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De Novo Reconstruction of 3D Human Facial Images from
DNA Sequence

Mingqi Jiao, Jiarui Li, Bingxu Zhong, Siyuan Du, Shuning Li, Manfei Zhang, Qibin Zhang,
Zhongming Liang, Fan Liu,* Chunman Zuo,* Sijia Wang,* and Luonan Chen*

Facial morphology is a distinctive biometric marker, offering invaluable
insights into personal identity, especially in forensic science. In the context of
high-throughput sequencing, the reconstruction of 3D human facial images
from DNA is becoming a revolutionary approach for identifying individuals
based on unknown biological specimens. Inspired by artificial intelligence
techniques in text-to-image synthesis, it proposes Difface, a multi-modality
model designed to reconstruct 3D facial images only from DNA. Specifically,
Difface first utilizes a transformer and a spiral convolution network to map
high-dimensional Single Nucleotide Polymorphisms and 3D facial images to
the same low-dimensional features, respectively, while establishing the
association between both modalities in the latent features in a contrastive
manner; and then incorporates a diffusion model to reconstruct facial
structures from the characteristics of SNPs. Applying Difface to the Han
Chinese database with 9,674 paired SNP phenotypes and 3D facial images
demonstrates excellent performance in DNA-to-3D image alignment and
reconstruction and characterizes the individual genomics. Also, including
phenotype information in Difface further improves the quality of 3D
reconstruction, i.e. Difface can generate 3D facial images of individuals solely
from their DNA data, projecting their appearance at various future ages. This
work represents pioneer research in de novo generating human facial images
from individual genomics information.

1. Introduction

Facial morphology represents a unique and genetically in-
herited biometric characteristic, providing critical insights for
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personal identification in forensic applica-
tions. DNA profiling, a fundamental strat-
egy in forensic science, which identifies in-
dividuals by comparing unknown biolog-
ical samples (profiled DNA) with known
biological specimens,[1–3] playing a critical
role in identification. It is the gold stan-
dard in forensic investigations, providing
definitive results where traditional methods
may falter. As a complementary method,
DNA phenotyping analyzes physical traits
such as hair and eye color, aiding tar-
geted forensic investigations and streamlin-
ing the process. A frontier lies in extract-
ing facial imagery from genetic sequences,
poised to transform identification strate-
gies. However, the human face, composed
of eyes, nose, chin, and mouth, is shaped
by both genetic and environmental factors.
Especially in genetically homogeneous Chi-
nese populations, the shape and pigmen-
tation of the face are less variable than in
immigrant populations such as those in
the United States. Therefore, reconstruct-
ing facial images only from genetic data
are challenging4]: 1) limited knowledge of
facial genetics; 2) technological difficulties
due to high-dimensional data and small

sample size. Currently, many studies have been developed to
study facial genetics.[5–16] Huang et al. introduce a genome-wide
association study of facial morphology that identifies novel ge-
netic loci in Han Chinese.[17] Xiong et al. introduce C-GWAS,
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refining genome-wide association studies to identify new ge-
netic loci for facial traits.[18] Zhang et al.’s research[19] conducts
genome-wide analysis to explore facial morphology variations
between East Asian and European populations, enhancing our
understanding of genetic influences across ancestries. Overall,
our understanding of facial genetics remains incomplete. On
the other hand, some studies have tried to construct the associ-
ation between genetics data and facial phenotypes. Specifically,
Gurovich et al.[20] present a framework for facial image analy-
sis by identifying genetic disorders. Claes et al.[21] uncover re-
lations between facial variation and the effects of sex, genomic
ancestry using bootstrapped response-based imputation model-
ing (BRIM). Sero et al.[22] and Mahdi et al.[23] proposed models
to match facial images with unidentified demographic and ge-
nomic attributes of identified individuals. Facial image classifi-
cation is also an active area of research in machine learning (i.e.,
3D face based prediction of sex,[24] age,[25] ancestry,[26] and sex-
ual orientation[27]). Although these methods have revealed inter-
esting findings, they cannot generate facial images from genetic
data.
Inspired by the advanced techniques in text-to-image align-

ment and synthesis,[28–30] we proposed Difface which explores
both generative diffusion process and contrastive multi-modal
alignment, to enable direct to de novo 3D facial image reconstruc-
tion from SNPs. Applying Difface to our Han Chinese database
with the paired SNP phenotypes and 3D facial images of 9674 in-
dividuals demonstrates excellent performance in DNA-to-3D im-
age alignment and reconstruction and characterizes the individ-
ual of genomics. Further augmenting the model’s performance,
integrating auxiliary phenotype data—encompassing age, gen-
der, and Body Mass Index (BMI) into Difface significantly en-
hanced the precision of the 3D facial reconstructions. In addi-
tion, we also identified new SNPs features significantly associ-
ated with the related facial regions. This multifaceted work not
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only validates the robustness of Difface but also underscores its
potential as a versatile tool in personalizedmedicine and forensic
identification.
However, this groundbreaking technology challenges current

conceptions of genomic privacy, raising significant ethical and
legal implications. By associating de-identified genomic data
with phenotypic measurements, our research aims to facilitate a
deeper discussion on the impacts of DNA phenotyping.We invite
commentary and deliberation on the implications of these find-
ings for genomics research, investigatory practices, and broader
societal ethical considerations. Although some scholars have ad-
dressed the implications of DNA phenotyping, this work empha-
sizes the necessity of thorough analysis to navigate the complex
interplay of innovation and privacy, ultimately contributing to
more informed and ethical genomic research.

2. Results

2.1. Overview of Difface

We proposed Difface, a multi-modality model designed to recon-
struct 3D facial images from SNP phenotypes. Specifically, Dif-
face employs a transformer[31] and spiral convolution network[32]

to map high-dimensional Single Nucleotide Polymorphisms
(SNPs) and 3D point clouds onto a unified low-dimensional fea-
ture space. At the same time, a spiral convolutional network was
trained to generate facial images from the low-dimensional fea-
ture space. During the training process a contrastive learning
was used to construct the association between genetic and facial
images in the low-dimensional features, while during construct-
ing process, Difface uses a diffusion network to generate 3D hu-
man facial images only from genetic features on each individual
(Figure 1).

2.2. Difface Enables the Alignment of DNA and 3D Facial Images

To evaluate whether Difface can accurately construct the associa-
tion between DNA and 3D facial images, we employed Difface to
analyze large-scale 3D facial surface scans of 9674 samples col-
lected from three independent cohorts in China (Methods). Us-
ing the conventional genome-wide significance threshold (P =
5 × 10−8 ), we identified 7842 genome-wide significant variants
associated with 3D facial images. These variants were treated as
input SNPs, constituting the input SNP vector of Difface.
Difface differs from Mahdi’s[23] and Sero’s[22] approaches by

employing a unique implementation of contrastive learning. Un-
like Mahdi’s reliance on traditional regressionmodels and Sero’s
use of basic machine learning without a focus on feature space
alignment, Difface focuses on aligning genetic and phenotypic
data in a low-dimensional space, efficiently bridging complex ge-
netic information with visible facial features. Difface enhances
the specificity and sensitivity of feature extraction, providing a
deeper understanding of the relationship between SNPs and fa-
cial features, and broadening the model’s applicability to differ-
ent datasets.
To comprehensively compare Difface with recently published

methods (Mahdi’s and Sero’s), we trained Difface using the train-
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Figure 1. The overall framework of Difface. a) depicts the operation of Difface on a dataset comprising N SNP sets and their corresponding facial
data. The initial phase of the model’s training involves the merging of SNP-face pairs into a unified representation space, laying the foundation for the
generation phase. This entails the construction of a multimodal encoding space through the training of SNP and face encoders. The encoders enhance
the cosine similarity between the correct SNP and face pair embeddings within each batch, while simultaneously reducing the similarity between the
N × N incorrect pairs. Concurrently, a decoder is trained to generate 3D faces from face embeddings. Subsequently, an SNP embedding is introduced
into a diffusion model, resulting in the generation of a face embedding. This face embedding is then utilized by the decoder to create the final image.
It is noteworthy that the encoders and decoder remain fixed throughout the training of the diffusion model. b) Architecture of the SNP encoder. c)
Architecture of the face encoder. d) A case study demonstrating the original and generated images.

ing dataset and then used two trained encoders to learn the low-
dimensional features of SNPs and facial images. Cosine similar-
ity was employed to assess the alignment between facial images
and SNP data. To validate the efficacy of our contrastive learn-
ing model, we utilized PCA[33] and CCA[34] to downscale SNP
phenotypes and facial images. The comparison results demon-
strated that Difface exhibited the highest alignment score among
competing methods, indicating that contrastive learning is an ef-
ficient approach.
Specifically, in terms of identification, Difface achieved a

rank-1 identification rate (R1) of 3.33%, a rank-10 identifica-
tion rate (R10) of 23.33%, and a rank-20 identification rate
(R20) of 42.53%, significantly outperforming other methods
such as Mahdi’s (R1: 2.48%, R10: 21.90%, R20: 38.49%) and

Sero’s (R1: 3.00%, R10: 23.03%, R20: 39.00%). In verification
tasks, Difface also demonstrated superior performance with an
equal error rate (EER) of 27.6% and an area under the curve
(AUC) of 80.7%, compared to Mahdi’s (EER: 35.7%, AUC:
72.1%) and Sero’s (EER: 36.8%, AUC: 70.6%) (Figure 2a,b)
Table 1.
These results indicate that contrastive learning enables Difface

to not only capture complex genetic features but also differentiate
between correct SNP-face pairs and incorrect ones by pulling the
correct pairs closer together in the feature space. This allows for
more precise facial reconstructions compared to retrieval-based
or traditional methods. Difface, by utilizing advanced contrastive
learning techniques, significantly improves the alignment and
reconstruction of 3D facial images from DNA data, providing a
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Figure 2. Performance comparison of Difface with other methods for identification and verification tasks. a) Identification performance: The y-axis
represents the percentage of correctly identified samples, while the x-axis represents the rank percentage. Difface shows superior performance compared
to Soha.S, Sero.D, CCA, and PCA. b) Verification performance: The y-axis represents the true positive fraction, and the x-axis represents the false positive
fraction. The ROC curves indicate that Difface outperforms other methods in terms of verification accuracy.

Table 1. Average identification and verification results for different meth-
ods.

Method EER AUC R1 R10 R20

Difface 27.6 80.7 3.33 23.33 42.53

Sero,D 35.7 72.1 2.48 21.90 38.49

Soha, S* 36.8 70.6 3.00 23.03 39.00

PCA 49.4 49.9 0 6.00 11.00

CCA 53.2 45.7 1.50 10.00 18.50

EER verification equal error rate, AUC verification area under the curve, R1 rank 1%
identification rate, R10 rank 10% identification rate, R20 rank 20% identification rate.

more accurate and robust tool for forensic identification and per-
sonalized medicine.

2.3. Difface Enables the Generation of DNA and 3D Facial Images

To further assess the ability of Difface for reconstructing 3D facial
images from single nucleotide polymorphisms (SNPs), we lever-
aged the Euclidean metric to evaluate performance by calculat-
ing the distance between the real and generated 3D point clouds.
Our findings indicate that Difface, when leveraging only SNPs,
achieved amean error of 3.52mm,which establishes a solid base-
line for facial reconstruction fidelity. This result demonstrates
that Difface can effectively reconstruct facial images from SNPs
(Figure 3a). We similarly evaluated the results using chamfer dis-
tance and RMSE (Figure S1, Supporting Information).
A detailed analysis of error metrics at critical facial landmarks

showed that Difface consistently achieved significantly lower er-
ror distances, confirming its exceptional precision in reconstruct-
ing key facial features. The heatmap in Figure 3d illustrates that
with the diffusion model, errors at specific facial points such as
the glabella, nasion, and left/right alare were notably reduced,
with errors mostly staying below 4.0 mm, whereas without the
diffusion model, some points showed errors exceeding 4.5 mm.
In our evaluation of Difface, we assessed the contribution of

the diffusion network to the model’s performance. The diffusion
technique has gained recognition for its effectiveness in genera-

tive tasks across various fields. The results, depicted in Figure 3c,
show a significant enhancement in feature generation within
the low-dimensional space attributed to the diffusion network.
Specifically, themean Euclidean distance error with the diffusion
network was 3.517 mm, compared to 4.125 mm without it, high-
lighting the crucial role of the diffusion network in achieving ac-
curate feature generation.
Inspired by the flexible framework of Difface, we additionally

incorporated SNP embeddings with more biological and demo-
graphic variables such as sex, age, and BMI. The comparison re-
sults showed that the addition of these variables systematically
improved the quality of the reconstructed facial images. For in-
stance, when combining SNPs with sex data, the mean error de-
creased to 3.06 mm, and further inclusion of age and BMI data
reduced the error to 2.93 mm. Strikingly, when Difface operated
without SNP data, relying solely on age, BMI, and sex, the mean
error surged to 7.03 mm, reinforcing the critical role of genetic
information in precise facial reconstruction.We also explored the
impact of age as an additional variable. The quantitative analysis
of these transitions revealed a change magnitude of 1.430 from
youth to middle age, 1.689 from middle age to old age, and a to-
tal transformation of 2.415 from youth to old age. These values
reflect the extent of facial structural change, such as the droop-
ing of facial features and other age-related changes, and are vi-
sually demonstrated in Figure S6 (Supporting Information). The
progression from youth to old age is shown through the corre-
sponding 3D reconstructions, illustrating how Difface captures
age-related morphological transformations.
These quantitative results not only validate the robustness of

Difface in aligning and reconstructing 3D facial images from
DNA data but also underscore its potential as a versatile tool in
personalized medicine and forensic identification.

2.4. Difface Facilitates Individual Reconstruction of 3D Facial
Images by Diffusion Process

We further demonstrated that Difface is able to individually re-
construct facial images with the diffusion process. In particular,
we leveraged the latent features of the real and generated facial
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Figure 3. Euclidean Distance Comparison and Error Analysis for Facial Reconstruction Models. a) Quantitative comparison of different inputs on Eu-
clidean distance (mm) between predicted and true facial landmarks. Inputs include SNPs, age, sex, BMI, and their combinations. b) Ablation study
showing the impact of the diffusion model on Euclidean distance (mm). c) Visualization of characteristic points on the face used for error measure-
ment. d) Heatmap showing the characteristic point error for models with and without diffusion. The color intensity represents the magnitude of the
error, with red indicating higher error values.

images by the trained encoder to predict the facial phenotypes.
For each phenotype characteristics, we first trained each classi-
fier by the training dataset, and then calculated the classifica-
tion accuracy for the test dataset. Considering the pronounced
hereditary influence on nasal morphology, our study stratified fa-
cial features into two principal categories: those associated with
the nose and those about other facial regions. We conducted
distinct classification tests for various features within these two
categories.
The classification results, showcased in Figure 4a, reveal that

the correct classification rate for reconstructed faces is impres-
sively close to that of real faces across multiple feature classifica-
tions. This result highlights the model’s capability to precisely
reproduce a broad range of facial features, demonstrating the
strength and accuracy of Difface in capturing complex facial char-
acteristics. We also present a direct comparison between origi-
nal and generated 3D facial reconstructions, focusing on features
such as nasion depression and nose wing protrusion. The aim
is to demonstrate the model’s capacity to mimic critical facial
characteristics effectively.(Fig 4b).Similarly, We also compared
the generated 3D faces with the original 3D faces and 2D facial
photographs(Figure S2, Supporting Information).

In an innovative experimental setup designed to evaluate the
efficacy of the Difface model in generating lifelike facial images,
we conducted a blinded test involving 10 volunteers. Each partic-
ipant was tasked with identifying the real face corresponding to
a synthetically generated face from a lineup of real faces. To in-
crease the challenge, we provided lineups of 5, 10, and 20 faces,
which included the correct match alongside random real faces
(Table 2).
The experiment was structured to ascertain the likelihood of

the participants correctly identifying the real face corresponding
to the synthetic version at different lineup sizes. The results re-
vealed a clear trend: as the number of choices increased, the ac-
curacy of identification decreased, underscoring the challenges
of facial recognition in larger lineups. The specific findings are
summarized in the table below:
Furthermore, we leveraged the Determinantal Point Process

(DPP) (a sophisticated method traditionally applied in subset se-
lection problems with diversity constraints[35]) to quantify the di-
versity in the facial features generated by Difface. We calculated
the DPP score for actual facial datasets and compared it with the
DPP score of the average diversity derived from multiple ran-
dom samplings of facial features. This allowed us to establish
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Figure 4. Comparison of Facial Feature Classification and Reconstruction Accuracy Using Difface and Ground Truth Data. a) Face feature classification
results, Difface (SNPs), is the outcome of the classification task after utilizing Difface to produce faces from SNPs. Ground truth is the result of the
original face for the classification task. b) Comparing the Difface restored face image with the real face image, the top is the real face image, and the
bottom is the Difface restored face image.

two robust baselines for the analysis. Additionally, we computed
the DPP diversity for the facial images generated by Difface.
The results notably indicate that the DPP diversity score of the

facial features generated by Difface is within a 5% margin of the
diversity score calculated from the real facial data set. This prox-
imity in diversity scores suggests a high level of variance in the
features generated by Difface, closely mirroring the natural vari-
ability observed in human facial features. Furthermore, a thresh-
old for desirable diversity at a DPP score that exceeds 95% of the
real data’s diversity score, which Difface consistently meets or
surpasses. Consequently, it can be concluded that Difface suc-
cessfully achieves a desirable level of diversity in its generated
outcomes, effectively capturing the complex diversity in human
facial features (Table 3).

Table 2. Accuracy of Facial Recognition Across Different Lineup Sizes.

Lineup Size Correct Identification Rate [%]

5 Choices 75.6

10 Choices 53.3

20 Choices 51.1

2.5. Generative Effect Test for SNP Deletions

In practical applications, particularly in the field of forensics,
it is often challenging to obtain a comprehensive set of single
nucleotide polymorphisms (SNPs) from DNA samples. To as-
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Table 3. Analysis Results of Data Diversity.

Data DPP-Diversity

Difface (SNPs) 0.9960

Real images 0.9999

Mean value 0.6012

sess the generative efficacy of Difface under conditions of SNP
scarcity, evaluations were conducted with inputs ranging from
90% to 10% of the total SNP phenotypes. This approach was
designed to simulate the constraints commonly encountered in
forensic analyses.
The efficacy of facial reconstruction was evaluated across a

spectrum of SNP completeness levels, ranging from 10% to 90%.
Recent studies[19] have demonstrated that the nose exhibits the
strongest genetic associations among facial features, with 107
genetic variants identified surpassing other regions of the face.
The distinctive nose shape commonly observed in East Asians
is largely attributed to local adaptations to environmental fac-
tors and genetic drift. While natural selection did play a role
in shaping this trait, the selective pressures were less intense
compared to those experienced by European populations. Spe-
cific genetic variants in East Asians contributed to the evolu-
tion of their characteristic flatter and broader nose shape, despite
the underlying biological processes being similar across differ-
ent populations. Given these findings, we focused our analysis
on how the nose region changes as the SNP input decreases.
As illustrated in Figure 5, the nose, particularly the nasal profile
and tip shape, remains relatively resilient at higher SNP levels
but starts to show increased error as the SNP input drops be-
low 70%. We also analyzed the variation in error across the face
and eye region, giving us a broader understanding of the effect
of SNPs on different features. The Euclidean distance—which
is used to quantify the discrepancy between the reconstructed
and actual facial structures—increases as the level of input SNPs
decreases. With complete SNP input (100%), the error is mini-
mized at 3.517 mm. Conversely, as the proportion of SNP inputs
is reduced to 10%, the error increases significantly to 3.957 mm,
thereby demonstrating a marked decline in reconstruction accu-
racy. The heatmap provides a detailed analysis of the errors at
various characteristic facial points at different SNP levels. As the
SNP completeness diminishes, the error amplification at points
such as the nasion, subnasale, and cheilion increases. Further-
more, the capacity to accurately categorize specific facial features,
such as the nasal profile, nose tip shape, and cheekbone appear-
ance, is diminished as the SNP input is reduced. Notably, the clas-
sification accuracy for certain features, such as the nasal profile,
remains relatively high even at lower SNP levels. This suggests
that certain facial aspects are more resilient to SNP scarcity than
others. Extended data 3 showsmore details of the change in error
for generating surfaces as the number of SNPs decreases.
Despite the retention of some facial features with limited SNP

data, a critical threshold was observed.When the completeness of
the SNP data fell below 70% (equating to fewer than 5489 SNPs
from the full set of 7842), the reconstructions began to lose in-
dividual specificity and converged toward a more generic facial
structure. This observation highlights the necessity of a suffi-

ciently comprehensive SNP dataset to preserve the distinctive,
individualised characteristics essential for forensic applications.
It is of paramount importance to strike a balance between the
robustness of the model and the availability of genetic data in
order to ensure that facial reconstructions remain both accurate
and person-specific. This balance is of vital importance for the
enhancement of the utility and reliability of SNP-based facial re-
construction in real-world forensic settings.

2.6. Enhancing Model Interpretability in Facial Reconstruction
with SHAP and GWAS

In order to further refine and elucidate the mechanism
behind the Difface model, we employed SHapley Additive
exPlanations[36] (SHAP), a method based on cooperative game
theory. SHAP assigns quantitative values to individual SNP fea-
tures, allowing for the precise determination of how each feature
influences the model’s predictions. By decomposing a prediction
into the contributions of specific SNPs, SHAP enables us to bet-
ter understand the role of each genetic marker in shaping facial
morphology.
This approach was complemented by an enrichment analy-

sis using genome-wide association studies (GWAS), focusing on
SNPs with high SHAP values and significant p-values (p < 0.05).
Through this dual analysis, we identified key SNPs that not only
play a prominent role in the model’s output but also have strong
genetic associations with facial structure. For instance, SNPs
like nasal_base_direction and nasal_root_height consistently ex-
hibited low hypergeometric p-values across multiple sample
sizes, underscoring their relevance in both SHAP and GWAS
analyses.
As shown in Figure 6a, the workflow begins with input SNPs

processed through the frozen SNP encoder, followed by a multi-
layer perceptron (MLP) and softmax classifier to predict facial
feature classifications. SHAP values are then calculated via back-
ward loss propagation to assess the impact of individual SNPs on
the model’s predictions. The SNPs identified through SHAP are
further analyzed for biological significance through enrichment
analysis.
The results, presented in Figure 6b, demonstrate a high de-

gree of overlap between SHAP-determined SNP importance and
SNPs identified in GWAS, confirming the robustness and inter-
pretability of the model. SNPs relevant to features like nasal pro-
file and cheekbone sideview were highlighted in both SHAP and
GWAS results, providing strong evidence that the genetic associ-
ations are consistent with known biological influences.
Moreover, the analysis extended beyond statistical significance

to explore the biological implications of these findings. Gene
Ontology (GO) enrichment analysis revealed that many of these
SNPs are involved in processes critical to facial development,
such as “regulation of epithelial to mesenchymal transition” and
“morphogenesis of embryonic epithelium.” These processes are
vital to facial structure formation, influencing both bone and
muscle development, as well as vascularization and symmetry.
Notably, pathways like “skeletal system development” and “mus-
cle organ development” further underscore the role of these
SNPs in defining the face’s structural framework. (Figure S4,
Supporting Information)

Adv. Sci. 2025, 12, 2414507 2414507 (7 of 13) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 5. Impact of SNP Input Density on Facial Reconstruction Accuracy and Feature. a) Visual representation of facial reconstructions with different
levels of SNP inputs, from 100% to 1%, illustrating the impact of SNP completeness on the visual accuracy of generated facial models. The first row is
the whole face; the second row is the nose region; and the third row is the eye region. b) A bar graph shows the mean accuracy of facial reconstructions at
different SNP densities, indicating a trend of decreasing accuracy with lower SNP percentages. c) A heat map displays the mean error rates for different
facial regions across varying SNP densities, with darker shades indicating higher error values. d) Line graphs represent the stability of facial feature
predictions (nasal profile, nasal base direction, nasal depression, nose shape, and nose tip direction) across different SNP input densities. Also, line
graphs depict the accuracy of specific facial regions (face shape, cheekbone, cheekbone_altview, cheekbone_frontview, and frentislope) at different SNP
input percentages.

Adv. Sci. 2025, 12, 2414507 2414507 (8 of 13) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 6. a) The diagram illustrates the Difface model’s workflow, starting from the input of SNPs through to facial feature classification. The process
includes the transformation of SNPs by a Frozen SNP encoder, SNP latent feature extraction, feature classification, and the back-propagation of losses
for SHAP value calculation. The workflow concludes with an enrichment analysis to correlate SNP effects with biological processes. b) SNP Enrichment
Analysis: This graph shows the overlap count between SNPs identified by SHAP values and those found significant in GWAS studies for various facial
features. Each point represents a facial feature with its corresponding overlap count, indicating the statistical significance (p-value) through color coding.

This combination of SHAP and GWAS highlights the in-
terpretability of the Difface model by showing how the SNPs
identified as crucial by SHAP analysis are also statistically sig-
nificant in genetic studies. The congruence between these two
methods provides compelling evidence that Difface not only re-
constructs facial features with high accuracy but does so in a
manner consistent with established genetic influences on facial
morphology.
By integrating SHAP and GWAS into our analysis, we have

demonstrated that the Difface model is both interpretable and
biologically grounded. These findings pave the way for future re-
search into the genetic underpinnings of facial architecture, offer-
ing potential targets for exploring the effects of genetic variations
on facial structure.

3. Discussion

This study has introduced Difface, a de novo multi-modality
model to reconstruct 3D facial images from DNA with remark-
able precision, by a generative diffusion process and a contrastive
learning scheme. Through comprehensive analysis and SNP-
FACE matching tasks, Difface demonstrated superior perfor-
mance in generating accurate facial reconstructions from genetic
data. In particularly, Difface could generate/predict 3D facial im-
ages of individuals solely from their DNA data at various future

ages. Notably, the model’s integration of transformer networks
with spiral convolution and diffusion networks has set a new
benchmark in the fidelity of generated images to their real im-
ages, as evidenced by its outstanding accuracy in critical facial
landmarks and diverse facial feature reproduction.
Difface’s novel approach, combining advanced neural net-

work architectures, significantly outperforms existing models in
genetic-to-phenotypic facial reconstruction. This superiority is
attributed to its unique contrastive learning method of align-
ing high-dimensional SNP data with 3D facial point clouds in
a unified low-dimensional feature space, a process further en-
hanced by adopting diffusion networks for phenotypic character-
istic generation. Such advancements contribute to themodel’s ex-
ceptional precision and ability to capture the subtle genetic vari-
ations influencing facial morphology, a feat less pronounced in
previous methodologies.
Despite Difface’s demonstrated strengths, there remain direc-

tions for improvement. Addressing these limitations will require
a focused effort to increase themodel’s robustness and adaptabil-
ity to diverse datasets. Future research should aim to incorporat-
ing variables like age and BMI would allow Difface to simulate
age-related changes, enabling the generation of facial images at
different life stages an application that holds significant potential
in both forensic science and medical diagnostics. Similarly, BMI
could help themodel account for variations in body composition,

Adv. Sci. 2025, 12, 2414507 2414507 (9 of 13) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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improving its ability to generate accurate facial reconstructions
across a range of body types.
While our study focused on a genetically homogeneous East

Asian cohort, the underlying structure of the Difface model is
flexible enough to be applied to different ethnic groups. By ex-
panding our dataset to include individuals from a wide range of
ethnic backgrounds, Difface has the potential to learn the specific
relationships between SNPs and facial features in various popu-
lations. This would enable themodel to accurately generate corre-
sponding facial images based on the SNP input from individuals
of different ethnicities.Future studies should focus on this crucial
extension by testing and adapting the model to encompass more
genetically diverse populations. Validating Difface with datasets
from multiple ethnic groups and exploring whether additional
genetic loci are necessary for certain facial features will be key
steps to ensuring that the model generalizes effectively across di-
verse populations. This broader application will not only enhance
themodel’s robustness but also significantly increase its utility in
real-world forensic investigations and personalized medicine on
a global scale.
However, this innovative technology brings forth critical ethi-

cal and legal challenges, particularly concerning genomic privacy.
The ability to associate de-identified genomic data with pheno-
typic characteristics raises substantial risks, including potential
re-identification, unauthorized data usage, and complex legal is-
sues surrounding data ownership. By enabling the prediction of
physical traits from genetic information, DNA phenotyping in-
tensifies concerns about the misuse of sensitive personal data,
which could lead to genetic-based discrimination and privacy in-
fringements. It is therefore essential for researchers, policymak-
ers, and industry leaders to engage in proactive dialogue to ad-
dress these ethical and legal complexities.
Beyond academic exploration, the societal impacts of DNA

phenotyping are extensive, touching on sensitive fields such as
forensic science, healthcare, and insurance. In forensic applica-
tions, while the technology has potential benefits in identifying
individuals from genetic material, improper use could result in
significant harm, including wrongful convictions and racial or
ethnic profiling. In healthcare and insurance, there is the risk of
genetic information being used to discriminate against individu-
als based on perceived health risks.
Tomitigate these risks, we emphasize the urgent need for com-

prehensive interdisciplinary analysis. Establishing clear, enforce-
able ethical frameworks and guidelines is paramount to ensuring
that genomic research advances responsibly, safeguarding indi-
vidual privacy and rights while harnessing the potential benefits
of this technology. Such frameworks will help balance scientific
progress with societal responsibility, creating a foundation for
ethical and transparent application of DNA phenotyping across
various fields.

4. Experimental Section
Difface: We proposed Difface, a multi-modality model designed to re-

construct 3D facial images from SNPs with a generative diffusion pro-
cess and a contrastive learning scheme. Specifically, Difface separately
employs a transformer[31] and spiral convolution network[32] to map
high-dimensional SNPs (Y) and 3D point clouds (X) into the same low-

dimensional feature spaces (zf and zs) while ensuring the paired SNPs
and facial images are embedded nearly compared to unpairs by contrastive
learning. Subsequently, Difface uses a diffusion model to transform SNP
embeddings zs into facial image embeddings zf conditioned on SNPs y.
Finally, 3D facial images are generatively reconstructed from facial image
embeddings zf by a decoder P(x|zf,y), as shown in Figure 1.

Learning Related Features Between SNPs and 3D Point Cloud by Con-
trastive Learning: Our contrastive learning approach is designed to map
high-dimensional SNP data and 3D facial point clouds into a unified low-
dimensional feature space, leveraging a cosine similarity metric to ensure
accurate alignment of true SNP-face pairs while reducing the similarity
of incorrect pairings. To achieve this goal, we have designed a face en-
coder and a SNP encoder, as well as a decoder to generate faces from
embeddings, which further constrain the potential space. The spiral con-
volution network was chosen to capture localized spatial features in 3D
point clouds effectively. Compared to traditional convolutions, spiral con-
volution allows for better handling of the non-grid structure of 3D data,
such as facial point clouds, by maintaining the spatial relationships be-
tween points. The specific model is described as follows:

The face encoder design was inspired by SpiralConv++[32] which de-
signs a spiral neighbor as:

0 − ring (v) = v (1)

k − disk (v) = ∪i=0,…,k i − ring (v) (2)

(k + 1) − ring (v) = N (k − ring (v)) ∖k − disk (v) (3)

where n(v) is the set of all vertices adjacent to any vertex in set V, V corre-
sponds to the vertices a point cloud network, and the length of the Spiral
is represented as l. Hence, S(v, l) is an ordered set of k-rings connected by
l vertices.

The spiral convolution operator for node i is defined as
follows:

ix(k) = 𝛾(k)
⎛⎜⎜⎝
∑

j∈S(i,l)
jx(k−1)

⎞⎟⎟⎠ (4)

In this context, 𝛾 denotes MLPs. The encoder’s structure is: 3 ×
{Conv(32)→ Pool(4)}→ {Conv(64) → Pool(4)} →FC(128), with RELU ac-
tivation function after each Conv layer.

The structure of the decoder is the reversed order of the encoder with
the replacement of pooling layers to unpooling layers. Note that one more
convolutional layer with the output dimensional of 3 should be added to
the end of the decoder to reconstruct 3D shape coordinates.

A transformer block is utilized to construct the SNP encoder. Themodel
architecture was determined based on the original Transformer[31] with
a model dimension of 128, a feed-forward layer dimension of 512, and
2 layers in the encoder. ReLU activation was used, and the encoder had
a dropout ratio of 0.1. The 7842 SNP phenotypes were embedded as a
sequence and then input into the transformer block after dimensionality
reduction by a Multilayer Perceptron (MLP).

We use L1 loss for the generation loss Lossmesh and cross-entropy is
used as the loss Losscon for contrastive learning. Formally, we have

Lossmesh = 1
N

N∑
i=1

||x̂i − xi|| (5)

Logit1 = 𝛼
(
zf i × si

z
T

)
(6)

Logit2 = 𝛼
(
zsi × fi

z
T

)
(7)

Losscon =
lCE (Logit1, labels) + lCE (Logit2, labels)

2
(8)
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where 𝛼 is a hyperparameter, and zf,zs are face embeddings and SNP em-
beddings, respectively. lCE is the cross-entropy loss, and labels is a vector
just like [0, 1, 2, ⋅⋅⋅, N − 1], where N is the batch size.

Thus, our overall loss function is

LossALL = 𝛽1 Losscon + 𝛽2Lossmesh (9)

where 𝛽1,𝛽2 are hyperparameters.
Reconstructing 3D Facial Images from SNPs by Diffusion Model: We

trained an encoder to generate SNP embeddings and facial embeddings,
along with a decoder for generating faces from facial embeddings. How-
ever, we require a prior model to generate facial embeddings from SNP
embeddings. To achieve this, we employ a diffusion model[37–39] in this
context.

The diffusion model operates through a two-step process: the forward
diffusion and the reverse denoising. During the forward diffusion process,
we introduce Gaussian noise into the facial embeddings zf 0 ∼ q(zf ) over T
steps. To accomplish this, a series of hyperparameters representing Gaus-

sian distribution variances t = 1{𝛽t∈ (0,1)}
T are required. The forward pro-

cess can be viewed as a Markov process since each time step t only de-
pends on the previous time step t − 1. So, it can also be regarded as a
Markov process.

q(zf t|zf t−1) = N
(
zf t;

√
1 − 𝛽tzf t−1, 𝛽tI

)
, q(q(zf 1:T |zf t−1)|x0)

=
T∏
t=1

q(zf t|zf t−1) (10)

In this process, as t increases, zft becomes progressively closer to pure
noise. When T → ∞, zfT becomes entirely Gaussian noise. If we consider
the forward process as the noise introduction process, then the reverse
process is the denoising diffusion process of the diffusion model. If we
could obtain the reverse distribution step by step q(zft − 1|zft), we could
recover the original distribution x0 from the fully standard Gaussian distri-
bution zf T ∼ N(0, I). However, inferring q(zft − 1|zft) is not straightforward.
Therefore, we use a deep learning model to predict a reverse distribution
p𝜃 .

p𝜃 (X0:T ) = p
(
zf T

) T∏
t=1

p𝜃(zf t−1|zf t) (11)

p𝜃(zf t−1|zf t) = N

(
zf t−1;𝜇𝜃

(
zf t, t

)
,
∑
𝜃

(
zf t, t

))
(12)

While we may not have access to the reverse distribution q(zft − 1|zft), if
we know x0, we can indeed use Bayes’ theorem to obtain q(zft − 1|zft,zf0).

q(zf t−1|zf t, zf 0) = N
(
zf t−1; 𝜇̃

(
zf t, zf 0

)
, 𝛽tI

)
(13)

To achieve the generation of facial images fromSNPs, SNP embeddings
were utilized as a conditional bootstrap diffusion model to generate facial
embeddings. The forward process of the conditional diffusion model is
identical to that of the unconditional diffusion model. Hence, the joint
probability of the backward process is

p𝜃 (X0:T |y) = p
(
zf T

) T∏
t=1

p𝜃(zf t−1|zf t, y) (14)

We find it better to train our model to predict the unnoised zfT directly,
and thus use a mean-squared error loss on this prediction:

Ldiffusion = E
t∼[1,T],i

zf
(t)
∼qt

[‖f𝜃 (izf(t), t, y) − zf t‖2] (15)

Model Architecture and Components: The architecture of the Difface
model is composed of several key components that work together to
achieve high performance in reconstructing facial features from genetic
data. At the core of the model is the integration of convolutional and
transformer-based networks, enabling effective feature extraction and the
modeling of complex spatial relationships.

The face encoder employs a spiral convolutional network with a se-
quence length of [9, 9, 9, 9] and a dilation factor of [1, 1, 1, 1], allowing
it to capture localized spatial features while expanding the receptive field
without loss of resolution. Additionally, the SNP encoder consists of two
transformer layers, each with a model dimension of 128, an 8-headed self-
attention mechanism, and a feed-forward network with a hidden dimen-
sion of 512. These layers incorporate a dropout rate of 0.1 and apply layer
normalization with an epsilon value of 1e-5, ensuring stable training and
robust generalization.

The diffusion prior model is designed to predict the starting state with-
out conditional dropout, operating with an hidden embedding dimension
of 128 and 1 hidden channel. It features a 4-layer depth and an attention
mechanism with 4 heads, each with a head dimension of 64. The feed-
forward network has an expansion multiplier of 2, with a 0.1 dropout rate
applied to both the attention and feed-forward layers. The diffusion model
operates over 1000 timesteps, allowing the model to handle input data
directly and reconstruct facial features with high precision.

Optimization and Parameters: To ensure robust performance and im-
prove learning efficiency, we employed several optimization strategies in
training the Difface model, including gradient descent algorithms and dy-
namic learning rate scheduling.

The Adam optimizer was selected as the primary optimization method.
Different components of the model required tailored configurations. For
the core model parameters, we utilized a learning rate of 7.3×10−6 and a
weight decay of 0.30, preventing overfitting while enhancing generalization
capabilities. For the decoder, which plays a key role in reconstructing 3D
facial images from learned embeddings, a higher learning rate of 3.2×10−5
and a lower weight decay of 0.001 were applied. To further refine the train-
ing process, we incorporated a StepLR scheduler that dynamically adjusted
the learning rate during training. The learning rate was reduced by a factor
of 0.99 after each epoch, enabling a gradual decrease that fine-tuned the
model weights.

The diffusion prior model was trained with a learning rate of 0.31
× 10−4 and a weight decay of 0.752. A maximum gradient norm of
0.5 was enforced to prevent gradient explosion, ensuring stable conver-
gence throughout the process. Additionally, an exponential moving aver-
age (EMA) was implemented with a beta value of 0.98, and updates were
applied every 1000 steps, with EMA updates occurring every 100 steps to
smooth the learning process and stabilize model weights.

We utilized a dataset of 9674 samples, each containing 3D facial im-
ages, SNP data, age, BMI, and other relevant information. The dataset
was randomly split into training and testing sets, with 80% allocated for
training and 20% for testing. The model was trained using four NVIDIA
3080Ti GPUs, with a total training time of ≈48 h.

Quantification of Diversity of the Learned SNP Features: We measure
this diversity using a metric based on the determinant of a kernel matrix:

dpp diversity = det (K) (16)

where Ki,j =
1

1+dist(ci ,cj)
and dist(ci,cj) represents the distance metric be-

tween real faces and generated faces. In practice, to avoid ill-conditioned
determinants, we introduce small random perturbations to the diagonal
elements when computing the determinant.

Evaluating Feature Importance: The Difface model employs a compo-
nent known as the GradientExplainer to leverage SNP phenotypes and
their corresponding facial images within the analytical framework. This
tool is designed for use with models that incorporate gradient data in or-
der to elucidate the relationship between input variables and output re-
sponses. By capturing and analyzing the gradient signals, the GradientEx-
plainer identifies the extent to which the model’s predictions are sensitive
to variations in SNP inputs. The resulting SHAP values for each SNP pro-

Adv. Sci. 2025, 12, 2414507 2414507 (11 of 13) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 2025, 29, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202414507 by C

ochraneC
hina, W

iley O
nline L

ibrary on [20/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

vide a direct metric of their influence, offering a detailed and quantitative
understanding of the genetic determinants affecting facial structure.

SNPs Enrichment Analysis: We conducted two distinct enrichment
analyses to better understand the genetic associations of SNPs identified
through the Difface model:

Analysis of Top 200 SNPs: For each phenotype related to somatic an-
thropology, we selected the top 200 SNPs that showed the strongest corre-
lation based on SHAP values. These SNPs were filtered to retain indepen-
dent loci, whichwere then subjected to genetic annotation and subsequent
enrichment analysis. This process aimed to identify biological pathways
and processes that are significantly influenced by these SNPs.

Analysis of Top 500 SNPs: In this analysis, we selected the top 500 SNPs
with the highest correlation, as determined by SHAP values.These SNPs
were analyzed for enrichment against genome-wide association studies
(GWAS), focusing on those with a significance threshold of p-value< 0.05.
This allowed us to identify SNPs that are not only strongly correlated with
the phenotypes but also statistically significant in broader genetic studies.

Datasets and Processing Ethics Statement Sample and Recruitment De-
tails: Ethics statement. All participants provided written informed con-
sent, and all study protocols were approved by the institutional review
boards of the pertinent research institutions. The National Survey of Phys-
ical Traits (NSPT) is a subproject of The National Science & Technology
Basic Research Project approved by the Ethics Committee of Human Ge-
netic Resources of School of Life Sciences, Fudan University, Shanghai
(14117). The Northern Han Chinese (NHC) cohort was approved by the
Ethics Committee of Human Genetic Resources at the Shanghai Institute
of Life Sciences, Chinese Academy of Sciences (ER-SIBS-261410-A1801).
The Taizhou Longitudinal Study (TZL) was approved by the Ethics Com-
mittee of Human Genetic Resources at the Shanghai Institute of life Sci-
ences, Chinese Academy of Sciences (ER-SIBS-261410). Written informed
consent was granted to each participant before enrollment in the study.
We confirm that our research is compliant with the Guidance of the Min-
istry of Science and Technology (MOST) for the Review and Approval of
Human Genetic Resources.

The samples in this study were collected from three independent co-
horts, the NSPT cohort (n = 3322), the NHC cohort (n = 4767) and the
TZL cohort (n = 2881). For the NSPT sample, individuals were recruited
in three Chinese cities: Nanning, Guangxi province (n = 1326); Taizhou,
Jiangsu Province (n = 986); Zhengzhou, Henan Province (n = 1010). In
the NHC cohort, participants were recruited in Tangshan, Hebei province.

3D Image Acquisition, Registration, and Quality Control: The 3D im-
ages of all individuals in the three cohorts were captured and acquired
using the 3dMDface (3dMD) camera system. Participants were asked to
close their mouth, open their eyes and hold faces with a neutral expres-
sion when capturing. The 3D surface images were registered using Mesh-
Monk (v.0.0.6)[40] in MATLAB 2018a. This performed a homologous con-
figuration of 7906 spatially dense landmarks, allowing the 3D image data
to be standardized. We performed generalized procrustes analysis (GPA)
and symmetrization, then investigated every mapped image manually and
identified outlier images. Any 3D facial images with poor quality were re-
moved or reprocessed, with details available in the Supplementary Note.
As a result, 6968 (n = 4089 in the NHC cohort, n = 2879 in the NSPT co-
hort) and 2706 unrelated individuals with good quality 3D images in the
discovery and replication dataset were used for further analysis.
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