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Abstract 

Background Obesity is a global public health concern linked to chronic diseases such as cardiovascular disease 
and type 2 diabetes (T2D). Emerging evidence suggests that epigenetic modifications, particularly DNA methyla-
tion, may contribute to obesity. However, the molecular mechanism underlying the longitudinal change of BMI 
has not been well-explored, especially in East Asian populations.

Methods This study performed a longitudinal epigenome-wide association analysis of DNA methylation to uncover 
novel loci associated with BMI change in 533 individuals across two Chinese cohorts with repeated DNA methylation 
and BMI measurements over four years.

Results We identified three novel CpG sites (cg14671384, cg25540824, and cg10848724) significantly associated 
with BMI change. Two of the identified CpG sites were located in regions previously associated with body shape 
and basal metabolic rate. Annotation of the top 20 BMI change-associated CpGs revealed strong connections 
to obesity and T2D. Notably, these CpGs exhibited active regulatory roles and located in genes with high expression 
in the liver and digestive tract, suggesting a potential regulatory pathway from genome to phenotypes of energy 
metabolism and absorption via DNA methylation. Cross-sectional and longitudinal EWAS comparisons indicated dif-
ferent mechanisms between CpGs related to BMI and BMI change.

Conclusion This study enhances our understanding of the epigenetic dynamics underlying BMI change and empha-
sizes the value of longitudinal analyses in deciphering the complex interplay between epigenetics and obesity.
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Introduction
Obesity is a major public health issue worldwide and is 
associated with a range of chronic diseases, including 
type 2 diabetes (T2D), cardiovascular disease, and cer-
tain types of cancer [1, 2]. Elevated Body Mass Index 
(BMI), a common measure of obesity, increase the risk of 
insulin resistance and impaired glucose tolerance, both 
of which are precursors of T2D [3]. Besides, changes in 
BMI, especially significant weight gain, are associated 
with increased risk of hypertension, dyslipidemia, and 
atherosclerosis, leading to higher rates of heart attacks 
and strokes and poorer cardiovascular health outcomes 
[4]. Overall, obesity is critically important for health out-
comes due to its profound impact on various physiologi-
cal systems and the development of chronic diseases [5]. 
Therefore, understanding the mechanism of BMI changes 
and implementing effective strategies for obesity preven-
tion and management are critical for reducing the bur-
den of obesity-related diseases and improving population 
health.

While common genetic variations account for more 
than 20% of variation in obesity [6], there is increasing 
evidence that epigenetic modifications, such as DNA 
methylation, may also play a role in mediating the cor-
relation between environmental factors and obesity 
[7, 8]. DNA methylation is a process by which a methyl 
group is added to a cytosine residue in a DNA molecule, 
which can alter gene expression without changing the 
DNA sequence [9]. Several studies have investigated the 
association between DNA methylation and BMI [10, 11]. 
Overall, through EWAS analysis, more than 5000 DNA 
methylation sites have been identified to be associated 
with obesity-related traits [12]. Moreover, several recent 
studies indicated that weight gain at different stage of life 
had distinct causes [13] and weight gain across middle 
adulthood was significantly associated with major health 
outcomes [14]. However, most of these studies have been 
cross-sectional, which limits the ability to identify the 
mechanism of the dynamic changes of BMI across the 
lifespan and fails to detect the epigenetic markers that 
affects the change of BMI in middle-aged and elderly 
people.

BMI change, rather than just BMI itself, can provide 
important insights into the underlying mechanism that 
may contribute to BMI. From the epigenome-wide study 
of BMI change, we can identify biomarkers or molecular 
pathways that are involved in the development of obe-
sity and related metabolic disorders. Longitudinal stud-
ies, which measure DNA methylation at multiple time 
points, are better suited for the identification of changes 
in DNA methylation associated with changes in BMI. 
Previous longitudinal EWAS analysis for BMI change has 
been conducted in Americans, Australians and European 

population [15–18], but rarely in East Asians. Since the 
diets and lifestyle habits of East Asians are discrepant 
from those of American or European populations, a dif-
ferent epigenetic mechanism underlying the longitudinal 
change of BMI in East Asians is highly possible.

Given the emerging evidence suggesting the role of epi-
genetic modifications, particularly DNA methylation, in 
obesity, we hypothesize that longitudinal changes in DNA 
methylation patterns are associated with changes in BMI 
over time in East Asians. To identify novel epigenetic loci 
that contribute to BMI change and elucidate the molec-
ular mechanisms underlying obesity development, we 
conducted a longitudinal EWAS analysis of BMI change 
among 533 individuals of two Chinese cohorts who had 
at least two measurements of BMI and DNA methyla-
tion taken over a period of 4  years. We identified three 
novel CpGs (cg14671384, cg25540824, and cg10848724) 
significantly associated with BMI change in East Asians. 
We annotated these CpGs, explored their functional rel-
evance, and revealed their expression patterns in obesity-
relevant tissues. Our results provided insights into the 
epigenetic mechanisms underlying obesity progression.

Methods
Study participants
This study analyzed two Chinese cohorts derived from 
a large Chinese population study, the Shanghai Chang-
feng Study, composing of 6,595 individuals consecutively 
enrolled from Shanghai Changfeng Community, Shang-
hai from June 2009 to December 2012 [19]. The inclusion 
criteria were age 45 years or older, and the exclusion cri-
teria included refusal to participate in the study or refusal 
to sign an informed consent form. Individuals in the 
cohort 1 included 407 Han Chinese who were randomly 
sampled from the Shanghai Changfeng study. Samples 
in the cohort 2 included another 126 Han Chinese indi-
viduals with high risk of new-onset type 2 diabetes from 
Shanghai Changfeng study with no overlap with cohort 
1. The blood sample for DNA methylation was col-
lected after an overnight fast of at least 12 h at the same 
day when BMI was measured for each participant. The 
study was approved by the Research Ethics Committee 
of Zhongshan Hospital, Fudan University (No. 2008–119 
and B2013-132). Written informed consent was obtained 
from each participant.

Blood DNA methylation analysis
Genome-wide DNA methylation profiles were obtained 
using the Illumina Infinium MethylationEPIC Bead-
Chips following the manufacturer guide and protocol 
for Infinium MethylationEPIC array. Samples were ran-
domized for each slide, plate and the position on plate, 
based on covariates including age, sex, and BMI, to 
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remove any potential bias on DNA methylation measure-
ment from technically-induced variation or confound-
ing. Five hundred nanogram of genomic DNA from each 
blood sample was bisulfite converted using the EZ DNA 
Methylation Kit. DNA-BeadChip hybridization and sin-
gle base extension were performed using a Freedom 
EVO robot. BeadChips were subsequently imaged using 
the iScan Microarray Scanner (Illumina), and Illumina.
idat files were then processed with a R package named 
ChAMP [20]. Probes on chromosome X and Y and SNP-
related probes were removed. The SNP list comes from 
[21]. Beta values were calculated corresponding to the 
ratio of the methylated signal over the sum signal, and P 
values were derived by comparing the sum signal to that 
of the background distribution. Betas with P values above 
than 0.01 were set to NA. Probes with less than 3 beads 
in at least 5% of samples per probe were filtered out. 
After quality control, beta values were normalized using 
a method named Beta Mixture Quantile (BMIQ). Batch 
effects were then corrected using a R package named 
ComBat [22]. The derived beta values were used for fur-
ther analysis.

Calculation of cell proportion in blood
Since heterogeneity in the composition of blood leuko-
cyte cell types can confound the relationships between 
DNA methylation and phenotypes, we estimated the cell 
type abundance from methylation data using a R package 
named EpiDISH [23, 24]. The percentages of seven differ-
ent cell types (CD4 T cells, CD8 T cells, NK cells, B cells, 
monocytes, and neutrophil) were calculated by mapping 
the beta values of CpGs to the reference values according 
to the database provided by EpiDISH.

Epigenome‑wide association study
A linear regression model was fitted to capture the cor-
relation between DNA methylation and age acceleration, 
accomplished with a R package limma [25]. Age, sex, 
interval years, and blood leukocytes fractions (B cells, 
CD4 + and CD8 + T cells, NK cells, monocytes and neu-
trophils) were considered as covariates in the regression 
model. For the longitudinal EWAS analysis, the formula 
can be denoted as,

where �Mi is the change of methylation for i th sub-
ject, �BMIi the continuous value of BMI change for 
i th subject at baseline, agei and sexi the age and sex of 
i th subject, and (cellproportions)i includes the predicted 
percentages of B cells, CD4 + and CD8 + T cells, NK 
cells, monocytes and neutrophils. Beside of the baseline 

�Mi = β0+βS�BMIi+βageagei+βageing IntervalYearsi+βsexsexi+γ (cellproportions)i

model which considered age, sex, interval years, and cell 
fractions as covariates, we also built a secondary model 
which additionally adjusted for smoking and drinking 
status and achieved consistent results (Supplementary 
Text and Supplementary Fig. 1).

We also wondered whether the CpG sites associated 
with BMI change were also significantly associated with 
the cross-sectional BMIs. Therefore, we conducted 
cross-sectional EWAS of BMI to investigate the rela-
tionship between DNA methylation patterns and BMI 
levels at a specific point in time. The cross-sectional 
EWAS was separately performed in the baseline and 
follow-up data of cohort 1, adjusting for sex, age, and 
cell proportions.

Meta‑analysis of two cohorts
The meta-analysis was conducted using the tool 
METAL [26], which combine test statistics and stand-
ard errors across studies, taking sample size and 
direction of effect into account. In the meta-analysis, 
for each marker, a reference allele was selected and a 
z-statistic characterizing the evidence for association 
was calculated. The z-statistic summarized the magni-
tude and the direction of effect relative to the reference 
allele and all studies were aligned to the same reference 
allele. Next, an overall z-statistic and p-value were then 
calculated from a weighted sum of the individual sta-
tistics. Weights were proportional to the square-root of 
the number of individuals examined in each sample and 
selected such that the squared weights sum to 1.0. The 
process can be formulated as,

where ηk is the z-score from the kth study ( k ∈ {1, 2} ), Vk 
the corresponding estimated variance, wk the weight used 
for the kth study in the meta-analysis.

The heterogeneity score was used to assess the degree 

of variability in effect sizes across the two cohorts. In 
the meta-analysis, we calculated the heterogeneity score, 
I-squared (I2), to represent the proportion of total varia-
tion in effect sizes that is due to between-study hetero-
geneity rather than sampling error. The formula can be 
denoted as,

η̂ =

K∑

k=1

wk η̂k

Var
(
η̂
)
=

K∑

k=1

w2
kVk
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where wk is the weight used for the kth study ( k ∈ {1, 2} ), 
yk the effect size in the kth study, y the average effect of 
all studies, df  the degree of freedom.

Phenome‑wide association analysis
Phenome-wide association study (PheWAS) analysis was 
applied to investigate the association between genetic 
variants and a wide range of phenotypic traits or condi-
tions. Unlike traditional genome-wide association studies 
(GWAS), which typically focus on the association between 
genetic variants and a single phenotype, PheWAS simulta-
neously examines multiple phenotypes or traits. For each 
gene where the identified CpGs located, we performed the 
PheWAS analysis using the tool PhenoScanner [27], which 
searched for known associations between genetic variants 
within the given gene and various phenotypes by querying 
GWAS databases.

Functional enrichment analysis
The power of a EWAS study much depends on the num-
ber of subjects provided by the cohort. Since our cohorts 
only contained 533 subjects, we loosened the threshold to 
P < 1 ×  10–5 and selected the top 20 significant CpGs for fur-
ther functional analysis. We annotated the detected CpGs 
to genes using R package IlluminaHumanMethy–lationEP-
ICanno.ilm10b4.hg19. The gene ontology (GO) enrichment 
was conducted using the tool MetaScape [28]. An inde-
pendent pathway enrichment in Reactome [29] and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
[30] was conducted using the R package clusterProfiler 
[31]. For each functional term or pathway to be analyzed, 
the Fisher’s test was performed to evaluate the enrichment. 
Specifically, we considered the number of total genes as N, 
the number of genes related to a specific function as M, the 
number of marker genes annotated from detected CpGs 
as R, and the overlap between marker genes and function-
related genes as k. Then, the enrichment significance p 
value was calculated as the summation of the hypergeo-
metric distribution, as.

I2 =
Q − df

Q
,

Q =
∑K

k=1
(wk(yk − y)2)

pvalue = 1−
∑k

i=0

(
M
i

)(
N −M
R− i

)

(
N
R

)

Statistical analysis
All statistical analyses were performed using the R soft-
ware version 3.6.2. The continuous parameters with nor-
mal distribution are presented as the means ± SD and 
skewed parameters are presented as the median with the 
interquartile range (25–75%) given in parentheses. All 
skewed parameters were normalized using rank-based 
inverse normal transformation before analysis. The con-
tinuous data with normal distribution were compared 
using the Student’s t-tests or one-way analysis of covari-
ance (ANOVA), and the categorical variables using the 
chi-square test.

Results
Characteristics of the study population
Our study analyzed two population cohorts from Shang-
hai Changfeng Study, a community-based prospective 
cohort study of chronic diseases among middle-aged and 
elderly residents from Shanghai Changfeng Community. 
The average BMI levels of the participants from cohort 1 
increased from 23.9 ± 3.0 kg/m2 to 24.7 ± 3.1 kg/m2 after 
an average of 4.1-year follow-up. In cohort 2, after an 
average of 4.4-year follow-up, the average BMI increased 
from 24.1 ± 2.5  kg/m2 to 24.5 ± 3.0  kg/m2. The percent-
age of smokers were lower in cohort 1 than that in cohort 
2 (19% vs. 23%), while the percentage of drinkers were 
higher in cohort 1 than that in cohort 2 (18% vs. 9%). 
We further compared the BMI changes and global DNA 
methylation in smokers versus non-smokers, and drink-
ers versus non-drinkers. We found that there was no sig-
nificant difference between smokers and non-smokers 
in terms of BMI change and global DNA methylation 
change in both cohorts (Supplementary Fig. 2A-B). Simi-
lar results were observed for drinkers and non-drinkers 
(Supplementary Fig.  2C-D). Detailed summary charac-
teristics of the study participants were shown in Table 1.

Epigenome‑wide association analysis of BMI change
We used the BMI change rate over baseline to describe 
BMI change and conducted longitudinal EWAS analy-
sis on BMI change in cohort 1 and cohort 2, where the 
EWAS model was described in Methods and Supple-
mentary Text. The overall framework of this study was 
summarized in Fig. 1. We regarded cohort 1 as the dis-
covery cohort and cohort 2 as the replication cohort. 
We identified three CpG sites significantly associated 
with BMI change in the discovery cohort (P < 1 ×  10–6) 
and all of the three CpGs showed the same effect direc-
tions in the replication cohort. Then, we performed a 
meta-analysis using the tool METAL [26] to integrate the 
EWAS results of cohort 1 and cohort 2 (Supplementary 
Table  1). The meta-analysis further confirmed the three 
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CpG sites significantly associated with BMI change in 
the discovery cohort (Fig. 2 and Table 2). The most rel-
evant CpG site (cg14671384, P = 9.09 ×  10–9) locates in 
the promoter of the SLC38A4 gene (Solute Carrier Fam-
ily 38 Member 4), which has been reported to be a trans-
porter of cationic and neutral amino acids and closely 
related with glucagon and hyperglycaemia [32, 33]. To 
systematically investigate the function of SLC38A4, we 
performed the PheWAS analysis using the tool PhenoS-
canner [27] (Fig.  3A). We found that there were signifi-
cant GWAS signals in SLC38A4 for phenotypes of birth 
body weight (e.g. rs180438, P = 9 ×  10–21 in GCST008363) 
[34] and body height (e.g. rs12306007, P = 1 ×  10–20 in 
GCST90018959; Fig. 3B) [35, 36], indicating the possible 
participation of SLC38A4 in the formation of body shape. 
More interestingly, we observed a significant associa-
tion (PmQTL = 1.5 ×  10–14) between the CpG cg14671384 
and a significant height-related SNP rs12307687 (GWAS 
P = 1 ×  10–8) [37] in an Asian mQTL database named 
Pan-mQTL (Fig.  3C). Besides, a previous mouse study 
[38, 39] observed a decreased body weight in SLC38A4 
knock-out mice, supporting a direct role of SLC38A4 in 
obesity (Fig. 3D).

Another two significant CpG sites (cg25540824, 
P = 7.05 ×  10–8; cg10848724, P = 5.85 ×  10–7) were respec-
tively annotated to a CpG island shore and a CpG island. 
Specifically, cg25540824 locates in the intron 7 of the 
TRIM15 gene (Tripartite Motif Containing 15) and maps 
to the binding site of the well-known transcription factor 
CTCF, which is usually active in regulatory regions [40]. 

cg10848724 locates in the promoter of the VPS37B gene 
(Vacuolar Protein Sorting-Associated Protein 37B). We 
found significant GWAS signals in VPS37B for pheno-
types of BMI-adjusted waist-hip ratio and BMI-adjusted 
hip circumference [41], demonstrating the close rela-
tionship between VPS37B and BMI-related phenotypes 
(Supplementary Fig.  3). Additionally, according to gene 
ontology (GO) database [42], VPS37B is involved in cell 
differentiation and enables  calcium-dependent protein 
binding, which can influence the dynamic change of BMI 
[43].

Interpretation of the regulatory mechanisms 
of the identified CpGs
To understand the regulatory mechanism of the identi-
fied CpGs, we first checked the transcription factors 
that bind to cg14671384 using the tool JASPAR [44], and 
observed the binding of TF FOSL1, GMEB2, and AHR on 
this CpG site, all of which were involved in RNA poly-
merase II-specific cis-regulation (Fig.  4A) [45]. Then, 
we checked the tissue-specific expression of SLC38A4 
(where cg14671384 is located) using GTEx [46] and 
observed that SLC38A4 was significantly overexpressed 
in liver, which is a tissue highly relevant to obesity and 
the change of body weight (Fig.  4B) [47]. Furthermore, 
we found there were ChIP-seq signals of different chro-
matin states and histone marks at cg14671384 in liver 
(Fig.  4A), as well as dense Hi-C interactions between 
the locus of the identified CpG and distant regions 
(Fig. 4C), together implying the active regulatory role of 
cg14671384. Interestingly, we noticed that there was a 
significant eQTL (P = 1.70 ×  10–7) located in an enhancer 
100 kb away from SLC38A4, and a significant 3D interac-
tion (P = 2.05 ×  10–5) was captured between this gene and 
the enhancer [48] (Supplementary Fig. 4). Based on these 
observations, we inferred a possible regulatory process 
that the distal SNP changes the function of the enhancer 
where it locates, then the enhancer regulates the CpG 
through the chromatin 3D interaction and changes the 
expression of the downstream gene SLC38A4.

Next, we checked the activity of the other two CpG 
sites in the above regulatory signals. For cg10848724, 
we observed the binding of TF ZFP57, RUNX1, and 
TFAP2E on this CpG site (Supplementary Fig.  5A), of 
which ZFP57 and RUNX1 functions as transcriptional 
repressors and TFAP2E acts within positive regula-
tion of transcription [45]. The gene VPS37B where 
cg10848724 locates was highly expressed in esopha-
gus tissue (Supplementary Fig. 5B), which participated 
in the digestive process and may correlated with body 
weight [49]. For cg25540824, we observed the binding 
of TF ZFP57, ELF2, MEIS1 and NFIX (Supplementary 
Fig. 6A), all of which were involved in the DNA-binding 

Table 1 Study participant characteristics at baseline and 
follow-up of cohort 1 and cohort 2

Cohort 1 Cohort 2

Baseline

No. of participants 407 126

Male, n (%) 179 (44%) 66 (52%)

Age, years 61.7 ± 7.5 62.4 ± 8.6

BMI, kg/m2 23.9 ± 3.0 24.1 ± 2.5

Height, cm 162.1 ± 7.9 163.3 ± 8.7

Weight, kg 63.1 ± 10.0 64.5 ± 9.8

Cigarette smoking, n (%) 77 (19%) 29 (23%)

Alcohol drinking, n (%) 73 (18%) 11 (9%)

Follow-up

Age, years 65.8 ± 7.4 66.7 ± 8.6

BMI, kg/m2 24.7 ± 3.1 24.5 ± 3.0

Height, cm 159.8 ± 8.2 163.3 ± 8.7

Weight, kg 63.1 ± 10.1 64.5 ± 9.8

BMI change

Delta BMI, kg/m2 0.76 ± 1.4 0.40 ± 1.9

BMI change degree, kg/m2 0.03 ± 0.07 0.02 ± 0.08
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transcription repressor activity [45]. The correspond-
ing gene TRIM15 is significantly over-expressed in the 
colon, liver, and small intestine tissues (Supplementary 
Fig.  6B), which may relate with the change of BMI by 
influencing body weight. Similarly, we found there were 
ChIP-seq signals of different chromatin states and his-
tone marks in the relevant tissues at both CpG sites 
and also dense Hi-C interactions from these CpGs to 
distant regions (Supplementary Fig.  5C and 6C), indi-
cating that these CpG sites are actively involved in reg-
ulatory processes.

Functional analysis of CpGs related to BMI change
We loosened the threshold for EWAS results to 
P < 1 ×  10–5 and selected the top 20 significant CpGs for 
the functional analysis. We annotated those CpGs to cod-
ing regions of 13 genes and investigated the annotated 
genes using the tool EWAS atlas [12]. Results showed 
that 11 out of the 13 genes have been reported to have 
associations with obesity or T2D (Table  3). Then, we 
conducted functional enrichment analysis using MetaS-
cape [28] and observed significant enrichment of those 
genes in negative regulation of protein phosphorylation 

Discovery cohort
n=407

Baseline Follow-up
~4.1y

Baseline Follow-up
~4.3y

Replication cohort
n=126

Meta-analysis of two cohorts

CpGs related with BMI change

Longitudinal EWAS of BMI change

Cross-sectional 
EWAS of BMI

Functional 
enrichment 

(GO and TFBS)

PheWAS for 
annotated genes

Annotation of 
CpGs to genes

Interpretation of 
regulatory 

mechanisms

Cross-lagged 
causal analysis

Post-EWAS analysis

Fig. 1 Study design
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(GO:0001933; Fisher exact test P = 2.84 ×  10–4) and nega-
tive regulation of cell migration (GO:0030336; Fisher 
exact test P = 3.65 ×  10–4; Supplementary Fig. 7A). Protein 
phosphorylation and cell migration can both be induced 
by growth factor [50–52] and plays important roles in the 
development of body height and obesity [53, 54].

Besides, we investigated the enrichment significance of 
the annotated genes in Reactome [29] and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways [30] 
using the R package clusterProfiler [31]. Results showed 
that the annotated genes were mainly enriched in basic 
cell signaling processes like membrane binding and tar-
geting of glycosaminoglycan (GAG) proteins (Fisher 
exact test P = 4.23 ×  10–5; Supplementary Fig.  7C) and 
endocytosis (Fisher exact test P = 7.83 ×  10–3; Supplemen-
tary Fig. 7D).

Next, we further checked the enrichment of transcrip-
tion factor binding sites (TFBS) on the selected CpGs 
and observed a significant enrichment of the CpGs in the 
binding of TF FOXE1 (Fisher exact test P = 2.51 ×  10–3; 

Supplementary Fig. 7B). FOXE1 is a well-known thyroid-
marker protein that plays an important role in cell growth 
and migration [67, 68], while thyroid mainly regulates the 
growth rate, promotes the metabolism, and maintains the 
growth and development of the body [69, 70]. Moreo-
ver, FOXE1 has been reported to be associated with the 
abnormality of body height by Human Phenotype Ontol-
ogy (HP:0000002) [71], indicating a possible regulatory 
process from the TF binding of detected CpGs to body 
height change. Taken together, the enrichment analysis 
demonstrated that CpGs detected by the longitudinal 
EWAS of BMI change were valuable and might relate to 
the development of body height and obesity.

Sex stratification analysis
We further conducted stratified EWAS analyses for 
males and females to investigate how DNA methyla-
tion patterns are associated with BMI change within 
different sex group. There were two CpGs (cg25540824 
and cg10848724) detected for males in cohort 1 at the 
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−
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cg14671384
SLC38A4
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cg25540824
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Fig. 2 Meta-analysis results. A Manhattan plot showing the distribution of P values of the association of methylation probes with BMI change 
in the discovery cohort. The green dots indicate CpGs that fall within VPS37B; the blue dots indicate CpGs that fall within TRIM15; and the red dots 
indicate CpGs that fall within SLC38A4. B Q-Q plot showing enrichment P values of the discovery cohort compared against those of randomly 
selected baseline samples

Table 2 CpGs significantly associated with BMI change in the meta-analysis

* I2 is the heterogeneity score that assess the degree of variability in effect sizes across the two cohorts

CpG CHR Position Gene Discovery cohort Replication cohort Meta‑analysis

Effect P Value FDR Effect P Value Direction I2 Summary P Value

cg14671384 12 47,219,920 SLC38A4 − 0.341 1.19E−07 2.82E−02 − 3.25E−03 6.48E−02 − − 0.34 9.09E−09

cg25540824 6 30,139,686 TRIM15 0.967 4.98E−08 1.77E−02 2.04E−03 5.82E−02  +  + 0.65 7.05E−08

cg10848724 12 123,380,878 VPS37B 1.065 3.52E−09 2.51E−03 2.88E−03 7.49E−02  +  + 0.52 5.85E−07
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threshold of P < 1 ×  10–6, while no signal was identified for 
females (Supplementary Fig. 8A-B). Then, we systemati-
cally compared the effect size of CpGs in males with that 
in females, and found significant inconsistency across the 
two genders (Pearson’s correlation coefficient = 0.52; Sup-
plementary Fig.  8C), indicating a possible difference on 
the sex-specific epigenetic regulation of BMI change and 
obesity development.

Comparison with the cross‑sectional epigenome‑wide 
associations of BMI
We wondered whether the CpG sites associated with 
BMI change were also significantly associated with the 
cross-sectional BMIs. To this end, we separately con-
ducted cross-sectional EWAS analysis using the base-
line and follow-up data of cohort 1. Then, we collected 
the published BMI-related CpGs from previous stud-
ies (Supplementary Table  2) [10, 16, 17] and checked 

the significance of the published CpGs in the cross-
sectional EWAS of BMI and the longitudinal EWAS of 
BMI change. As expected, the published BMI-related 
CpGs were much more significant than random CpGs 
in EWAS results of BMI (baseline: t-test P = 6.30 ×  10–7; 
follow-up: t-test P = 2.72 ×  10–11; Supplementary 
Fig. 9A-F), but did not show significant difference with 
random CpGs in EWAS results of BMI change (t-test 
P = 0.45; Supplementary Fig.  9G-I). This suggests BMI 
and BMI change may have different regulatory mech-
anisms involving distinguished CpGs. Besides, we 
checked the correlation between cross-sectional BMI 
and the methylations of the CpG identified to be cor-
related with BMI change, and observed that the CpGs 
significantly associated with BMI change were not cor-
related with either baseline or follow-up BMI (Supple-
mentary Fig. 10).

Fig. 3 Interpretation for SLC38A4. A PheWAS results for SLC38A4. Blue bars represent GWAS significance of phenotypes related to birth weight; red 
bars represent those related to height. B Zoom locus of SLC38A4 in the GWAS of body height. The red triangle shows the position of cg14671384. C 
A cis-mQTL association between the GWAS signal (rs12307687) and the EWAS signal (cg14671384). D The influence of SLC38A4 mutations on mouse 
phenotypes. Highlighted blue boxes represent the observed phenotype change
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Discussion
In this study, we conducted a longitudinal association 
analysis between epigenome-wide DNA methylation and 
BMI change in an East Asian population. The longitudi-
nal EWAS analysis identified three novel loci associated 
with BMI change, two of which were located in genes 
that have previously been related to body shape, height, 
weight, or basal metabolic rate. We found 11 out of the 
13 genes where the top 20 CpGs located were previously 
reported to be related with obesity or T2D. Besides, func-
tional enrichment analysis revealed that the top CpGs 
localized to genes involved in functions related to pro-
tein phosphorylation and cell migration, which can both 
be induced by growth factor, while growth factor plays 
important roles in the development of body height and 
obesity. These findings provide comprehensive evidence 
for the role of the identified CpGs in the change of BMI.

The phenotype-wide association analysis demonstrated 
that the identified CpG sites were located in regions 
associated with basal metabolic rate and a range of 

body shape-related traits, including height, weight, and 
body fat mass. This suggests the changes in DNA meth-
ylation at the identified loci may have broader effects on 
body shape-related phenotypes. Overall, the results of 
PheWAS analysis showed that the identified CpG sites 
were in accordance with previous findings from GWAS 
of BMI, revealing that the EWAS of BMI change and the 
GWAS of BMI are relevant and the epigenetic changes 
may contribute to the missing heritability of obesity.

The epigenomic data of TF motif, chromatin state and 
histone modification were generated by various ChIP-seq 
experiments which provided valuable insights into the 
functional regulation of genomic regions such as CpGs. 
For example, TF motif analysis allowed us to identify 
transcription factor binding motifs enriched in the vicin-
ity of the identified CpGs, providing clues about potential 
transcriptional regulatory mechanisms underlying BMI 
change [72]. Chromatin state data reflected the struc-
tural and functional organization of chromatin, provid-
ing insights into the regulatory elements and functional 

Fig. 4 Regulatory activity of cg14671384. A The activity of the genomic region where cg14671384 locate. From top to bottom, the bars 
show the location, GC percent, Jaspar TFs, and different histone marks. The height in each bar represents the activity of the corresponding 
position. cg14671384 was shadowed in yellow. B The expression of SLC38A4 in different tissues. C The 3D interactions in the genomic region 
where cg14671384 locate. cg14671384 was marked in red
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states associated with the identified CpGs [73]. Histone 
modification profiling enabled us to assess the epigenetic 
modifications associated with active or silenced chro-
matin states, further elucidating the regulatory potential 
of the CpGs. Given the interactive nature of epigenomic 
processes, we integrated these diverse epigenomic data-
sets to comprehensively investigate the regulatory activ-
ity of the identified CpGs. By examining the concordance 
or discordance between DNA methylation patterns and 
other epigenomic features, we gained insights into the 
coordinated regulation of the identified CpGs and cellu-
lar phenotypes associated with BMI change.

Besides, we performed the cross-sectional EWAS of 
BMI, respectively in baseline and follow-up. Surpris-
ingly, the CpGs identified in the longitudinal EWAS 
for BMI change were not significantly associated with 
baseline or follow-up BMI. This finding highlights the 
importance of studying BMI change specifically, as the 
underlying epigenetic mechanism of BMI change may 
not be the same as that of BMI itself. However, most of 
the previous researches typically focused on the study 
of BMI, taking BMI change as an identical phenotype of 
BMI [74]. There were also several studies that noticed the 
difference between BMI and BMI change and explored 
the epigenetic makers associated with BMI change [17]. 
Nevertheless, these studies of BMI change usually use the 
linear mixed model to identify significant CpG signals, 

which cannot capture direct information of BMI chang-
ing rate. We show that by using linear mixed model, we 
can only obtain similar results with the cross-sectional 
EWAS results of BMI (Supplementary Text and Supple-
mentary Fig. 11). More importantly, the previous studies 
were performed in the American or European longitudi-
nal cohorts, leaving the mechanism of BMI longitudinal 
change not well-explored in East Asian population (Sup-
plementary Text). Therefore, in this study, we designed a 
statistic of BMI changing rate which is defined as the rate 
of BMI change from baseline to follow-up over the inter-
val time, to focus specifically on epigenetic signals asso-
ciated with the change of BMI over time. Thus, we can 
detect specific signals unique to BMI change. The present 
results suggest that studying BMI change as a distinct 
phenotype can provide valuable insights into the under-
lying epigenetic mechanisms involved in weight gain or 
loss over time.

However, this study also had several inevitable limi-
tations. The major drawback of the present study was 
its limited sample size, where we only included 533 
longitudinal samples for the meta-analysis. The sample 
scale of an EWAS study directly influences the number 
of identified CpGs, as well as their significance. Longi-
tudinal analysis of BMI change should be conducted in 
larger datasets in the future. Second, the CpGs iden-
tified by the discovery cohort showed the same effect 

Table 3 Annotation for the top 20 CpGs that most significantly associated with BMI change. The related traits were phenotypes 
reported to be significantly correlated with the gene where the identified CpGs located, collected from EWAS atlas

CpG CHR Position Relation to Island Gene Reported trait in EWAS atlas

cg10848724 12 123,380,878 Island VPS37B obesity [55]; type 2 diabetes (T2D) [56]

cg25540824 6 30,139,686 N_Shore TRIM15 obesity [55]; type 2 diabetes (T2D) [56]

cg14671384 12 47,219,920 OpenSea SLC38A4 birth weight [57]; weight loss [58]

cg16439649 9 129,175,984 OpenSea MVB12B type 2 diabetes (T2D) [56]

cg07312485 16 2,052,423 Island ZNF598 obesity [55]; type 2 diabetes (T2D) [56]

cg19210553 22 44,438,952 OpenSea PARVB obesity [55]

cg14575164 11 124,951,616 OpenSea SLC37A2 differentiation of skeletal muscle [59]

cg03578005 4 77,170,672 N_Shore \ \

cg23433430 4 41,362,520 Island LIMCH1 obesity [55]; type 2 diabetes (T2D) [56]

cg03864245 17 41,855,745 Island DUSP3 multiple sclerosis [60]

cg08388111 10 74,032,820 N_Shore DDIT4 obesity [61]

cg24085975 12 10,657,644 OpenSea EIF2S3L infant sex [62]; gender [63]

cg16282618 11 129,444,501 OpenSea \ psoriasis [64]

cg02539153 5 140,614,765 N_Shore PCDHB18; CH17-40K24.2 obesity [61]; type 1 diabetes (T1D) [65]

cg10742523 4 55,650,393 OpenSea \ obesity

cg21349637 18 13,218,607 Island C18orf1; LDLRAD4 obesity [55]; type 2 diabetes (T2D) [56]

cg21850735 15 73,919,896 OpenSea NPTN obesity [61]

cg13093727 17 72,767,907 OpenSea NAT9 \

cg17021949 2 6,589,760 OpenSea \ ancestry [66]

cg13806964 6 31,165,914 Island HCG27 obesity [55]; type 2 diabetes (T2D) [56]
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direction in the replication cohort, but the associations 
were not significant in the replication cohort. One pos-
sible reason for this might be that the replication cohort 
only contained 126 samples. Third, our study investi-
gated the TF binding status, chromatin states, expres-
sion levels and physical interactions of the identified 
CpGs, to infer their possible role in the mechanism of 
BMI. This inference was only based on public sequenc-
ing data. Further biological experiments need to be 
conducted to explore and confirm the mechanism of 
how the identified CpGs influence the change of BMI. 
Fourth, it would be a possible improvement if the DNA 
methylation data can be generated in an obesity-related 
tissue. By conducting EWAS analysis using DNA meth-
ylation data generated in specific tissues, such as adi-
pose tissue or liver, we can capture DNA methylation 
changes specifically relevant to the expression of genes 
involved in adipogenesis, lipid metabolism, insulin 
signaling, and other pathways relevant to BMI changes.

In conclusion, despite the limitations discussed 
above, this longitudinal study provides important 
insights into the complex interplay between the change 
of BMI and DNA methylation. The results of this study 
showed three CpGs significantly associated with BMI 
change, two of which located in regions that were previ-
ously reported to be related to body shape or basal met-
abolic rate, providing further evidence for the relevance 
of these loci in relation to BMI. Additionally, the study 
used various approaches such as GWAS, PheWAS, and 
functional enrichment analyses to further characterize 
these BMI change-associated CpGs. Furthermore, the 
study explored the CpGs in terms of their TF binding 
status, chromatin states, expressions of corresponding 
genes, and distant 3D interactions, revealing that all 
the detected CpGs are actively involved in regulation 
processes and are highly expressed in obesity-relevant 
tissues. This provides further evidence for the poten-
tial role of these CpGs in the development of obesity 
and related diseases. It is noteworthy that our study 
revealed differences between the CpGs identified by 
EWAS of BMI change and those identified by cross-
sectional EWAS of BMI. This distinguished our analy-
sis of BMI change with previous BMI EWAS analysis 
and highlighting the value of the longitudinal analysis 
in providing a more comprehensive understanding of 
the role of DNA methylation in BMI change and the 
need to set up future larger longitudinal EWAS studies. 
Overall, the identification of novel CpG sites associated 
with BMI change and their functional characteriza-
tion provides a potential insight for the development of 
new biomarkers and therapeutic targets for obesity and 
related metabolic diseases.
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