9-CpG model 
of Feng et al. in our training set and accessed the accuracy 
in our test set. The performance of the 9-CpG model in our 
validation set  (R2 = 0.78, MAD = 3.87, Table S12-13) was 
lower than our 10-CpG model  (R2 = 0.85, MAD = 3.20). 
The performance of the 9-CpG model had similar fitness 
between males and females (Table S13). This result supports 
that our 10 age-associated CpGs selected from the genome-
wide screening may be more informative in predicting age 
of unknown samples without information on sex.

Our study aimed to compare the predictive accuracy 
of different sets of markers on the same platform (array-
based), ensuring a fair comparison by controlling for plat-
form-related variability. Specifically, the higher accuracy 
observed with our 10 CpG model was based on array data. 

The decreased performance of previously reported mark-
ers on a PCR-based platform in our comparisons could be 
attributed to such platform-related differences. We acknowl-
edge that transforming this model to a PCR-based platform 
might yield different accuracy results due to differences in 
platform sensitivity, specificity, and other technical factors. 
Factors such as primer design, amplification efficiency, and 
detection methods differ between platforms and could affect 
the model's performance. Future work should explore these 
potential differences to further validate our findings.

Discussion

In this study, we present a genome-wide screening analysis 
of 811,876 CpGs in a large sample of Chinese individuals 
of both sexes. The SCEWAS appeared an effective approach 
for screening markers with independent effects, which iden-
tified a small panel consisting of 28 age-informative CpGs. 
A thresholding-based analysis further reduced the panel to 
10 CpGs with tolerable loss of information but increased 
realizability in forensic applications. The 10-CpG model 
produced high prediction accuracy in a well-sized and inde-
pendent validation set, demonstrating its high potential in 
future forensic applications.

While conditional association analysis is an established 
technique, the novelty of our work lies in its application and 
methodological integration. We applied SCEWAS for the 
first time in epigenome-wide association studies, refining a 
large set of age-associated CpGs to a minimal yet highly pre-
dictive panel. This iterative approach optimizes predictive 
models in contexts where many CpGs are strongly associated 
with the trait of interest. Regarding CpG marker selection, 
although many age-associated CpGs have been previously 
reported, our study identified a unique combination of 10 
CpGs, 5 of which have not been used in prior age predic-
tion models (Supplementary Table 5). This specific panel 
resulted in a MAD of 3.2 years in our test set, highlighting 
its predictive power. The novelty of our study lies not only 
in the individual markers but in their synergistic combina-
tion and the resulting model's accuracy. Our methodological 
approach and unique marker combination contribute signifi-
cantly to advancing age prediction.

In each cycle of SCEWAS, the inclusion of the most sig-
nificant CpG from the previous cycle as a covariate adjusts 
the model, thereby changing the statistical landscape for the 
remaining CpGs. This adjustment can cause shifts in the 
relative significance of other CpGs. The method ensures that 
each newly identified CpG provides information independent 
of previously selected CpGs. As a result, CpGs with initially 
lower significance might emerge as significant in later cycles 
once the most dominant CpGs' effects are accounted for. The 
significance of CpGs is not static; it is recalculated in each 
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iteration with the updated model. While some CpGs may 
consistently appear as top hits, others might only reach sig-
nificance after the most influential CpGs have been included. 
In addition, epigenetic markers often interact in complex 
ways. The inclusion of certain CpGs can reveal or obscure 
the effects of others, leading to a different final set of signifi-
cant markers than would be identified by simply selecting 
the top CpGs from initial cycles. Therefore, while the first 
several CpGs selected in our model were the most significant 
in the initial cycles, the final set of 10 CpGs resulted from a 
comprehensive iterative process designed to maximize pre-
dictive accuracy by considering conditional dependencies 
and interactions among all CpGs.

Overviewing the functions of the genes nearby our 10 
selected CpGs suggests that these genes play an important 
role in cell development and differentiation [43–50]. These 
genes are located on different functional pathways and 
have different physiological functions, which may make 
these 10 CpGs have independent predictive effects on age. 
Five (ELOVL2 cg16867657, MIR29B2CHG/C1orf132 
cg10501210, FHL2 cg06639320, PTH2R cg01949324, 
and KLF14 cg08097417) of the 10 CpGs in our proposed 
model have been used in previous age prediction models 
[21, 23, 24, 27–33, 43–47]. Among them, cg16867657, 
located in the promoter region of the ELOVL2 gene, is the 
most extensively reported marker [23, 24, 27–33]. The 
ELOVL2 (ELOVL Fatty Acid Elongase 2) gene plays a 
crucial role in the metabolism of lipids and fatty acids 
[43]. Age-related changes in methylation levels at ELOVL2 
is robust in most tissues and thus may be widely used for 
forensic age prediction purpose [26]. MIR29B2CHG/
C1orf132 (MIR29B2 and MIR29C Host Gene) is an RNA 
gene associated with age-related macular degeneration 
in a GWAS study [44]. FHL2 encodes a member of the 
four-and-a-half-LIM-only protein family, and the protein 
functions as a link between presenilin-2 and an intracel-
lular signaling pathway. It may also serve as a molecu-
lar transmitter, connecting different signaling pathways 
to transcriptional regulation and playing a role in cell 
growth [45]. PTH2R (Parathyroid Hormone 2 Receptor) 
encodes a specific receptor for parathyroid hormone, and 
its mutation is associated with age-related degenerative 
changes in the lumbar spine [47]. KLF14 (Kruppel Like 
Factor 14) encodes a member of the Kruppel-like family 
of transcription factors which functions as a transcriptional 
co-repressor, and is associated with multiple metabolic 
phenotypes [46].

Four out of the 10 CpGs (C1orf201 cg21531089, 
GRM2  cg26079664,  RNF180  cg07850154 and 
CCDC102B cg13552692), although not used in previ-
ous age prediction models, have been reported to be sig-
nificantly associated with age in previous EWASs [21, 
23, 24, 28–30]. C1orf201 (Sperm Tail PG-Rich Repeat 

Containing 1) plays an important role in the phylogeny 
of organisms. GRM2 (Glutamate Metabotropic Receptor 
2) encodes glutamate g protein-coupled receptor, which 
triggers signals through guanine nucleotide-binding pro-
tein (g protein) and regulates the activity of downstream 
effectors (such as adenylate cyclase). It plays an impor-
tant role in mediating the inhibition of nerve conduction 
and synapse formation or synapse stabilization. RNF180 
(Ring Finger Protein 180) encodes E3 ubiquitin protein 
ligase, promoting polyubiquitination and degradation 
through the ZIC2 proteasome pathway. The methylation 
level of its promoter was a marker of gastric cancer and 
atrophic gastritis and was related to the survival rate of 
gastric cancer patients [48–50]. CCDC102B (Coiled-Coil 
Domain Containing 102B) gene variants are associated 
with diseases such as vision and autism.

One (RP11-573G6.8 cg18537454) of the 10 CpGs has not 
been previously associated with age nor used in age predic-
tion models. The cg18537454 is located on the promoter 
region of RP11-573G6.8. It is a LncRNA Gene and there is 
no clear function record in the literature for this gene and 
why it can be used as a predictor to predict age still needs 
further research.

Our study has a number of advantages. Both the discov-
ery and the replication sets are well sized. The high-density 
methylation array (Illumina 850 K) has a nearly two-fold 
increased coverage than the 450 K array, which was typically 
used in previous EWASs. The SCEWAS approach guaran-
tees the resultant markers have independent effects, which 
is widely applicable to genome-wide screening studies of 
similar purposes. Compared with the 9-CpG model proposed 
by Feng et al., our 10-CpG model appeared more accurate 
in a fair comparison using the same dataset, and applicable 
to both sexes.

DNA obtained at a crime scene is often of limited 
amount. In forensic practice, such DNA cannot be ana-
lyzed using genome-wide DNA methylation Epic arrays 
but preferably using more targeted platforms such as 
EpiTYPER [19] or bisulfite multiplex PCR followed 
by sequencing on the MiSeq FGx platform [20]. In our 
study, the usage of the Infinium MethylationEPIC Bead-
Chips is to select a small set of the most informative 
CpGs in a systematic manner. Although this approach 
significantly improved prediction accuracy, model 
parameters derived from our BeadChip platform may not 
be directly transferable to other targeted platforms and 
thus require further validation.

Regarding the limitations of this study, the performance 
of our prediction model on cross-platform data was not 
investigated, which should be explored in future studies. For 
the lack of data on adolescents and children, the applicability 
of this model in adolescents and children remained unknown 
and needed further research.
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Conclusions

Stepwise conditional EWAS was used for screening CpG mark-
ers with independent age effect at the genome-wide level and a 
systematic feature selection identified 10 CpGs as the optimal 
subset for age prediction. A linear model consisting of 10 CpGs 
showed higher accuracy than previous studies in a large and 
independent validation sets, demonstrating high potential in 
forensic applications. Competing machine learning models such 
as ANN and SVM did not outperform the linear model to any 
obvious degree. Additional analysis showed our model has high 
prediction accuracy and is applicable for both Chinese males and 
females with a large age span. Our proposed model is useful in 
forensic application in East Asian and other populations.
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