Variant "REM2:c.287G>C(p.Gly96Ala)"
Search results: 2 records
Variant information
Gene:
Variant:
REM2:c.287G>C(p.Gly96Ala) 
Alias:
REM2:rs8014119 
dbSNP ID:
GWAS trait:
no data 
Modifier statisitcs
Record:
Disorder:
Reference:
Effect type:
Expressivity(2)  
Modifier effect:
Altered severity(1) ,Risk factor(1)  
Details:
  • Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    Pedigree analysis 
    Effect:
    The polymorphism is associated with the disease severity.
    Alias in reference:
    REM2:rs8014119
    Reference:
    Title:
    Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity.
    Species studied:
    Human
    Abstract:
    Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity observed in some LQT2 families. Here, we identified contributors to variable expressivity in an LQT2 family by using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and whole exome sequencing in a synergistic manner. We found that iPSC-CMs recapitulated the clinical genotype-phenotype discordance in vitro. Importantly, iPSC-CMs derived from the severely affected LQT2 patients displayed prolonged action potentials compared with cells from mildly affected first-degree relatives. The iPSC-CMs derived from all patients with hERG R752W mutation displayed lower IKr amplitude. Interestingly, iPSC-CMs from severely affected mutation-positive individuals exhibited greater L-type Ca2+ current. Whole exome sequencing identified variants of KCNK17 and the GTP-binding protein REM2, providing biologically plausible explanations for this variable expressivity. Genome editing to correct a REM2 variant reversed the enhanced L-type Ca2+ current and prolonged action potential observed in iPSC-CMs from severely affected individuals. Thus, our findings showcase the power of combining complementary physiological and genomic analyses to identify genetic modifiers and potential therapeutic targets of a monogenic disorder. Furthermore, we propose that this strategy can be deployed to unravel myriad confounding pathologies displaying variable expressivity.
  • Target disease:
    Long QT Syndrome (DOID_2843)
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor 
    Evidence:
    From review article 
    Effect:
    Increase risk of cardiac events
    Alias in reference:
    REM2:c.287G>C(p.Gly96Ala)
    Reference:
    Title:
    Modifier genes for sudden cardiac death.
    Species studied:
    Human
    Abstract:
    Genetic conditions, even those associated with identical gene mutations, can present with variable clinical manifestations. One widely accepted explanation for this phenomenon is the existence of genetic factors capable of modifying the consequences of disease-causing mutations (modifier genes). Here, we address the concepts and principles by which genetic factors may be involved in modifying risk for cardiac arrhythmia, then discuss the current knowledge and interpretation of their contribution to clinical heterogeneity. We illustrate these concepts in the context of two important clinical conditions associated with risk for sudden cardiac death including a monogenic disorder (congenital long QT syndrome) in which the impact of modifier genes has been established, and a complex trait (life-threatening arrhythmias in acute myocardial infarction) for which the search for genetic modifiers of arrhythmic risk is more challenging. Advances in understanding the contribution of modifier genes to a higher or lower propensity towards sudden death should improve patient-specific risk stratification and be a major step towards precision medicine.