Gene "CYP17A1"
Found 2 records
Gene information
Gene symbol:
CYP17A1
See related:
Ensembl: ENSG00000148795, Gene ID: 1586
Additive variants :
Undetected
Genetic interaction partners
No data
Modifier statisitcs
Record:
Disorder:
Vriant:
Reference:
Effect type:
Expressivity(2)  
Modifier effect:
Risk factor(2)  
Details:
  • Variant 1:
    Gene:
    Genomic location:
    chr10:104597152
    dbSNP ID:
    Alias:
    CYP17A1:c.34T>C
    Target disease:
    Breast Cancer(DOID_1612)
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor 
    Evidence:
    OR=0.44, 95% CI: 0.21; 0.93 
    Effect:
    The BRCA1 Cys39Gly and CYP17A1 -34T>C genetic variations were associated with breast cancer risk.
    Reference:
    Title:
    Genetic Variations, Exposure to Persistent Organic Pollutants and Breast Cancer Risk - A Greenlandic Case-Control Study.
    Species studied:
    Human
    Abstract:
    This study investigated the effects of single nucleotide polymorphisms (SNPs) in xenobiotic and steroid hormone-metabolizing genes in relation to breast cancer risk and explored possible effect modifications on persistent organic pollutants (POPs) and breast cancer associations. The study also assessed effects of Greenlandic BRCA1 founder mutations. Greenlandic Inuit women (77 cases and 84 controls) were included. We determined two founder mutations in BRCA1: Cys39Gly (rs80357164) and 4684delCC, and five SNPs in xenobiotic and oestrogen-metabolizing genes: CYP17A1 -34T>C (rs743572), CYP19A1 *19C>T (rs10046), CYP1A1 Ile462Val (rs1048943), CYP1B Leu432Val (rs1056836) and COMT Val158Met (rs4680). We used chi-square test for comparison of categorical variables between groups. Odds ratio (OR) estimates with 95% confidence interval (95%CI) were obtained using logistic regression models. The variant allele of BRCA1 Cys39Gly increased breast cancer risk (Gly/Cys versus Cys/Cys, OR: 12.2, 95%CI: 1.53; 98.1), and carriers of the variant allele of CYP17A1 -34T>C had reduced risk (CT+CC versus TT, OR: 0.44, 95%CI: 0.21; 0.93). CYP17A1 -34T>C was an effect modifier on the association between perfluoroalkyl acids (PFAAs) and breast cancer risk (∑PFAA, ratio of OR: 0.18, 95%CI: 0.03; 0.97). Non-significant modifying tendencies were seen for the other SNPs on the effect of polychlorinated biphenyls, organochlorine pesticides and PFAAs. In summary, the BRCA1 Cys39Gly and CYP17A1 -34T>C genetic variations were associated with breast cancer risk. Our results indicate that the evaluated genetic variants modify the effects of POP exposure on breast cancer risk; however, further studies are needed to document the data from the relatively small sample size.
  • Variant 2:
    Gene:
    Genomic location:
    chr10:104597152
    dbSNP ID:
    Alias:
    CYP17A1:c.34T>C
    Target disease:
    Gynaecopathia(No data)
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor 
    Evidence:
    From review article 
    Effect:
    Homozygous mutant carriage of SNPs predisposing to an elevated risk of early postmenopausal bone loss and osteoporosis, may be a new means to individualize the counseling on risks and benefits of ERT/HRT.
    Reference:
    Title:
    Applications of polymorphisms and pharmacogenomics in obstetrics and gynecology.
    Species studied:
    Human
    Abstract:
    The number of reports investigating disease susceptibility based on the carriage of low-penetrance, high-frequency polymorphisms has steadily increased over the last years. Evidence based on meta-analyses of individual case-control studies is accumulating, defining specific individual variations in disease susceptibility. For example, genetic variations of the estradiol metabolism have been described as significant contributors to disease susceptibility with variations depending on ethnic background. In the field of obstetrics and gynecology, the genetic contribution of polymorphic markers to a series of disorders has been characterized. These disorders include recurrent pregnancy loss, pre-eclampsia, endometriosis, breast cancer, and hormone replacement therapy (HRT)-related complications such as thrombosis. Among other genetic markers, thrombophilic genetic variants, such as the Factor V Leiden and prothrombin G20210A polymorphisms, as well as genetic variants of cytochrome P450 (CYP) enzymes, for example, CYP19 and CYP1B1, have been established as genetic risk markers and disease modifiers of recurrent and sporadic pregnancy loss and HRT-independent and -dependent breast cancer, respectively. In addition, meta-analyses of data in the literature established the TGFBR1*6A, GSTP I105V, and TP53 R72P polymorphisms, as well as the GSTM1 gene deletion as low-penetrance genetic risk factors of sporadic breast cancer. With respect to genetic modulation of therapeutic effects, beneficial effects of estrogen replacement therapy and HRT are modulated by the carriage of single nucleotide polymorphisms, for example, osteoprotection and blood lipid changes by the estrogen receptor-alpha (ER-a) PvuII polymorphism. Polymorphisms of the catechol-O-methyltransferase (COMT), ER-alpha, IL-1 receptor antagonist, and Factor V genes have been demonstrated to modulate the timing of natural menopause. Lastly, a strong genetic contribution of polymorphisms to the development and the clinical course of endometriosis has been established with data pointing to polymorphisms of the COMT, GST, NAT-2, and ER-alpha genes as susceptibility markers. In summary, the available evidence points to a number of polymorphisms of a wide variety of genes as strong hereditary determinants of the susceptibility to benign and malignant gynecologic and obstetric conditions.