Variant "ACE:variant"
Search results: 2 records
Variant information
Gene:
ACE 
Variant:
ACE:variant 
dbSNP ID:
no data 
GWAS trait:
no data 
Modifier statisitcs
Record:
Disorder:
Reference:
Effect type:
Pleiotropy(2)  
Modifier effect:
Altered FEV1 level(1) ,Altered phenotype(1)  
Details:
  • Target disease:
    Cystic fibrosis (DOID_1485)
    Effect type:
    Pleiotropy 
    Modifier effect:
    Altered FEV1 level 
    Evidence:
    From review article 
    Effect:
    Earlier age at which FEV1 decreased to below 50% expected for the DD genotype
    Reference:
    Title:
    Modifier genetics: cystic fibrosis.
    Species studied:
    Human
    Abstract:
    Cystic fibrosis (CF) is the most common lethal autosomal recessive disorder in the Caucasian population, affecting about 30,000 individuals in the United States. The gene responsible for CF, the CF transmembrane conductance regulator (CFTR), was identified 15 years ago. Substantial variation in the many aspects of the CF phenotype among individuals with the same CFTR genotype demonstrates that factors independent of CFTR exert considerable influence on outcome in CF. To date, the majority of published studies investigating the cause of disease variability in CF report associations between candidate genes and some aspect of the CF phenotype. However, a definitive modifier gene for CF remains to be identified. Despite the challenges posed by searches for modifier effects, studies of affected twins and siblings indicate that genetic factors play a substantial role in intestinal manifestations. Identifying the factors contributing to variation in pulmonary disease, the primary cause of mortality, remains a challenge for CF research.
  • Target disease:
    Cystic fibrosis (DOID_1485)
    Effect type:
    Pleiotropy 
    Modifier effect:
    Altered phenotype 
    Evidence:
    From review article 
    Effect:
    Liver disease
    Reference:
    Title:
    Disease-modifying genes and monogenic disorders: experience in cystic fibrosis.
    Species studied:
    Human
    Abstract:
    The mechanisms responsible for the determination of phenotypes are still not well understood; however, it has become apparent that modifier genes must play a considerable role in the phenotypic heterogeneity of Mendelian disorders. Significant advances in genetic technologies and molecular medicine allow huge amounts of information to be generated from individual samples within a reasonable time frame. This review focuses on the role of modifier genes using the example of cystic fibrosis, the most common lethal autosomal recessive disorder in the white population, and discusses the advantages and limitations of candidate gene approaches versus genome-wide association studies. Moreover, the implications of modifier gene research for other monogenic disorders, as well as its significance for diagnostic, prognostic, and therapeutic approaches are summarized. Increasing insight into modifying mechanisms opens up new perspectives, dispelling the idea of genetic disorders being caused by one single gene.