Variant "B4GALNT2:p.Asn560*"
Search result: 1 record
Variant information
Gene:
Variant:
B4GALNT2:p.Asn560* 
Mouse homolog:
B4galnt2:p.Arg504Gln 
dbSNP ID:
no data 
GWAS trait:
no data 
Modifier statisitcs
Record:
Disorder:
Reference:
Effect type:
Expressivity(1)  
Modifier effect:
Altered prothrombotic predisposition(1)  
Detail:
  • Target disease:
    Abnormal Thrombosis (HP:0001977)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered prothrombotic predisposition 
    Evidence:
    Study on mouse strains 
    Effect:
    R504Q mutation resulting mice exhibit a mild prothrombotic predisposition, very similar to the human phenotype
    Reference:
    Title:
    Identifying novel genetic determinants of hemostatic balance.
    Species studied:
    Mouse
    Abstract:
    Incomplete penetrance and variable expressivity confound the diagnosis and therapy of most inherited thrombotic and hemorrhagic disorders. For many of these diseases, some or most of this variability is determined by genetic modifiers distinct from the primary disease gene itself. Clues toward identifying such modifier genes may come from studying rare Mendelian disorders of hemostasis. Examples include identification of the cause of combined factor V and VIII deficiency as mutations in the ER Golgi intermediate compartment proteins LMAN1 and MCFD2. These proteins form a cargo receptor that facilitates the transport of factors V and VIII, and presumably other proteins, from the ER to the Golgi. A similar positional cloning approach identified ADAMTS-13 as the gene responsible for familial TTP. Along with the work of many other groups, these findings identified VWF proteolysis by ADAMTS-13 as a key regulatory pathway for hemostasis. Recent advances in mouse genetics also provide powerful tools for the identification of novel genes contributing to hemostatic balance. Genetic studies of inbred mouse lines with unusually high and unusually low plasma VWF levels identified polymorphic variation in the expression of a glycosyltransferase gene, Galgt2, as an important determinant of plasma VWF levels in the mouse. Ongoing studies in mice genetically engineered to carry the factor V Leiden mutation may similarly identify novel genes contributing to thrombosis risk in humans.