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A B S T R A C T

Medical images are generally acquired with limited field-of-view (FOV), which could lead to incomplete regions
of interest (ROI), and thus impose a great challenge on medical image analysis. This is particularly evident for
the learning-based multi-target landmark detection, where algorithms could be misleading to learn primarily
the variation of background due to the varying FOV, failing the detection of targets. Based on learning a
navigation policy, instead of predicting targets directly, reinforcement learning (RL)-based methods have the
potential to tackle this challenge in an efficient manner. Inspired by this, in this work we propose a multi-
agent RL framework for simultaneous multi-target landmark detection. This framework is aimed to learn from
incomplete or (and) complete images to form an implicit knowledge of global structure, which is consolidated
during the training stage for the detection of targets from either complete or incomplete test images. To further
explicitly exploit the global structural information from incomplete images, we propose to embed a shape
model into the RL process. With this prior knowledge, the proposed RL model can not only localize dozens
of targets simultaneously, but also work effectively and robustly in the presence of incomplete images. We
validated the applicability and efficacy of the proposed method on various multi-target detection tasks with
incomplete images from practical clinics, using body dual-energy X-ray absorptiometry (DXA), cardiac MRI
and head CT datasets. Results showed that our method could predict whole set of landmarks with incomplete
training images up to 80% missing proportion (average distance error 2.29 cm on body DXA), and could detect
unseen landmarks in regions with missing image information outside FOV of target images (average distance
error 6.84 mm on 3D half-head CT). Our code will be released via https://zmiclab.github.io/projects.html.
1. Introduction

Landmark detection is an essential step for biomedical image anal-
ysis (Zhan et al., 2016). Anatomical landmarks can describe morpho-
logical characteristics of anatomical structures, which is important in
morphometric and medical analysis. Their locations can also be useful
in many downstream computing tasks, such as image segmentation
and registration (Seghers et al., 2007). However, in practical clinics,
medical images usually have varying field-of-view (FOV) and cover
incomplete region-of-interests (ROI). Such incomplete images lead to
particular challenges for learning-based landmark detection.
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We refer an image as incomplete image when it cannot cover the
whole ROI containing all targets, or when it, as a training image, does
not provide gold standard labels of all targets. Fig. 1(a) illustrates the
saggital view of a complete CT image which covers all the anatomical
landmarks of the head, and three incomplete images which only cover
parts of the head. This incompleteness of medical images is common
in clinical practice. For example, many of the CT images are acquired
without a whole-head scan in clinic to reduce exposure to radiation,
such as mandible modeling (Park et al., 2022), nasal cancer study (Li
et al., 2019) and stroke diagnosis (Hakim et al., 2021).
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Fig. 1. Illustration of complex scenarios involving incomplete images for machine learning. Here, 𝐼 𝑐 (𝐿𝑐 ) and 𝐼 𝑖𝑛𝑐 (𝐿𝑖𝑛𝑐 ) respectively refer to complete images (labels) and
incomplete images (labels); the dots (∙) represent landmarks. (a) a complete image and three incomplete images of head CT in saggital view; (b) a scenario where the machine
learning algorithm is required to learn from incomplete images (with incomplete gold standard labels) to infer all completes label inside of the complete test image ; (c) a scenario
where the training images are complete but their gold standard labels are incomplete, and the target is to infer all complete label; (d) and (e) scenarios where training images
are complete in both images and labels, but the test images are incomplete. Differently, in (d) the target is to infer only incomplete label, i.e., landmarks, from the incomplete
image given the available ROI, while in (e) the task is to predict all landmarks even for the ones not contained in the incomplete image. Note that images in this figure are all
2D saggital view of 3D images, and the landmarks on them are mapped from 3D space.
These images become incomplete when the studies involve the
target landmarks of the whole head, namely a complete image in
one study can become incomplete in another for wider ROI. This is
even more common in dual-energy X-ray absorptiometry (DXA) scans,
which are widely used to analyze different areas of the body. These
DXA images from different studies are incomplete for the study whose
targets involve the whole body (Briot, 2013). Finally, partial labeling
is commonly seen in big medical image training data, since manually
labeling is tedious and difficult even for experienced annotators. More-
over, due to the difference of targets in different studies, the collected
label can be partial even for a complete image (Fries et al., 2019).

Fig. 1 summarizes and illustrates the common scenarios involving
incomplete images in multi-target landmark detection. Particularly,
Fig. 1(b) shows the most common scenario, where the training images
contain only limited and incomplete ROI, consequently their labels are
incomplete; but the target is to detect all landmarks given a complete
image. This is common yet challenging, and the core is to learn the
global structural information (also known as shape information) from
limited FOV images, with an effective scheme to consolidate the global
knowledge for inference. Fig. 1(c) represents a similar yet different
application, where images are all complete, in both of the training and
test stages; but the gold standard labels for training are incomplete.
This can happen in multi-center studies, where different center has
interests of different targets. The ultimate goal of machine learning
here is to learn all the knowledge of local annotations, and assemble
them into a global model for inference. Fig. 1(d) and (e) demonstrate
the more practical situations, where our training images are perfectly
complete. However, in clinic practice the acquired images can be of
limited FOV and incomplete. It is therefore desirable that the artificial
intelligent models can be robust in the presence of such incomplete
test images. Furthermore, in certain extreme cases the missing part of
the incomplete test images can be so important that we need to recover
these missing landmarks, as Fig. 1(e) shows, the model is then expected
to predict the targets even though they are not within the FOV of the
test images.

The aforementioned scenarios can challenge the learning-based
multi-target landmark detection algorithms. With incomplete images,
the global structural information is not consistently presented, thus
the algorithms may not be able to assemble the partial knowledge
into global one. In addition, one algorithm developed for coping with
incomplete training images may not be applicable to the scenario of
incomplete test images, or vice versa. For deep learning-based methods,
many models even require fixed sizes of input and output images,
thus they cannot be directly extended for such incomplete images with
random FOVs and sizes.

Reinforcement learning (RL), using an intelligent agent to study
interacting with changing environments, has the potential of tackling
the challenges (Kaelbling et al., 1996). Different from the conventional
manner of learning and predicting targets directly, RL tries to learn
2

a navigation policy with an artificial agent in landmark detection.
Such agent can be trained to search for optimal trajectories to target
landmark from any random initial position of the image. This patch-
based strategy captures local image information more easily than the
holistic image information. In the presence of incomplete images, RL-
based algorithms based on such local information can robustly avoid
disturbance caused by missing structures. Hence, RL has the potential
of offering a solution for the learning and inference with incomplete
images, thanks to the navigation strategy for identifying the global
structure of incomplete information.

For incomplete images, this work further aims to develop a robust
opportunity RL algorithm to detect multiple targets simultaneously.
Potentially, RL with multiple agents can search for multiple targets and
accomplish the mission simultaneously, with each agent targeting a
single landmark. However, since each agent is navigating separately,
this strategy may not fully utilize the global structural information,
leading to additional challenges in scenarios of incomplete images.
Embedding prior shape information into RL-based algorithms can be a
solution. For example, Zhang et al. (2020) tried to add reward based on
shape information to share them between different agents. Ghesu et al.
(2018) used extra statistical shape modeling and robust estimation the-
ory containing shape information to correct the initial prediction of RL.
Nevertheless, existing studies mainly focus on dealing one scenario at
one time, and a unified framework applicable to these general problems
of incomplete images is yet to be researched and developed. Different
scenarios may present different challenges for different methodologies,
as Fig. 1 shows.

In this work, we propose a two-stage deep neural network (DNN)
model for multi-target landmark detection with incomplete images.
This model combines a multi-agent RL network and a statistical shape
prior embedded network. The former network, extended from the
single-agent RL framework, is aimed to search for multiple targets
simultaneously from incomplete images; the latter, to provide prior
knowledge of global structure for the former, is developed based on
a statistical shape model. The two networks are trained alternately,
and the output of RL network can provide more samples for the
shape network during training, which enhances the robustness of the
landmark detection model. Similar alternation is also applied in the
inference (test) stage.

The rest of this work is organized as follows: Section 2 presents the
related work. We elaborate on the methodologies in details in Section 3.
Section 4 provides the validation work, with comprehensive experi-
ments and results via five practical applications from clinic perspectives
and four datasets. Finally, we conclude and discuss in Section 5.

2. Related work

2.1. Landmark detection algorithms

Most conventional landmark detection methods process only com-
plete images in different ways to exploit the structural knowledge.
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Several works tried to build a global structure containing the explicit
relationship between landmarks. For example, Cootes et al. (1995)
proposed a statistical shape model (SSM) to fit the object in target
images, namely active shape model (ASM). ASM was later improved
by adding global or local appearance information (Cootes et al., 2001;
Cristinacce et al., 2006). Methods could also embed the shape informa-
tion implicitly via regression or registration. For example, regression
maps image appearance to landmark locations directly (Dantone et al.,
2012; Yang and Patras, 2013). In contrast, registration builds a map
between different images and it can propagate label information from
atlas images to the target (Gass et al., 2014; Li et al., 2020). These
traditional methods can obtain promising results, but are usually time
expensive.

For landmark detection, there is a trend to shift from traditional
methods to deep learning-based methods. Deep learning-based methods
are much more efficient and can achieve results that may not be
worse than traditional methods (Zhuang et al., 2019). Using powerful
DNN to extract features, direct regression methods can predict the
landmark locations in the target image in one single step (Sun et al.,
2013; Zhou et al., 2013). A similar but different method technique is
to introduce heatmap from convolution neural network to detect the
landmarks. Instead of getting determined results, the methods output
heatmap as the potential distribution of landmarks (Payer et al., 2016).
Cascaded regression models were also proposed, which found coarse
predictions at the beginning, and gradually updated localization in
the following stages (Zheng et al., 2015; Lv et al., 2017). However,
most deep learning-based methods struggle to handle high-dimensional
image data (Kang et al., 2021) and may be sensitive to the bounding
box of images that cover the ROI (Sagonas et al., 2016).

2.2. Usage of incomplete images

The use of incomplete images has been an ongoing research di-
rection in recent years (Kerr et al., 2008). Traditional methods of
processing incomplete images were usually based on image comple-
tion (Stasinski and Konrad, 2000; Vazquez et al., 2000, 2002), in which
constructed images without prior knowledge of their contents and
could lead to unreliable results. There are also traditional algorithms
that can be applied directly to incomplete image data without using
image reconstruction, such as using space variant operators to extract
landmarks (Kerr et al., 2008). However, the incomplete images they
studied were regularly or irregularly sampled from complete images,
where missing pixels were distributed over the whole image. These
images were different from the incomplete medical images discussed
in this work, which were caused by limited ROI. Efforts have been
devoted to deep learning-based methods for landmark detection of
incomplete images. For instance, Wang et al. (2020) used a random
mask-based data augmentation strategy to generate incomplete images
for network training. Hanaoka et al. (2017) proposed a two-stage
sampling algorithm that can be applied to incomplete CT images.

2.3. Statistical shape models for detecting landmarks and handling incom-
plete images

As mentioned in Section 2.1, SSM can be used for landmark de-
tection. To get accurate shape priors, different methods have been
proposed to construct shape representations, such as implicit level set
representations (Cremers et al., 2007), Fourier surfaces (an extension of
the classical Fourier transforms) (Staib and Duncan, 1996), and wavelet
transform (Davatzikos et al., 2003). There were also efforts to combine
the benefit to DNN with SSM. For example, Ma et al. (2018) lever-
aged the shape priors learned from SSM to improve the segmentation
of DNN. Raju et al. (2022), Bhalodia et al. (2018) generated shape
parameters of SSM with DNN directly.

Besides, SSM has also been employed to handle incomplete images.
For example, Chintalapani et al. (2010) constructed SSM from com-
3

plete CT images and inferred the missing information of incomplete
images with statistical atlas. This method was improved by Grupp
et al. (2015) with smoother extrapolation strategies. Several studies
focus on constructing SSM directly from incomplete images. Meng
et al. (2020) constructed SSM from partial and incomplete images
with probabilistic principal component analysis. Jingting et al. (2016)
proposed a framework for automatically building SSM from the incom-
plete shapes generated from a segmentation algorithm. However, the
representation power of deep networks has not been explored yet when
employing SSM to handle with incomplete images. To deal with this,
we introduced DeepSSM for incomplete image problems.

2.4. Reinforcement learning for medical image analysis

As a well-studied topic of machine learning methods, RL has been
applied to numerous tasks in medical image analysis (Zhou et al.,
2021), including lesion detection (Maicas et al., 2017), registration
(Liao et al., 2017), view plane localization (Alansary et al., 2018) and
landmark detection (Alansary et al., 2019). Instead of locating the tar-
get directly, RL tried to learn the optimal path to the target from given
position with an agent. Ghesu et al. (2016) adopted a deep RL agent
to navigate in a 3D medical image for automatic landmark detection.
This method was improved with a multi-scale strategy later (Ghesu
et al., 2017). To detect multiple targets simultaneously, Vlontzos et al.
(2019) extended the RL network to be able to train multiple agents at
the same time. The structural relationship between landmarks has been
considered in several methods for robust detection. For example, Leroy
et al. (2020) proposed an RL scheme that used communicative agents
to share information. Zhang et al. (2020) proposed an algorithm
incorporating priors on physical structure, where graph communication
layers and additional rewards were designed to exploit structural priors.

RL can detect absent anatomical landmarks and has also been
used to handle incomplete images. Ghesu et al. (2016) concluded that
RL can judge whether the anatomical landmark is absent in target
image. Jain et al. (2020) proposed an RL-based multi-target landmark
detection method, which could estimate primary target landmark loca-
tions even though the local images around targets are defaced. Ghesu
et al. (2018) used a two-stage model, first training artificial agents to
search for anatomical structures and then using elements of a statistical
shape model to ensure the spatial coherence of the observed anatom-
ical landmarks. However, most of these studies focus on prediction
with incomplete images given complete images for training, which is
solely one scenario of the incomplete image problems, as illustrated
in Fig. 1(d). The complex nature and sophisticated scenarios involving
incomplete images have not been fully explored yet. In contrast, this is
the first study that aims to tackle this task, to the best of our knowledge.

3. Methodology

This work is aimed to develop an effective method for multi-
target landmark detection in complex scenarios involving incomplete
images. In practice, the images collected either for training or test
could be presented in a nonstandard form. Specifically, they may not
cover the whole ROI, so certain volumes containing target landmarks
could be missing. These scenarios introduce the issue of unfixed num-
ber of landmarks, which challenges most of the deep learning-based
approaches requiring fixed number of landmarks (see Table 1). Let
{(𝐼𝑐𝑖 , 𝑋𝑖, )|𝑖=1,…,𝑁} be a training set for a common task of landmark
detection, where  is the index set of all target landmarks for a
complete image such as 𝐼𝑐𝑖 whose corresponding landmark set is 𝑋𝑖. By
contrast, in the scenario of incomplete images a training set is denoted
by {(𝐼 𝑖𝑛𝑐𝑖 , 𝑋𝑖,𝑖)|𝑖=1,…,𝑁}, where 𝐼 𝑖𝑛𝑐𝑖 represents an incomplete image.
The set of available landmark index for 𝐼 𝑖𝑛𝑐𝑖 is denoted as 𝑖, which is
a subset of  .

With similar notation, let {𝐼 𝑖𝑛𝑐𝑖 |𝑖=1,…,𝑁 ′} be the test image set with
incomplete images. A model, denoted as 𝐹 , predicts the coordinates of

̂ 𝑖𝑛𝑐 | |×𝑁𝑑𝑖𝑚
all landmarks, i.e., 𝑋𝑖 = 𝐹 (𝐼𝑖 ) ∈ R , where 𝑁𝑑𝑖𝑚 is dimension
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Table 1
Definition of symbols used in this paper.

Symbol Definition Symbol Definition

𝐼𝑖 An image with index 𝑖 𝑖 Available index set of 𝐼𝑖
𝐼 𝑐
𝑖 ∕𝐼

𝑖𝑛𝑐
𝑖 A complete/incomplete image with index 𝑖 𝑆 Current state

𝐼 𝑐∕𝐼 𝑖𝑛𝑐 Scenarios involving complete/incomplete images 𝑠𝑗 State of agent 𝑗
𝐿𝑐∕𝐿𝑖𝑛𝑐 Scenarios involving complete/incomplete label of images 𝑅 Reward
𝐿𝑐−𝑖𝑛𝑐 Scenarios involving complementary label of images 𝑟𝑗 Reward got by agent 𝑗
𝑁∕𝑁 ′ Number of training/test images 𝐴 Current actions
𝑁𝑑𝑖𝑚 Dimension of the images 𝑎𝑗 Action taken by agent 𝑗
𝐗∕𝑋 Landmark set library/mean shape of 𝐗 𝑀direction Movement with given direction
𝑋𝑖∕�̂�𝑖 Landmark set of 𝐼𝑖∕prediction of 𝑋𝑖 𝛤 [𝑡]

𝑗 Patch centered on position of agent 𝑗 at time 𝑡
𝑥𝑖𝑗∕�̂�𝑖𝑗 Landmark of 𝑋𝑖 with index 𝑗∕prediction of 𝑥𝑖𝑗 𝜖 Greedy parameter
𝑥𝑑𝑗 Ground-true location for agent 𝑗 𝐷 Distance metric
𝑥[𝑡]𝑗 The locations of agent 𝑗 at time 𝑡  Index set of all target landmarks
Fig. 2. Illustration of the shape-guided multi-agent reinforcement learning (SGMaRL) via DeepMaQ-Net and DeepSSM-Net. Here, we use three target landmarks for illustration,
where one of them locates in the missing area. In the training stage, only agents whose targets exist in the image take actions and affect the calculation of loss function of
DeepMaQ; while in the test stage, all agents navigate with shape guidance and regularization via DeepSSM-Net.
of the images. Intuitively, a workable model should have the following
minimization problem:

min
𝑁 ′
∑

𝑖=1

∑

𝑗∈𝑖

𝐷(𝑥𝑖𝑗 , �̂�𝑖𝑗 ), (1)

where 𝑥𝑖𝑗 ∈ R𝑁𝑑𝑖𝑚 and �̂�𝑖𝑗 ∈ R𝑁𝑑𝑖𝑚 are respectively the ground truth
and prediction of coordinate for the landmark with index 𝑗 in image
𝐼 𝑖𝑛𝑐𝑖 ; 𝐷(⋅, ⋅) is a distance metric, such as the Euclidean distance.

To fulfill the above objective, we propose a two-stage DNN based
on shape-guided multi-agent reinforcement learning (SGMaRL). As il-
lustrated in Fig. 2, this framework consists of two major components,
i.e., a deep multi-agent Q-learning (DeepMaQ) network for multi-target
landmark detection, and a deep statistical shape model (DeepSSM)
for shape guidance and regularization. We introduce these two al-
gorithms respectively in Sections 3.1 and 3.2. Then we provide the
implementation details in Section 3.3.

3.1. Deep multi-agent Q-learning

Due to static environments and discrete variables of action design
(details are provided below), Deep Q-Network is capable for landmark
detection on medical images (Yang and Xie, 2020), and Deep Q-
Network with single agent (DeepSaQ) has been proved to be effective
in incomplete images scenario (Ghesu et al., 2018). By learning a
navigation policy with local patches as the input, DeepSaQ can detect
one target and tackle the problem of missing structures elegantly. When
multiple targets are presented, multiple DeepSaQs need to be trained
and deployed, which can result in deterring training time and memory
demand due to its inefficiency.

We therefore propose the DeepMaQ, i.e., deep multi-agent Q-lear-
ning network, which can efficiently detect dozens of landmarks at same
time in presence of incomplete images. For each target landmark, an AI
learner, i.e., an agent, is defined. The navigation policy can be optimized
by defining a dynamics function of Markov decision process. For each
frame, multi-series of local patches are constructed, as inputs, to guide
4

the agents finding their paths to the corresponding target positions.
All agents have different observations but navigate simultaneously.
Additionally, each agent can be independent of others. This reduces
the unnecessary dependency of the effective agents, when searching for
their targets, on the ineffective agents whose corresponding targets are
not within the image due to the incompleteness of the image.

In multi-target RL, we assign one agent for the detection of one
landmark, thus the set of indices for agents is denoted as  , the same as
that of target landmarks. The learning capability and efficiency of a RL
algorithm depend on the setting of state, action and reward of agents.
In the following, we elaborate on their settings in details.

State: In our model, the current observations (states) of agents are
represented by a series of cropped patches from an image. Current
state, denoted as 𝑆, is then defined as the set of current states of all
agents, {𝑠𝑗 |𝑗∈ }, of which each 𝑠𝑗 , associated with agent 𝑗, is a frame
history buffer. We define this buffer using the concatenation of patches
centered on the positions of agent 𝑗 given the 𝑛 time frames, i.e., 𝑠𝑗 =
{𝛤 [𝑡]

𝑗 , 𝛤 [𝑡−1]
𝑗 ,… , 𝛤 [𝑡−𝑛+1]

𝑗 }, where 𝑡 and 𝑛 represent current time and time
lag term, respectively. The latest 𝑛 cropped patches are used together to
stabilize the search trajectories. Corresponding 𝑠𝑗 is sliced from State S
and then input to a DNN-based RL model (such as DeepMaQ), to decide
which action should be taken for every agent 𝑗.

Action: An agent takes a series of actions to navigate to target
position. In our model, current action is the concatenation of actions
of all agents at current state, and is denoted as 𝐴 = {𝑎𝑗 |𝑗∈ }. For
simplicity, here we consider four types of actions for 2D images,
including move left, move right, move up and move down with a preset
step length, thus the action of agent 𝑗 from the action space is denoted
as 𝑎𝑗 ∈ {𝑀lef t ,𝑀right ,𝑀up,𝑀down}. Similarly for 3D images, we further
allow the agent to move forward and backward, denoted respectively
by {𝑀forward,𝑀back}. In the implementation, we adopt the multi-scale
strategy coupling step lengths with scales, namely the agents move
in larger step lengths in larger scale settings. The moving length will
decrease when the agent terminates at certain scale. An agent receives
feedback from the environment with an action, and the feedback is
implemented via the reward mechanism.
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Reward: At current state, an agent reaps a reward for taking an
action, and different actions at different states of different agents
receive different rewards. We denote our reward function of multi-
agent RL as a concatenation of individual rewards from each agent, i.e.,
𝑅 = {𝑟𝑗 |𝑗∈ }, where 𝑟𝑗 = 𝐷(𝑥𝑑𝑗 , 𝑥

[𝑡−1]
𝑗 )−𝐷(𝑥𝑑𝑗 , 𝑥

[𝑡]
𝑗 ), 𝑥𝑑𝑗 is the ground-true

location for agent 𝑗, 𝑥[𝑡−1]𝑗 and 𝑥[𝑡]𝑗 are the locations of agent 𝑗 before
and after taking an action, respectively, and 𝐷 is Euclidean distance.
Note that 𝑟𝑗 is positive if the distance between location and ground
truth becomes smaller and the unit is pixel. The reward function is the
foundation of the loss function in RL.

The action-selection policy in the proposed DeepMaQ can be opti-
mized by learning Q-value function. Here, we approximate a Q-value
function with a Deep Q-Network, i.e., the DeepMaQ-Net shown in
Fig. 2. Hence, the outputs of DeepMaQ-Net are the estimated Q values
and measure the benefits of taking different actions given current state
for the agents. Based on the Bellman Equation (Alansary et al., 2019),
we propose the following loss function for our multi-agent RL, i.e.,
DeepMaQ,

𝑀𝑎𝑄 (𝜔) =
𝑁
∑

𝑖=1

∑

𝑗∈𝑖

E𝑠𝑗 ,𝑎𝑗 ,𝑟𝑗 ,𝑠′𝑗

(

𝑟𝑗 −𝑄𝑗 (𝑠𝑗 , 𝑎𝑗 ;𝜔)+

𝛾max𝑎′𝑗𝑄𝑗 (𝑠′𝑗 , 𝑎
′
𝑗 ;𝜔)

)

2,

(2)

where 𝑠𝑗 , 𝑎𝑗 , and 𝑟𝑗 are current state, current action to take and
immediate reward of taking this action for agent 𝑗, respectively; 𝑠′𝑗 and
𝑎′𝑗 are the new state and action to take after action 𝑎𝑗 , respectively;
𝑄𝑗 () represents the Q-value function; max𝑎′𝑗𝑄𝑗 () denotes the maximal Q
value for future actions to take, and 𝛾 is the discount factor.

3.1.1. DeepMaQ network
The DeepMaQ network is composed of four convolutional layers

interleaved with three max-pool layers followed by four fully connected
layers. The last layer was reshaped as a matrix according to the number
of landmarks need to be detected. One can refer to Fig. 1 in supple-
mentary material for details. The 𝑖th element in the 𝑗th column of
output matrix represents the utility values of executing the 𝑖th action
for agent 𝑗, which shall decide 𝑄𝑗 in Eq. (2). When agent 𝑗 needs to
take an action, the corresponding state column is extracted as an input
to the DeepMaQ-Net, as shown in Fig. 2. One can see that when the
number of target landmarks increases, we only need to increase the
number of parameters in the last two fully connected layers. Hence,
this architecture is suitable for various tasks of multi-target landmark
detection.

3.2. Deep statistical shape model

Multi-agent RL can predict a set of landmarks which however may
form an unrealistic shape of the object. This is attributed to the lack
of global shape knowledge of the RL algorithm when no prior is
provided. Hence, we introduce a statistical shape model (SSM) into
the RL network, resulting in SGMaRL. To couple with the DeepMaQ,
we further develop the DNN implemented SSM, referred to as the
DeepSSM.

Given an image, the detected landmark set, denoted as 𝑋, is aligned
to a pre-constructed SSM, as follows,

𝑎∗, 𝑏∗ = argmin
𝑎, 𝑏

‖𝑋 − 𝑇𝑎(𝑋 + 𝑃𝑏)‖, (3)

here 𝑋 represents the mean shape of the landmark set library for
onstructing the SSM; 𝑇𝑎 represents an affine transformation defining
ith vector 𝑎; 𝑃 is the matrix formed from the largest 𝑘 modes of the
SM, and vector 𝑏 ∈ R𝑘 refers to weights to be optimized. To find
∗ and 𝑏∗ which satisfy Eq. (3), conventional methods generally adopt
n iterative algorithm, which nevertheless can be time-consuming. We
herefore propose to train a DNN of SSM (DeepSSM), whose model is
5

a

denoted as 𝐺, to infer 𝑎∗ and 𝑏∗ in an efficient manner. The loss function
of DeepSSM is given by,

𝑆𝑆𝑀 (𝜃) =
𝑁
∑

𝑖=1

(

𝑋𝑖 − 𝑇𝑚𝑎
𝑖
(𝑋 + 𝑃𝑚𝑏

𝑖 )
)2

, (4)

where [𝑚𝑎
𝑖 , 𝑚

𝑏
𝑖 ] = 𝐺(𝑋𝑖; 𝜃) are output of the DeepSSM.

For the architecture, we adopt ResNet-18 (He et al., 2016) as the
ackbone of DeepSSM. The output vector of 𝐺 is sliced into two sub-
ectors, representing 𝑚𝑎 and 𝑚𝑏, respectively. One can refer to Fig. 2 in
upplementary material for details. For 2D images, 𝑚𝑎 has 6 elements
nd 𝑚𝑏 has 𝑘 elements; while for 3D images, 𝑚𝑎 has 12 elements and
𝑏 also has 𝑘 elements; 𝑘 is the number of modes used in the SSM.

.3. Implementation details

.3.1. Training
There are two DNNs in SGMaRL, i.e., DeepMaQ-Net and DeepSSM-

et, as Fig. 2 illustrates. The former is aimed to learn the navigation
olicy for every agent to find its target from a random starting position.
he latter is trained to map and regularize a random shape to the closest
ne in the shape space defined by the SSM. The random shape here
efers to the output of the DeepMaQ-Net and is defined by the set of
etected landmarks, and the SSM is constructed using a pre-defined
hape library. These two networks are trained alternately. Note that the
utputs of half-way trained DeepMaQ-Net can provide useful samples
or the training of DeepSSM-Net. Alg. 1 provides the pseudo code.
In the training of DeepMaQ-Net, which is a RL-based neural network,

e assign random initial positions for agents at the beginning of the
pisode for a training image. For these agents whose target landmarks
re within this image, we consider them as being active and allow
hem to take actions (navigate). By contrast, for those agents whose
orresponding targets are in the missing areas, we consider them as
eing passive and keep them fixed in the initial positions without any
avigation. Similarly, when an agent reaches its own terminal state, we
hen assign it as being passive and keep it in the terminal position with
o more action during the rest navigation steps for other active agents
n this episode. This lasts until the end of the episode.

In addition, we adopt three techniques to ensure a stable and
fficient training of DeepMaQ-Net, including the 𝜖-greedy (Alansary
t al., 2019), replay-and-freeze, and multi-scale strategies (Zhuang and
hen, 2016). First, we propose to use 𝜖-greedy strategy, where the
gent selects an action uniformly at random with probability 𝜖 in
ach step. This is because when the model is insufficiently trained,
he agent can be misled by taking the action corresponding to the
aximal Q value. Here, 𝜖 will be set as a smaller value when DeepMaQ

ecomes convergence. Second, experience replay memory and freezing
he target network can be used to minimize the effects of instability and
ivergence in deep Q-learning networks. The former (replay) avoids the
roblem of successive data sampling, and the latter (freezing) helps
educing rapid changes in Q values. Finally, the multi-scale strategy
ith multiple resolution of images is adopted to improve the capture

ange and convergence speed. Here, navigation step lengths are coupled
ith image resolution. Hence, navigation in course-scale images is
ith large physical step lengths and accelerates convergence towards

he target plane; while navigation in fine-scale images steps in small
ength and fines tune the final estimation of plane parameter. The
ombination of multi-scale images contributes to better capture range
nd convergence speed.
Before training DeepSSM-Net, we first employ a set of subjects rep-

esented by complete landmark sets to construct a SSM (Cootes et al.,
995), with the results of mean shape 𝑋 and mode matrix 𝑃 in Eq. (3).
e denote this landmark set as 𝐗 = {𝑋𝑖|𝑖=1,…,𝑁}. Then, we generate

andom samples using resulting SSM for a pre-training of DeepSSM-
et, where the samples are generated using 𝑋∗ = 𝑇𝑚𝑎

∗
(𝑋 + 𝑃𝑚𝑏

∗). 𝑚𝑎
∗

nd 𝑚𝑏 are the gold standard parameters of 𝑋∗ for supervised learning.
∗



Medical Image Analysis 89 (2023) 102875K. Wan et al.

1

1

1

1

1

1

1

1

Algorithm 1: Training stage of SGMaRL
Data: Training set {(𝐼𝑖, 𝑋𝑖,𝑖)|𝑖=1,⋯,𝑁}, number of training

images 𝑁 , landmark set library 𝐗, maximum number of
episodes 𝑀 , budget 𝑇 , greedy parameter 𝜖

Result: Optimal 𝜔, 𝜃
1 Initialize DeepMaQ-Net with random weights 𝜔 , the lag weight

𝜔− = 𝜔 , replay memory 𝐃 ;
2 Construct SSM, pre-train DeepSSM-Net and expand 𝐗;
3 for episode = 1, M do
4 Select a random image 𝐼𝑖;
5 Initialise sequences {𝑥𝑗 |𝑗∈𝑖} with random landmarks, state

{𝑠[0]𝑗 |𝑗∈𝑖} according to 𝑥𝑗 ;
6 for t = 1, T do
7 If agent {𝑗|𝑗∈𝑖} is not terminated, performs 𝑎[𝑡]𝑗

according to DeepMaQ-Net with probability 1 − 𝜖,
otherwise selects a random action;

8 Get 𝑥[𝑡+1]𝑗 , 𝑟[𝑡]𝑗 , 𝑠[𝑡+1]𝑗 and store transition
(𝑠[𝑡]𝑗 , 𝑎[𝑡]𝑗 , 𝑟[𝑡]𝑗 , 𝑠[𝑡+1]𝑗 ) in 𝐃;

9 Sample random batch of transitions from 𝐃, perform a
gradient descent step on Eq. (2) with respect to
DeepMaQ-Net parameters 𝜔;

10 Terminate agent {𝑗|𝑗∈𝑖} if it finds target, oscillates or
reaches max steps, break when all agents are
terminated;

1 end
2 Every 𝑐1 steps, reset 𝜔− = 𝜔 and update 𝜖;
3 Every 𝑐2 steps, test DeepMaQ-Net with {𝐼𝑖𝑐} from training

set, get predictions {�̂�𝑖} and store them in 𝐗;
4 Sample random batch from 𝐗, perform a gradient descent

step on Eq. (4) with respect to DeepSSM-Net parameters 𝜃;
5 end

Finally, these generated samples can be added to 𝐗 for the joint training
of DeepMaQ-Net and DeepSSM-Net.

As Alg. 1 shows, in the joint training the outputs of DeepMaQ-Net,
which are inputs of DeepSSM-Net, are also samples for training the
latter network. Hence, they are further included into the library 𝐗 for
batch-based random sampling. Note that in the joint training, we use
Eq. (4) as the unsupervised loss function for DeepSSM-Net.

3.3.2. Test
In the test stage, DeepMaQ-Net and DeepSSM-Net work in an in-

terleaving and collaborative fashion, as the pseudo code in Alg. 2
illustrates. After initialization of the agents, DeepMaQ-Net navigates all
the agents with the actions predicted from the network, accordingly
to the similar rules in the training stage. After the navigation ends,
DeepSSM-Net then regularizes the set of predicted landmarks iteratively
until the optimal solution of landmark positions are achieved or max-
imal number of subiteration steps (𝑇 ′) is met. The resulting positions
of landmarks are then fed into DeepMaQ-Net as the initial states of all
the agents in DeepMaQ-Net for new round navigation. This interleaving
application of DeepMaQ-Net and DeepSSM-Net last until the detection
results converge or the iteration meets the maximal steps.

4. Experiment

4.1. Incomplete image scenarios

The proposed SGMaRL was evaluated in the following scenarios
where incomplete images or labels could be encountered in either
6

training or test stage, as illustrated in Fig. 1.
Algorithm 2: Test stage of SGMaRL
Data: Test image set {𝐼𝑖|𝑖=1,⋯,𝑁 ′ }, number of test images 𝑁 ′,

index of all target landmarks  , budget of DeepMaQ 𝑇 ,
maximum number of subiterations with DeepSSM 𝑇 ′,
maximum number of iterations 𝑀 ′

Result: Landmarks prediction {𝑋𝑝𝑟𝑒𝑑
𝑖 |𝑖=1,⋯,𝑁 ′ }

1 Select image 𝐼𝑖 from {𝐼𝑖|𝑖=1,⋯,𝑁 ′ };
2 for iteration = 1, M’ do
3 Initialise sequence {𝑥𝑗 |𝑗∈ } with random landmarks if

iteration = 1, otherwise initialise {𝑥𝑗 |𝑗∈ } with 𝑋𝑝𝑟𝑒𝑑
𝑖 ;

4 for t = 1,T do
5 If agent {𝑗|𝑗∈ } is not terminated, performs 𝑎[𝑡]𝑗

according to DeepMaQ-Net ,moves from 𝑥[𝑡]𝑗 to 𝑥[𝑡+1]𝑗 ;
6 Terminate agent {𝑗|𝑗∈ } if it oscillates or reaches max

steps, update 𝑥𝑗 with 𝑥[𝑡+1]𝑗 , break when all agents are
terminated;

7 end
8 for t = 1,T’ do
9 Set 𝛷 = ∅;
10 Add {𝑗|𝑗∈ } to 𝛷 if 𝑥𝑗 is judged to be corrected

according to DeepSSM-Net, break if 𝛷 = ∅;
11 Calculate alternative landmarks {𝑥𝑗 |𝑗∈ } with

DeepSSM-Net;
12 Update {𝑥𝑗 |𝑗∈𝛷} with {𝑥𝑗 |𝑗∈𝛷} if 𝑥𝑗 is better than 𝑥𝑗

according to DeepSSM-Net;
3 end
4 Update 𝑋𝑝𝑟𝑒𝑑

𝑖 with {𝑥𝑗 |𝑗∈ }, break if 𝑋𝑝𝑟𝑒𝑑
𝑖 is convergence;

5 end

• (Baseline) Train: 𝐼𝑐 + 𝐿𝑐 , Target: 𝐼𝑐 → 𝐿𝑐 . The training set
consists of complete images with complete labels, and the task
is to predict complete labels on complete images.

• (Scenario I) Train: 𝐼 𝑖𝑛𝑐 + 𝐿𝑖𝑛𝑐 , Target: 𝐼𝑐 → 𝐿𝑐 . The training
set consists of incomplete images with incomplete labels, and the
task is to predict complete labels on complete images.

• (Scenario II) Train: 𝐼𝑐 + 𝐿𝑖𝑛𝑐 , Target: 𝐼𝑐 → 𝐿𝑐 . The training set
consists of complete images with incomplete labels, and the task
is to predict complete labels on complete images.

• (Scenario III) Train: 𝐼𝑐+𝐿𝑐 , Target: 𝐼 𝑖𝑛𝑐 → 𝐿𝑖𝑛𝑐 . The training set
consists of complete images with complete labels, and the task is
to predict incomplete labels on incomplete images.

• (Scenario IV) Train: 𝐼𝑐 +𝐿𝑐 , Target: 𝐼 𝑖𝑛𝑐 → 𝐿𝑐 . The training set
consists of complete images with complete labels, and the task is
to predict complete labels on incomplete images.

For a given image, the missing landmarks are denoted as com-
plementary label (𝐿𝑐−𝑖𝑛𝑐). Noted that for complete images (𝐼𝑐), it is
possible that all landmarks are available and 𝐿𝑐−𝑖𝑛𝑐 = ∅. But in some
special cases, some landmarks may be absent, as shown in Fig. 7(a).
For incomplete images (𝐼 𝑖𝑛𝑐), 𝐿𝑐−𝑖𝑛𝑐 ≠ ∅. The landmarks near the edge
of cropped images and those outsides belong to 𝐿𝑐−𝑖𝑛𝑐 (see green points
in Fig. 3(a)).

4.2. Dataset

We used four datasets to validate the proposed method in the
scenarios mentioned above. The four datasets include (1) the whole-
body dual energy X-ray absorptiometry (DXA) images, (2) the cardiac
MRI images, (3) the whole-head CT images and (4) the half-head CT
images. Appropriate dataset was chosen for each scenario according
to clinical practice and the landmarks used in the experiment are of
clinical significance.
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Fig. 3. Examples from the body dataset used in our experiments. (a), (b) and (c) represent training images while (d), (e) and (f) represent test images. The dots (∙) represent
landmarks known and the crosses (✕) represent 𝐿𝑐−𝑖𝑛𝑐 .
The whole-body DXA dataset consists of 99 DXA original sam-
ples, provided by Zhongshan Hospital affiliated to Fudan University,
Shanghai, China (Gao et al., 2010). The participants from Shanghai
Changfeng Study were scanned over the whole body with lunar iDXA
produced by GE company. All these data were converted into images of
JPG format with in-plane resolution of 3.0375 mm × 2.4001 mm. Each
sample was labeled with 40 contour keypoints by experts, as shown
in Fig. 3(d). These landmarks can be used to describe the geometric
shape and build body shape features of each individual (Shepherd et al.,
2017). The heights of the images in this dataset are large, so the dataset
was used to verify whether SgMaRL can handle the complex changes
in missing proportions in Scenario I.

The cardiac MRI dataset consists of 45 LGE CMR sequences, col-
lected from Shanghai Renji hospital (Zhuang, 2016, 2019; Zhuang
et al., 2022). Each sequence contains 10 to 18 slices with in-plane
resolution of 1 mm × 1 mm, covering the main body of the ventricles.
All 3D volumes were sliced and cropped to be 2D images with size of
256 × 256 in pixels. The segmentation ground truth for left ventricle
(LV), right ventricle (RV) and myocardium (Myo) were provided by
experts. Segmentation labels on each image were pre-processed to gen-
erate 33 landmarks for model training, and at the inference stage the
predicted landmarks would be transformed to deliver the segmentation
output. One can refer to Sec. 2.1 in supplementary material for the
details of transformation between segmentation and landmarks. The
landmarks on the contour of the target organ can guide follow-up
segmentation work (Bhalodia et al., 2018). Images of this dataset have
complex shape variability, so it was used to verify whether SgMaRL can
preserve difficult shapes in Scenario II.

The whole-head CT dataset has 54 whole-head CT images, pro-
vided by Huashan Hospital affiliated to Fudan University, Shanghai,
China (Qian et al., 2022). Each volume was manually labeled by experts
with 25 anatomical skull landmarks, which located on the surface of
upper-half head, as shown in Fig. 9(a). These landmarks can be used to
investigate the genetic basis with morphology (Qian et al., 2022).

The half-head CT dataset consists of 41 upper-half head CT vol-
umes from the Northern Han Chinese cohort, which was provided
by Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences. The number of landmarks in these volumes varies from 14
to 19 according to the position of intersecting surface. These volumes
have much larger sample interval and lower resolution than samples
from the whole-head dataset, as shown in Fig. 9(a) and (b). All of these
volumes were reconstructed into an isotropic spacing of 1 mm along
all three axes. Both whole-head dataset and half-head dataset are head
CT scans. However, they have different FOVs and sample intervals.
Thus we designed a comparison experiment based on these datasets in
scenario III and IV.

4.3. Implementation details

Both DeepMaQ and DeepSSM were implemented on an NVIDIA
GTX 1080Ti GPU in most experiments. However, both of them were
7

implemented on an Intel Core i7-5700HQ CPU during test phrase to
compare inference time with other methods. For DeepMaQ, we adopted
oscillation property, which means if an agent passes one location for
several times, it should be terminated. If the agent reaches the max
steps, it would also be terminated. Note a terminated agent has reached
its limit with given start position, but it is not guaranteed to find
the target. The reward was set to be −100 to punish the agent when
it moves across the border. The experience replay memory size, the
discount factor 𝛾 and the time lag term were set as 105, 0.9 and 4,
respectively. For 2D and 3D networks of DeepMaQ, the sizes of input
images were 80 × 80 and 30 × 30 × 30, respectively. The batch size was
48 for the former and 32 for the latter. Max steps for every agent was
200 for the former and 500 for the latter. DeepMaQ took 24–36 h and
48–72 h for training 2D and 3D models, respectively. For DeepSSM, we
used complete labels for the construction of SSM and pre-training. The
maximum number of iterations 𝑀 ′ (see in Alg. 2) for test process was
5. The pre-training time of DeepSSM was around an hour for both 2D
and 3D models, respectively.

4.4. Studies of scenario I using whole-body DXA

𝐃𝐚𝐭𝐚𝐩𝐫𝐞𝐩𝐚𝐫𝐚𝐭𝐢𝐨𝐧 ∶ The body dataset was randomly divided into
40 and 59 images for training and test, respectively. Each image in
the training set was cropped horizontally with a predefined missing
proportion (𝑚𝑝) 𝑥%, which indicates that 𝑥% image area is randomly
removed, and the height of cropped image is 1−𝑥% of the original one.
To guarantee every agent learns the information of its corresponding
landmark, each landmark index should be visited for at least once. Ex-
amples can be found in Fig. 3(a), (b) and (c). To evaluate our model in
Scenario I, the experiments were conducted in two settings: (1) Train:
𝐼 𝑖𝑛𝑐 + 𝐿𝑖𝑛𝑐 , Target: 𝐼𝑐 → 𝐿𝑐 . All images in the test set were complete,
as shown in Fig. 3(d). (2) Train: 𝐼 𝑖𝑛𝑐 + 𝐿𝑖𝑛𝑐 , Target: 𝐼 𝑖𝑛𝑐 → 𝐿𝑖𝑛𝑐 . For
training data, 𝑚𝑝 was set to 0%, 20%, 40%, 60% and 80%, respectively,
while for test, it was set to 20% and 40% (see Fig. 3(e) and (f)). In
the following, we notated the missing proportion of training images
and test images as 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 and 𝑚𝑝𝑡𝑒𝑠𝑡, respectively. For comparisons,
we also implemented (1) DeepMaQ, (2) SGMarL (T), a framework
similar to SGMarL, replacing DeepSSM by the traditional SSM, and
(3) ResNet, a ResNet-based landmark detection method (Terada et al.,
2018). Euclidean distance was used as a distance metric and average
distance error (ADE) was used to measure the evaluation accuracy of
landmark detection.

𝐑𝐞𝐬𝐮𝐥𝐭𝐬 ∶ From Table 2, one can see that SGMaRL performed well
with training or test data being either complete or incomplete. When
testing on complete images, SGMaRL achieved 2.29 cm of ADE when
𝑚𝑝𝑡𝑟𝑎𝑖𝑛 = 80%, which was even better than the result of ResNet trained
with complete images. When testing on incomplete images, ResNet
almost failed in all settings. In contrast, when training with 𝑚𝑝𝑡𝑟𝑎𝑖𝑛

being 80%, SGMaRL could still achieved 2.95 cm and 5.06 cm with
𝑚𝑝𝑡𝑒𝑠𝑡 = 20% and 𝑚𝑝𝑡𝑒𝑠𝑡 = 40%, respectively. Table 2 also shows that
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Table 2
Comparative results between DeepMaQ and SGMaRL with different 𝑚𝑝. SGMaRL(T), ResNet with 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 = 0% was also included. ADE are in 𝑐𝑚. Note that when 𝑚𝑝𝑡𝑒𝑠𝑡 = 40%,
SGMaRL(T) failed with all 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 settings, and thus corresponding results were not included.
𝑚𝑝𝑡𝑟𝑎𝑖𝑛 𝑚𝑝𝑡𝑒𝑠𝑡

0% (𝐼 𝑐 ) 20% 40%

DeepMaQ SGMaRL SGMaRL(T) ResNet DeepMaQ SGMaRL SGMaRL(T) ResNet DeepMaQ SGMaRL ResNet

0% (𝐼 𝑐 ) 1.12 ± 0.336 1.10 ± 0.281 1.09 ± 0.251 2.62 ± 1.24 1.24 ± 0.403 1.17 ± 0.311 1.17 ± 0.255 14.6 ± 9.40 1.36 ± 0.548 1.35 ± 0.532 13.9 ± 8.03
20% 1.10 ± 0.274 1.08 ± 0.244 1.07 ± 0.249 N/A 1.20 ± 0.350 1.18 ± 0.324 1.18 ± 0.319 N/A 1.27 ± 0.415 1.26 ± 0.407 N/A
40% 1.38 ± 0.593 1.30 ± 0.339 1.27 ± 0.341 N/A 1.25 ± 0.365 1.22 ± 0.316 1.22 ± 0.310 N/A 1.28 ± 0.353 1.27 ± 0.336 N/A
60% 7.06 ± 3.05 1.33 ± 0.328 Fail N/A 5.00 ± 4.15 1.48 ± 0.469 Fail N/A 2.17 ± 1.52 1.90 ± 1.23 N/A
80% 27.1 ± 3.79 2.29 ± 0.703 Fail N/A 21.0 ± 3.62 2.95 ± 1.72 Fail N/A 14.3 ± 4.08 5.06 ± 2.05 N/A
Fig. 4. Comparison between DeepMaQ and SGMaRL with different 𝑚𝑝. Predictions of ResNet with 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 = 0% were used as baselines.
Fig. 5. Comparison before and after DeepSSM during iterations of SGMaRL with 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 = 80%.
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hen 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 ≥ 60% or 𝑚𝑝𝑡𝑒𝑠𝑡 = 40%, SGMaRL(T) failed because the
raditional SSM cannot converge, while DeepSSM still worked. In the
uccessful settings (𝑚𝑝𝑡𝑟𝑎𝑖𝑛 ≤ 40% and 𝑚𝑝𝑡𝑒𝑠𝑡 ≤ 40%), SGMaRL was
lightly worse than SGMaRL(T) with the largest gap being only 0.03 cm.

For better illustration, we further visualized these results in Fig. 4. It
hows that DeepMaQ and SGMaRL can both achieve acceptable results
hen 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 is small (e.g. 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 ≤ 40%). Moreover, when 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 = 80%,
eepMaQ failed while SGMaRL still worked. As shown in Fig. 4(a),
hen testing on complete images, there was no significant difference
etween predictions of DeepMaQ with 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 = 0% and 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 =
0% (p=0.733). When 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 was less than 40%, DeepSSM could only
eliver marginal assistance, and ADE of both DeepMaQ and SGMaRL
aried in a small range from 1.08 cm to 1.38 cm. However, when
𝑝𝑡𝑟𝑎𝑖𝑛 rose from 60% to 80%, ADE of DeepMaQ increased largely from
.06 cm to 27.1 cm. On the contrast, ADE of SGMaRL only increased
lightly from 1.33 cm to 2.29 cm, thanks to the prior shape knowl-
dge introduced by DeepSSM. Testing on incomplete images showed a
imilar tendency (see Fig. 4(b) and (c)).

To show how DeepSSM helps during the test of SGMaRL, we com-
ared the predictions of SGMaRL before and after DeepSSM module in
ach iteration in Fig. 5. As shown in Fig. 5(b), before using DeepSSM,
8

GMaRL kept descending as the number of iterations increased. Be-
ides, ADE of SGMaRL became smaller after adding DeepSSM in each
teration. We conclude that DeepSSM can improve predictions both in
ach iteration and between iterations of SGMaRL in general. Fig. 6
urther provides visualization results. The predictions far from gold
tandards (GD) are denoted as abnormal predictions. Abnormal predic-
ions occurred at the beginning and affected the detection accuracy.
oreover, as shown in Table 2 and Fig. 5, most abnormal predictions
ere improved, with the number of iterations increasing. This is prob-
bly because DeepSSM provided sufficient shape prior information for
andmark detection. Besides, as shown in Table 2, when 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 was

80%, ADE of SGMaRL was 5.06 cm with 𝑚𝑝𝑡𝑒𝑠𝑡 = 40%, which was much
worse than 2.29 cm and 2.95 cm with 𝑚𝑝𝑡𝑒𝑠𝑡 = 0% and 𝑚𝑝𝑡𝑒𝑠𝑡 = 20%,
respectively. Additionally, when 𝑚𝑝𝑡𝑒𝑠𝑡 = 40%, Fig. 5(c) shows larger
variance and slower descent of performance during iterations, com-
paring to 𝑚𝑝𝑡𝑒𝑠𝑡 = 0% and 𝑚𝑝𝑡𝑒𝑠𝑡 = 20%. It is probably because larger
𝑚𝑝𝑡𝑒𝑠𝑡 with more 𝐿𝑐−𝑖𝑛𝑐 on test images could suppress the advantages
of DeepSSM.

4.5. Studies of scenario II using cardiac MRI

𝐃𝐚𝐭𝐚 𝐩𝐫𝐞𝐩𝐚𝐫𝐚𝐭𝐢𝐨𝐧 ∶ The aim was to predict all labels (LV, RV and
Myo) for complete images in test set. The final predicted labels were



Medical Image Analysis 89 (2023) 102875K. Wan et al.
Fig. 6. The visualization of predictions before and after DeepSSM during iterations of SGMaRL with 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 = 80%, 𝑚𝑝𝑡𝑒𝑠𝑡 = 0%. The dots (∙) represent GD landmarks. The triangles
(▴) represent predictions of landmarks which are close to GD while the crosses (✕) represent abnormal predictions.
Fig. 7. Examples from the cardiac dataset used in our experiments. (a) and (b)
represent training images while (c) represent test images. RV, LV and Myo are labeled
in blue, orange and yellow, respectively. The dots (∙) represent landmarks known and
the crosses (✕) represent the 𝐿𝑐−𝑖𝑛𝑐 .

generated by DeepSSM based on the output of SGMaRL. For compari-
son, the experiments were conducted in two settings: (1) Train: 𝐼𝑐+𝐿𝑐 ,
Target: 𝐼𝑐 → 𝐿𝑐 . The cardiac dataset was randomly divided into 20
and 25 samples for training and test, respectively. All training samples
have labels of LV, Myo and RV. ResNet and UNet were selected as
landmark detection method and segmentation method for comparison,
respectively. ResNet delivered the landmarks to segmentation output
via post-processing, while UNet outputted segmentation prediction di-
rectly. (2) Train: 𝐼𝑐 + 𝐿𝑖𝑛𝑐 , Target: 𝐼𝑐 → 𝐿𝑐 . All training images
were complete. However, half of the training images were labeled with
only LV and Myo (see Fig. 7(b)) while the others were labeled with
only RV (see Fig. 7(a)). Because training with incomplete labels was
more challenging, a little more samples were used in the training set.
The cardiac dataset was randomly divided into 30 and 15 samples for
training and test, respectively. Dice score, average symmetric surface
distance (ASD), Hausdorff distance (HD) and ADE were used as metrics
for the evaluation.

𝐑𝐞𝐬𝐮𝐥𝐭𝐬 ∶ Table 3 shows that SGMaRL can successfully predict land-
marks and segmentation when training with complete or incomplete
labels. For landmark detection, SGMaRL could reach 7.40 mm of ADE
with complete labels, while ResNet reached 7.67 mm. With incom-
plete labels, SGMaRL could still achieve 8.19 mm of ADE. For seg-
mentation, SGMaRL also had advantage over ResNet for most met-
rics, but there was no significant difference between HD of RV (p =
0.807). It also had great advantage over UNet in terms of HD. SGMaRL
could reach 16.2 mm in terms of HD for RV, while UNet only could
reach 54.3 mm. Note that UNet obtained better Dice scores and ASD
compared to SGMaRL. This is because the segmentation obtained by
9

SGMaRL was converted from predicted landmarks, which may intro-
duce additional errors compared to the method that directly predicted
pixel-wise segmentation.

To show the advantages of SGMaRL in preserving shape, we com-
pared results of different methods and visualized them in Fig. 8. It
shows that SGMaRL could predict smooth and accurate shape. In
contrast, without structural information provided by DeepSSM, the
prediction of DeepMaQ had irregular shape, due to the existence of
abnormal landmarks prediction. The prediction of UNet might have
an irregular boundary and many noises, which caused large HD (see
Table 3). ResNet could predict a reasonable shape, but the prediction
might be sometimes inaccuracy, which caused low Dice scores. Fig. 8
also shows SGMaRL can deal with variety of shapes effectively. In
different slices, the shape of RV expressed complex variation. With the
help of DeepSSM, SGMaRL can correct the abnormal landmarks and
make prediction reasonable.

Table 3 further shows SGMaRL has additional advantages when
training with incomplete labels. For example, the Dice score of RV rises
from 0.780 to 0.825 after adding the DeepSSM. Besides, HD averagely
decreased by 3.13 mm and 4.47 mm when training with complete
and incomplete labels, respectively. It is possibly because training
with incomplete labels could be quite challenging for DeepMaQ. With
worse initial prediction, DeepSSM can improve HD more effectively.
Moreover, SGMaRL has better segmentation performance in terms of
contours than filled regions. For example, when training with complete
labels, HD of all areas were improved with the assistance of DeepSSM.
However, the Dice score of LV was 0.898 with DeepMaQ, while it
dropped 0.023 with SGMaRL. We concluded that DeepSSM can improve
HD and ADE effectively, but its influence on Dice score and ASD still
needs further research.

4.6. Studies of scenario III and IV using head CT

𝐃𝐚𝐭𝐚 𝐩𝐫𝐞𝐩𝐚𝐫𝐚𝐭𝐢𝐨𝐧 ∶ We evaluated our methods in Scenario III and
IV and conducted the experiments in two settings: (1) Train: 𝐼𝑐 + 𝐿𝑐 ,
Target: 𝐼 𝑖𝑛𝑐 → 𝐿𝑖𝑛𝑐 . We randomly selected 30 whole-head images
from the whole-head dataset for training, while obtained 41 half-head
images from the half-head dataset for test. The test set was denoted
as Real-Domain, as shown in Fig. 9(b). The number of landmarks
labeled by experts on image from Real-Domain does not exceed 19.
(2) Train: 𝐼𝑐 + 𝐿𝑐 , Target: 𝐼 𝑖𝑛𝑐 → 𝐿𝑐 . The training set is the same as
setting (1), while for the test set, other 24 whole-head images were
half cut as simulated upper-half head images. This test set was denoted
as Sim-Domain, as shown in Fig. 9(c). To ensure the high similarity
between Sim-Domain and Real-Domain, we varied the landmarks in
training data of Sim-Domain from 14 to 19 via controlling the position
of intersecting surface when half cutting the whole images. For setting
(1), 𝐿𝑖𝑛𝑐 (landmarks labeled by expert) were considered for evaluation.
For setting (2), we predicted all existed landmarks, which were divided
into 𝐿𝑖𝑛𝑐 (landmarks inside of cropped images) and 𝐿𝑐−𝑖𝑛𝑐 (landmarks
near the edge of cropped images or those outsides). Landmark detec-
tion methods based on multi-atlas registration (MAS) and single-atlas
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Table 3
Comparison between ResNet, UNet, DeepMaQ and SGMaRL with different experiment settings. The best average values have been shown in bold. The down arrow (↓) denotes
smaller is better, while the up arrow (↑) denotes larger is better.

Method LV Myo RV ADE (mm) (↓)

Dice (↑) ASD (mm) (↓) HD (mm) (↓) Dice (↑) ASD (mm) (↓) HD (mm) (↓) Dice (↑) ASD (mm) (↓) HD (mm) (↓)

Train: 𝐼 𝑐 + 𝐿𝑐 Target: 𝐼 𝑐 → 𝐿𝑐

ResNet 0.835 ± 0.062 3.70 ± 1.37 13.5 ± 3.65 0.645 ± 0.092 3.77 ± 1.35 13.6 ± 4.23 0.774 ± 0.074 3.93 ± 1.23 16.1 ± 3.02 7.67± 3.46
UNet 0.910 ± 0.045 2.49 ± 1.35 29.5 ± 16.1 0.816 ± 0.067 2.11 ± 1.03 13.4 ± 10.0 0.845 ± 0.197 3.69 ± 2.75 54.3 ± 24.8 N/A
DeepMaQ 0.898 ± 0.045 2.59 ± 0.851 15.9 ± 8.49 0.754 ± 0.056 2.26 ± 0.783 14.9 ± 10.5 0.833 ± 0.085 2.91 ± 1.23 19.0 ± 7.51 7.78 ± 4.16
SGMaRL 0.875 ± 0.045 3.09 ± 0.732 12.5 ± 5.84 0.702 ± 0.064 2.92 ± 0.888 11.7 ± 6.94 0.778 ± 0.082 3.72 ± 1.23 16.2 ± 5.67 7.40 ± 4.03

Train: 𝐼 𝑐 + 𝐿𝑖𝑛𝑐 Target: 𝐼 𝑐 → 𝐿𝑐

DeepMaQ 0.840 ± 0.074 3.82 ± 1.47 18.1 ± 7.57 0.650 ± 0.100 5.29 ± 1.51 16.2 ± 6.77 0.780 ± 0.073 3.78 ± 1.20 17.3 ± 7.60 8.66 ± 4.79
SGMaRL 0.861 ± 0.065 3.04 ± 1.30 12.1 ± 5.43 0.693 ± 0.091 3.12 ± 1.32 12.0 ± 5.38 0.825 ± 0.086 3.89 ± 1.35 14.1 ± 4.53 8.19 ± 4.65
Fig. 8. Comparison of prediction results of ResNet, UNet, DeepMaQ and SGMaRL with GD in three typical slices. RV, LV and Myo are labeled in blue, orange and yellow,
respectively. The triangles (▴) represent predictions of landmarks which are close to GD while the crosses (✕) represent abnormal predictions.
Table 4
Comparative results MAS, SAS, DeepMaQ and SGMaRL with different types of
landmarks in different domains. ADE are in mm.

Method Real-Domain Sim-Domain Inference time

𝐿𝑖𝑛𝑐 𝐿𝑖𝑛𝑐 𝐿𝑐−𝑖𝑛𝑐

MAS 6.10 ± 1.59 2.87 ± 0.782 6.80 ± 0.867 35 min 30 s
SAS 7.36 ± 1.50 5.58 ± 1.97 21.8 ± 10.1 1 min 11 s
DeepMaQ 8.99 ± 2.84 5.12 ± 1.85 11.4 ± 7.18 4 min
SGMaRL 7.25 ± 1.11 5.01 ± 1.83 6.84 ± 4.82 4 min 1 s

Fig. 9. Examples from the head datasets used in our experiments. (a) represents
training images while (b) and (c) represent test images. The dots (∙) represent landmarks
known. Note that all images in this figure are 2D slices of 3D images from front view,
and landmarks on them are mapped from 3D space. 3D head images are used in our
experiment.
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registration (SAS) from Zhuang et al. (2010) were used for comparison.
All methods implemented on an Intel Core i7-5700HQ CPU. ADE was
used for evaluation of landmarks detection accuracy.

𝐑𝐞𝐬𝐮𝐥𝐭𝐬 ∶ As shown in Table 4, our proposed method can success-
fully find different types of landmarks in both domains. The result of
SGMaRL was better than SAS but worse than MAS. For example, ADE
of 𝐿𝑖𝑛𝑐 with SGMaRL was 7.25 mm in Real-Domain, which was smaller
than 7.36 mm by SAS, but larger than 6.10 mm by MAS. However,
SGMaRL consumed far less time than MAS. MAS took more than 35 min
while SGMaRL only took about 4 min on CPU with one case.

For most methods, the prediction of 𝐿𝑖𝑛𝑐 in Real-Domain was harder
than 𝐿𝑖𝑛𝑐 in Sim-Domain, while 𝐿𝑐−𝑖𝑛𝑐 in Sim-Domain was the most
difficult. For example, DeepMaQ achieved ADE of 5.12 mm, 8.99 mm
and 11.4 mm on 𝐿𝑖𝑛𝑐 in Sim-Domain, 𝐿𝑖𝑛𝑐 in Real-Domain and 𝐿𝑐−𝑖𝑛𝑐 in
Sim-Domain, respectively. Fig. 9 shows Real-domain test set has obvi-
ous appearance gap with the training images and poorer image quality,
which increases the difficulty for detection task. For 𝐿𝑐−𝑖𝑛𝑐 , it could be
only inferred with structural information since their local appearance
information was almost missing. With the help of DeepSSM, ADE of
SGMaRL decreased by 0.11 mm, 1.74 mm, 4.56 mm in these landmarks,
respectively. We concluded that DeepMaQ has worse prediction when
target image has poor appearance information.

To investigate the robustness of the proposed method, we further
divided 𝐿𝑖𝑛𝑐 and 𝐿𝑐−𝑖𝑛𝑐 in Sim-domain into four categories, i.e., Easy,
Normal, Hard and Extremely Hard, according to their detection difficul-
ties and compared the performance on them. Fig. 10(a) illustrates the
classification of the landmarks, and (b) shows the performance of the
compared methods in the four categories. One can see that from Easy
to Hard, SGMaRL had a stable performance, while ADE of other three
methods increased. When tested on Extremely Hard samples, DeepMaQ
and SAS performed poor, while the prediction error of SGMaRL only
increased slightly, when compared to the results on Hard samples. The
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Fig. 10. The right graph shows comparative result of DeepMaQ, SGMaRL, MAS, and SAS on landmarks with different difficulty levels in Sim-Domain. The size of bubble represents
the standard deviation. The left graph shows how different difficulty levels of landmarks located on a head image. Extremely hard represents landmarks which belong to 𝐿𝑐−𝑖𝑛𝑐

on every image, while Hard represents the landmarks which belong to 𝐿𝑐−𝑖𝑛𝑐 on this image but belong to 𝐿𝑖𝑛𝑐 on other images. The rest existent landmarks were sub-divided into
Easy and Normal according to inter-observer errors.
results show that SGMaRL has great robustness on landmarks with
different levels of detection difficulty.

5. Conclusion and discussion

In this paper, we proposed a shape-guided multi-agent RL algorithm
for landmark detection with incomplete images. The algorithm con-
tains two modules: DeepMaQ and DeepSSM. The former can detect
multiple landmarks as targets synchronously with incomplete images
for training; the latter can correct abnormal predictions and provide
more accurate start positions for DeepMaQ. By combining them, the
proposed method can exploit both local image information and shape
information effectively, which is fast and robust for solving the general
problem of multiple landmark detection with challenging incomplete
images. Experiments conducted on different datasets show that our
methods can perform landmark detection in different incomplete image
problems and complex scenarios.

We have investigated the performance of our methods upon differ-
ent 𝑚𝑝 in both training and test set. The results show that DeepSSM
can achieve greater improvement when 𝑚𝑝𝑡𝑟𝑎𝑖𝑛 increases. We also have
carried out comparison study of the prediction errors of our methods
with different types of landmarks. The results show that (1) with
prior shape information from DeepSSM, SGMaRL can even predict the
landmarks outside the target image; (2) SGMaRL is robust on landmarks
with different detection difficulties. Besides, we have extended our
methods to segmentation task. The results show that DeepSSM can
ensure the segmentation prediction of SGMaRL have a smooth shape
based on landmarks as partial labels for training.

Though DeepSSM can provide great help, it can be explored for
further improvement. As mentioned before, the assistance of DeepSSM
became weaker as 𝑚𝑝𝑡𝑒𝑠𝑡 increasing. The details of DeepSSM are to be
improved and refined to find abnormal landmarks more accurately,
especially when 𝑚𝑝𝑡𝑒𝑠𝑡 is large. When performing segmentation, Dice
score and ASD became worse after adding DeepSSM with complete
labels for training. We will investigate the influence of DeepSSM on
different metrics and hope modified DeepSSM can improve all metrics
in different scenarios. Besides, learning the search strategy and localiza-
tion in two stages may increase the possibility of abnormal predictions.
Thus, it will be interesting to investigate a more elegant way to combine
DeepMaQ with prior shape information. For this purpose, a new multi-
agent RL sharing structural information with each agent will be studied
in the future.
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