Variant "BCL11A:c.386-24983T>C"
Search results: 6 records
Variant information
Gene:
Variant:
BCL11A:c.386-24983T>C 
Genomic location:
chr2:60720951(hg19) 
HGVS:
SO Term RefSeq
protein_coding NM_022893.3:c.386-24983T>C
protein_coding NM_018014.3:c.386-24983T>C
protein_coding NM_138559.1:c.386-24983T>C
Alias:
BCL11A:rs4671393 
dbSNP ID:
GWAS trait:
Modifier statisitcs
Record:
Disorder:
Reference:
Effect type:
Expressivity(5) ,Penetrance(1)  
Modifier effect:
Altered HbF production(1) ,Altered fetal hemoglobin (HbF) levels(1) ,Altered incidence(1) ,Altered levels of HbF(1) ,Altered levels of fetalhemoglobin and pain crisis(1) ,Altered severity(1)  
Details:
  • Target disease:
    Sickle Cell Anemia (DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    P=3×10(-8) 
    Effect:
    HbF-associated SNPs associate with pain crisis rate in SCD patients modifying the severity of a monogenic disease.
    Alias in reference:
    BCL11A:c.386-24983T>C
    Reference:
    Title:
    DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease.
    Species studied:
    Human
    Abstract:
    Sickle cell disease (SCD) is a debilitating monogenic blood disorder with a highly variable phenotype characterized by severe pain crises, acute clinical events, and early mortality. Interindividual variation in fetal hemoglobin (HbF) expression is a known and potentially heritable modifier of SCD severity. High HbF levels are correlated with reduced morbidity and mortality. Common single nucleotide polymorphisms (SNPs) at the BCL11A and HBS1L-MYB loci have been implicated previously in HbF level variation in nonanemic European populations. We recently demonstrated an association between a BCL11A SNP and HbF levels in one SCD cohort [Uda M, et al. (2008) Proc Natl Acad Sci USA 105:1620-1625]. Here, we genotyped additional BCL11A SNPs, HBS1L-MYB SNPs, and an SNP upstream of (G)gamma-globin (HBG2; the XmnI polymorphism), in two independent SCD cohorts: the African American Cooperative Study of Sickle Cell Disease (CSSCD) and an SCD cohort from Brazil. We studied the effect of these SNPs on HbF levels and on a measure of SCD-related morbidity (pain crisis rate). We strongly replicated the association between these SNPs and HbF level variation (in the CSSCD, P values range from 0.04 to 2 x 10(-42)). Together, common SNPs at the BCL11A, HBS1L-MYB, and beta-globin (HBB) loci account for >20% of the variation in HbF levels in SCD patients. We also have shown that HbF-associated SNPs associate with pain crisis rate in SCD patients. These results provide a clear example of inherited common sequence variants modifying the severity of a monogenic disease.
  • Target disease:
    Sickle Cell Anemia (DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered levels of fetalhemoglobin and pain crisis 
    Evidence:
    P=3×10(-8) 
    Effect:
    Increased levels of fetal hemoglobin, decreased rate of pain crisis
    Alias in reference:
    BCL11A:c.386-24983T>C
    Reference:
    Title:
    DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease.
    Species studied:
    Human
    Abstract:
    Sickle cell disease (SCD) is a debilitating monogenic blood disorder with a highly variable phenotype characterized by severe pain crises, acute clinical events, and early mortality. Interindividual variation in fetal hemoglobin (HbF) expression is a known and potentially heritable modifier of SCD severity. High HbF levels are correlated with reduced morbidity and mortality. Common single nucleotide polymorphisms (SNPs) at the BCL11A and HBS1L-MYB loci have been implicated previously in HbF level variation in nonanemic European populations. We recently demonstrated an association between a BCL11A SNP and HbF levels in one SCD cohort [Uda M, et al. (2008) Proc Natl Acad Sci USA 105:1620-1625]. Here, we genotyped additional BCL11A SNPs, HBS1L-MYB SNPs, and an SNP upstream of (G)gamma-globin (HBG2; the XmnI polymorphism), in two independent SCD cohorts: the African American Cooperative Study of Sickle Cell Disease (CSSCD) and an SCD cohort from Brazil. We studied the effect of these SNPs on HbF levels and on a measure of SCD-related morbidity (pain crisis rate). We strongly replicated the association between these SNPs and HbF level variation (in the CSSCD, P values range from 0.04 to 2 x 10(-42)). Together, common SNPs at the BCL11A, HBS1L-MYB, and beta-globin (HBB) loci account for >20% of the variation in HbF levels in SCD patients. We also have shown that HbF-associated SNPs associate with pain crisis rate in SCD patients. These results provide a clear example of inherited common sequence variants modifying the severity of a monogenic disease.
  • Target disease:
    Sickle Cell Anemia (DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered HbF production 
    Evidence:
    P=5.15×10(-8) 
    Effect:
    Possible molecular determinants of HbF production
    Alias in reference:
    BCL11A:c.386-24983T>C
    Reference:
    Title:
    Original Research: A case-control genome-wide association study identifies genetic modifiers of fetal hemoglobin in sickle cell disease.
    Species studied:
    Human
    Abstract:
    Sickle cell disease (SCD) is a group of inherited blood disorders that have in common a mutation in the sixth codon of the β-globin (HBB) gene on chromosome 11. However, people with the same genetic mutation display a wide range of clinical phenotypes. Fetal hemoglobin (HbF) expression is an important genetic modifier of SCD complications leading to milder symptoms and improved long-term survival. Therefore, we performed a genome-wide association study (GWAS) using a case-control experimental design in 244 African Americans with SCD to discover genetic factors associated with HbF expression. The case group consisted of subjects with HbF≥8.6% (133 samples) and control group subjects with HbF≤3.1% (111 samples). Our GWAS results replicated SNPs previously identified in an erythroid-specific enhancer region located in the second intron of the BCL11A gene associated with HbF expression. In addition, we identified SNPs in the SPARC, GJC1, EFTUD2 and JAZF1 genes as novel candidates associated with HbF levels. To gain insights into mechanisms of globin gene regulation in the HBB locus, linkage disequilibrium (LD) and haplotype analyses were conducted. We observed strong LD in the low HbF group in contrast to a loss of LD and greater number of haplotypes in the high HbF group. A search of known HBB locus regulatory elements identified SNPs 5' of δ-globin located in an HbF silencing region. In particular, SNP rs4910736 created a binding site for a known transcription repressor GFi1 which is a candidate protein for further investigation. Another HbF-associated SNP, rs2855122 in the cAMP response element upstream of Gγ-globin, was analyzed for functional relevance. Studies performed with siRNA-mediated CREB binding protein (CBP) knockdown in primary erythroid cells demonstrated γ-globin activation and HbF induction, supporting a repressor role for CBP. This study identifies possible molecular determinants of HbF production.
  • Target disease:
    Sickle Cell Anemia (DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered levels of HbF 
    Evidence:
    P<0.001 
    Effect:
    High levels of HbF were primarily influenced by alleles of BCL11A (rs4671393) and HMIP (rs4895441) loci, and to a lesser extent by rs748214 Gγ-globin (HBG2) gene promoter.
    Alias in reference:
    BCL11A:c.386-24983T>C
    Reference:
    Title:
    DNA polymorphisms at BCL11A, HBS1L-MYB and Xmn1-HBG2 site loci associated with fetal hemoglobin levels in sickle cell anemia patients from Northern Brazil.
    Species studied:
    Human
    Abstract:
    Increased levels of fetal hemoglobin (HbF, α2γ2) may reduce sickle cell anemia severity due to its ability to inhibit HbS polymerization and also reduce the mean corpuscular HbS concentration. We have investigated the influence of three known major loci on the HbF trait (HBG2, rs748214; BCL11A, rs4671393; and HBS1L-MYB, rs28384513, rs489544 and rs9399137) and HbF levels in SCA patients from the State of Pará, Northern Brazil. Our results showed that high levels of HbF were primarily influenced by alleles of BCL11A (rs4671393) and HMIP (rs4895441) loci, and to a lesser extent by rs748214 Gγ-globin (HBG2) gene promoter. The SNPs rs4671393 and rs4895441 explained 10% and 9.2%, respectively, of the variation in HbF levels, while 4.1% of trait variation was explained by rs748214. The results can be considered as in accordance with the pattern of ancestry displayed by the SCA patients: 39.6% European, 29.6% African and 30.8% Native American, and reinforce the suggestion that studies of association between genetic modifiers and clinical and laboratory manifestations in Brazil must be controlled by ancestry.
  • Target disease:
    Sickle Cell Anemia (DOID_10923)
    Effect type:
    Penetrance 
    Modifier effect:
    Altered incidence 
    Evidence:
    P=0.018 
    Effect:
    This report highlights the protective effect of the BCL11A polymorphism in this population.
    Alias in reference:
    BCL11A:c.386-24983T>C
    Reference:
    Title:
    Genetic Modifiers of Sickle Cell Disease: A Genotype-Phenotype Relationship Study in a Cohort of 82 Children on Mayotte Island.
    Species studied:
    Human
    Abstract:
    Sickle cell disease presents a great clinical variability that remains largely misunderstood. New disease protective genetic modifiers acting mainly through an increased Hb F level have recently been described. We studied relations between clinical and hematological phenotypes and known sickle cell disease genetic modifiers in patients from Mayotte Island, a remote French territory located in the Indian Ocean. Eighty-two children with sickle cell disease were enrolled; their median age was 5.9 years (range 1-18). Clinical and hematological features of sickle cell disease were retrospectively collected. Genetic studies included determination of β-globin genotypes [Hb SS, Hb S-β(0)-thalassemia (Hb S-β(0)-thal), Hb S-β(+)-thal], β(S)-globin locus haplotype, α-thalassemia (α-thal), and single nucleotide polymorphisms (SNPs) located in quantitative trait loci for Hb F expression (XmnI polymorphism, BCL11A rs4671393 and rs11886868, intergenic region of HBS1L-MYB rs28384513, rs4895441 and rs9399137). Univariate and multivariate analyses were conducted. Twenty-eight percent of the patients had Hb S-β-thal (eight different mutations in 21 patients), 55.0% had the -α(3.7) (rightward) deletion and 88.0% of the homozygous Hb SS patients were carrying a homozygous Bantu haplotype. In the multivariate model, the prognosis role of the SNP BCL11A rs4671393 was confirmed in the studied population showing a significant association with an elevated Hb F level and with a low hospitalization rate. The -α(3.7) deletion, XmnI polymorphism and intergenic region HBS1L-MYB SNPs were not significantly linked to any clinical criteria of severity. This report, the first to describe the main features of children with sickle cell disease on Mayotte Island, highlights the protective effect of the BCL11A polymorphism in this population.
  • Target disease:
    Sickle Cell Anemia (DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered fetal hemoglobin (HbF) levels 
    Evidence:
    P=3.7×10(-37) 
    Effect:
    Fine-mapping of HbF association signals at these loci confirmed seven SNPs with independent effects and increased the explained heritable variation in HbF levels from 38.6% to 49.5%.
    Alias in reference:
    BCL11A:rs4671393
    Reference:
    Title:
    Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation.
    Species studied:
    Human
    Abstract:
    We used resequencing and genotyping in African Americans with sickle cell anemia (SCA) to characterize associations with fetal hemoglobin (HbF) levels at the BCL11A, HBS1L-MYB and β-globin loci. Fine-mapping of HbF association signals at these loci confirmed seven SNPs with independent effects and increased the explained heritable variation in HbF levels from 38.6% to 49.5%. We also identified rare missense variants that causally implicate MYB in HbF production.