Gene "ACVRL1"
Found 6 records
Gene information
Gene symbol:
ACVRL1
See related:
Ensembl: ENSG00000139567, Gene ID: 94
Additive variants :
Undetected
Genetic interaction partners
No data
Modifier statisitcs
Record:
Disorder:
Vriant:
Reference:
Effect type:
Expressivity(6)  
Modifier effect:
Risk factor(4) ,Altered severity(2)  
Details:
  • Gene:
    Genomic location:
    chr12:52293500
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor 
    Evidence:
    P=0.02 
    Effect:
    A multiple regression model, which included age and baseline hemoglobin as covariates, retained SNPs in ACVRL1, BMP6, and ADRB1 as independently contributing to pHTN risk.
    Reference:
    Title:
    Identification of genetic polymorphisms associated with risk for pulmonary hypertension in sickle cell disease.
    Species studied:
    Human
    Abstract:
    Up to 30% of adult patients with sickle cell disease (SCD) will develop pulmonary hypertension (pHTN), a complication associated with significant morbidity and mortality. To identify genetic factors that contribute to risk for pHTN in SCD, we performed association analysis with 297 single nucleotide polymorphisms (SNPs) in 49 candidate genes in patients with sickle cell anemia (Hb SS) who had been screened for pHTN by echocardiography (n = 111). Evidence of association was primarily identified for genes in the TGFbeta superfamily, including activin A receptor, type II-like 1 (ACVRL1), bone morphogenetic protein receptor 2 (BMPR2), and bone morphogenetic protein 6 (BMP6). The association of pHTN with ACVRL1 and BMPR2 corroborates the previous association of these genes with primary pHTN. Moreover, genes in the TGFbeta pathway have been independently implicated in risk for several sickle cell complications, suggesting that this gene pathway is important in overall sickle cell pathophysiology. Genetic variation in the beta-1 adrenergic receptor (ADRB1) was also associated with pHTN in our dataset. A multiple regression model, which included age and baseline hemoglobin as covariates, retained SNPs in ACVRL1, BMP6, and ADRB1 as independently contributing to pHTN risk. These findings may offer new promise for identifying patients at risk for pHTN, developing new therapeutic targets, and reducing the occurrence of this life-threatening SCD complication.
  • Gene:
    Genomic location:
    chr12:52293500
    dbSNP ID:
    Target disease:
    Sickle Cell Anemia(DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor 
    Evidence:
    P=0.02 
    Effect:
    A multiple regression model, which included age and baseline hemoglobin as covariates, retained SNPs in ACVRL1, BMP6, and ADRB1 as independently contributing to pHTN risk.
    Reference:
    Title:
    Identification of genetic polymorphisms associated with risk for pulmonary hypertension in sickle cell disease.
    Species studied:
    Human
    Abstract:
    Up to 30% of adult patients with sickle cell disease (SCD) will develop pulmonary hypertension (pHTN), a complication associated with significant morbidity and mortality. To identify genetic factors that contribute to risk for pHTN in SCD, we performed association analysis with 297 single nucleotide polymorphisms (SNPs) in 49 candidate genes in patients with sickle cell anemia (Hb SS) who had been screened for pHTN by echocardiography (n = 111). Evidence of association was primarily identified for genes in the TGFbeta superfamily, including activin A receptor, type II-like 1 (ACVRL1), bone morphogenetic protein receptor 2 (BMPR2), and bone morphogenetic protein 6 (BMP6). The association of pHTN with ACVRL1 and BMPR2 corroborates the previous association of these genes with primary pHTN. Moreover, genes in the TGFbeta pathway have been independently implicated in risk for several sickle cell complications, suggesting that this gene pathway is important in overall sickle cell pathophysiology. Genetic variation in the beta-1 adrenergic receptor (ADRB1) was also associated with pHTN in our dataset. A multiple regression model, which included age and baseline hemoglobin as covariates, retained SNPs in ACVRL1, BMP6, and ADRB1 as independently contributing to pHTN risk. These findings may offer new promise for identifying patients at risk for pHTN, developing new therapeutic targets, and reducing the occurrence of this life-threatening SCD complication.
  • Variant 3:
    Gene:
    Genomic location:
    chr12:52307308
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    Association with eng (OR=2.66, P=0.022) 
    Effect:
    ACVRL1 c.314-35A>G showed a trend toward association with pulmonary AVM (OR=1.48, P=0.062). ACVRL1 c.314-35A>G was significantly associated with any VM among patients with HHT with ENG (OR=2.66, P=0.022)
    Reference:
    Title:
    The ACVRL1 c.314-35A>G polymorphism is associated with organ vascular malformations in hereditary hemorrhagic telangiectasia patients with ENG mutations, but not in patients with ACVRL1 mutations.
    Species studied:
    Human
    Abstract:
    Hereditary hemorrhagic telangiectasia (HHT) is characterized by vascular malformations (VMs) and caused by mutations in TGFβ/BMP9 pathway genes, most commonly ENG or ACVRL1. Patients with HHT have diverse manifestations related to skin and mucosal telangiectases and organ VMs, including arteriovenous malformations (AVM). The clinical heterogeneity of HHT suggests a role for genetic modifiers. We hypothesized that the ACVRL1 c.314-35A>G and ENG c.207G>A polymorphisms, previously associated with sporadic brain AVM, are associated with organ VM in HHT. We genotyped these variants in 716 patients with HHT and evaluated association of genotype with presence of any organ VM, and specifically with brain VM, liver VM and pulmonary AVM, by multivariate logistic regression analyses stratified by HHT mutation. Among all patients with HHT, neither polymorphism was significantly associated with presence of any organ VM; ACVRL1 c.314-35A>G showed a trend toward association with pulmonary AVM (OR=1.48, P=0.062). ACVRL1 c.314-35A>G was significantly associated with any VM among patients with HHT with ENG (OR=2.66, P=0.022), but not ACVRL1 (OR=0.79, P=0.52) mutations. ACVRL1 c.314-35A>G was also associated with pulmonary AVM and liver VM among ENG mutation heterozygotes. There were no significant associations between ENG c.207G>A and any VM phenotype. These results suggest that common polymorphisms in HHT genes other than the mutated gene modulate phenotype severity of HHT disease, specifically presence of organ VM.
  • Variant 4:
    Gene:
    Genomic location:
    chr12:52307308
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    Association with pulmonary avm (OR=1.48, P=0.062) 
    Effect:
    ACVRL1 c.314-35A>G showed a trend toward association with pulmonary AVM (OR=1.48, P=0.062). ACVRL1 c.314-35A>G was significantly associated with any VM among patients with HHT with ENG (OR=2.66, P=0.022)
    Reference:
    Title:
    The ACVRL1 c.314-35A>G polymorphism is associated with organ vascular malformations in hereditary hemorrhagic telangiectasia patients with ENG mutations, but not in patients with ACVRL1 mutations.
    Species studied:
    Human
    Abstract:
    Hereditary hemorrhagic telangiectasia (HHT) is characterized by vascular malformations (VMs) and caused by mutations in TGFβ/BMP9 pathway genes, most commonly ENG or ACVRL1. Patients with HHT have diverse manifestations related to skin and mucosal telangiectases and organ VMs, including arteriovenous malformations (AVM). The clinical heterogeneity of HHT suggests a role for genetic modifiers. We hypothesized that the ACVRL1 c.314-35A>G and ENG c.207G>A polymorphisms, previously associated with sporadic brain AVM, are associated with organ VM in HHT. We genotyped these variants in 716 patients with HHT and evaluated association of genotype with presence of any organ VM, and specifically with brain VM, liver VM and pulmonary AVM, by multivariate logistic regression analyses stratified by HHT mutation. Among all patients with HHT, neither polymorphism was significantly associated with presence of any organ VM; ACVRL1 c.314-35A>G showed a trend toward association with pulmonary AVM (OR=1.48, P=0.062). ACVRL1 c.314-35A>G was significantly associated with any VM among patients with HHT with ENG (OR=2.66, P=0.022), but not ACVRL1 (OR=0.79, P=0.52) mutations. ACVRL1 c.314-35A>G was also associated with pulmonary AVM and liver VM among ENG mutation heterozygotes. There were no significant associations between ENG c.207G>A and any VM phenotype. These results suggest that common polymorphisms in HHT genes other than the mutated gene modulate phenotype severity of HHT disease, specifically presence of organ VM.
  • Gene:
    Genomic location:
    chr12:52310843
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor 
    Evidence:
    P=0.014 
    Effect:
    A multiple regression model, which included age and baseline hemoglobin as covariates, retained SNPs in ACVRL1, BMP6, and ADRB1 as independently contributing to pHTN risk.
    Reference:
    Title:
    Identification of genetic polymorphisms associated with risk for pulmonary hypertension in sickle cell disease.
    Species studied:
    Human
    Abstract:
    Up to 30% of adult patients with sickle cell disease (SCD) will develop pulmonary hypertension (pHTN), a complication associated with significant morbidity and mortality. To identify genetic factors that contribute to risk for pHTN in SCD, we performed association analysis with 297 single nucleotide polymorphisms (SNPs) in 49 candidate genes in patients with sickle cell anemia (Hb SS) who had been screened for pHTN by echocardiography (n = 111). Evidence of association was primarily identified for genes in the TGFbeta superfamily, including activin A receptor, type II-like 1 (ACVRL1), bone morphogenetic protein receptor 2 (BMPR2), and bone morphogenetic protein 6 (BMP6). The association of pHTN with ACVRL1 and BMPR2 corroborates the previous association of these genes with primary pHTN. Moreover, genes in the TGFbeta pathway have been independently implicated in risk for several sickle cell complications, suggesting that this gene pathway is important in overall sickle cell pathophysiology. Genetic variation in the beta-1 adrenergic receptor (ADRB1) was also associated with pHTN in our dataset. A multiple regression model, which included age and baseline hemoglobin as covariates, retained SNPs in ACVRL1, BMP6, and ADRB1 as independently contributing to pHTN risk. These findings may offer new promise for identifying patients at risk for pHTN, developing new therapeutic targets, and reducing the occurrence of this life-threatening SCD complication.
  • Gene:
    Genomic location:
    chr12:52310843
    dbSNP ID:
    Target disease:
    Sickle Cell Anemia(DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor 
    Evidence:
    P=0.014 
    Effect:
    A multiple regression model, which included age and baseline hemoglobin as covariates, retained SNPs in ACVRL1, BMP6, and ADRB1 as independently contributing to pHTN risk.
    Reference:
    Title:
    Identification of genetic polymorphisms associated with risk for pulmonary hypertension in sickle cell disease.
    Species studied:
    Human
    Abstract:
    Up to 30% of adult patients with sickle cell disease (SCD) will develop pulmonary hypertension (pHTN), a complication associated with significant morbidity and mortality. To identify genetic factors that contribute to risk for pHTN in SCD, we performed association analysis with 297 single nucleotide polymorphisms (SNPs) in 49 candidate genes in patients with sickle cell anemia (Hb SS) who had been screened for pHTN by echocardiography (n = 111). Evidence of association was primarily identified for genes in the TGFbeta superfamily, including activin A receptor, type II-like 1 (ACVRL1), bone morphogenetic protein receptor 2 (BMPR2), and bone morphogenetic protein 6 (BMP6). The association of pHTN with ACVRL1 and BMPR2 corroborates the previous association of these genes with primary pHTN. Moreover, genes in the TGFbeta pathway have been independently implicated in risk for several sickle cell complications, suggesting that this gene pathway is important in overall sickle cell pathophysiology. Genetic variation in the beta-1 adrenergic receptor (ADRB1) was also associated with pHTN in our dataset. A multiple regression model, which included age and baseline hemoglobin as covariates, retained SNPs in ACVRL1, BMP6, and ADRB1 as independently contributing to pHTN risk. These findings may offer new promise for identifying patients at risk for pHTN, developing new therapeutic targets, and reducing the occurrence of this life-threatening SCD complication.