Gene "AGTR1"
Found 7 records
Gene information
Gene symbol:
AGTR1
See related:
Ensembl: ENSG00000144891, Gene ID: 185
Additive variants :
Undetected
Genetic interaction partners
No data
Modifier statisitcs
Record:
Disorder:
Vriant:
Reference:
Effect type:
Expressivity(7)  
Modifier effect:
Altered severity(6) ,Risk factor(1)  
Details:
  • Variant 1:
    Gene:
    Genomic location:
    chr3:148459988
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor 
    Evidence:
    P=0.015; OR=1.56; 95% CI: 1.09-2.23 
    Effect:
    The 1166 C AT1R allele could be a risk factor for cardiac hypertrophy in patients without sarcomeric mutations
    Reference:
    Title:
    Functional polymorphisms in genes of the Angiotensin and Serotonin systems and risk of hypertrophic cardiomyopathy: AT1R as a potential modifier.
    Species studied:
    Human
    Abstract:
    Angiotensin and serotonin have been identified as inducers of cardiac hypertrophy. DNA polymorphisms at the genes encoding components of the angiotensin and serotonin systems have been associated with the risk of developing cardiovascular diseases, including left ventricular hypertrophy (LVH).
  • Variant 2:
    Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    From review article 
    Effect:
    AGTR1,EDN1,TNF mutations is associated with severity of hypertrophy
    Reference:
    Title:
    Modifier genes for hypertrophic cardiomyopathy.
    Species studied:
    Human
    Abstract:
    During the past decade, more than 100 mutations in 11 causal gene coding for sarcomeric proteins, the gamma subunit of AMP-activated protein kinase and triplet-repeat syndromes and in mitochondrial DNA, have been identified in patients with hypertrophic cardiomyopathy (HCM). Genotype-phenotype correlation studies show significant variability in the phenotype expression of HCM among affected individuals with identical causal mutations. Overall, causal mutations account for a fraction of the variability of phenotypes and genetic background, referred to as the modifier genes, play a significant role. The final phenotype is the result of interactions between the causal genes, genetic background (modifier genes), and probably the environmental factors. The individual modifier genes for HCM remain largely unknown, and a large-scale genome-wide approach and candidate gene analysis are needed. Current studies are limited to simple polymorphism association studies, which explore the association of functional single nucleotide polymorphisms in genes implicated in cardiac growth with the severity of the clinical phenotypes, primarily cardiac hypertrophy. Several potential modifier genes including genes encoding the components of the renin-angiotensin-aldosterone system have emerged. The most commonly implicated is an insertion/deletion polymorphism in the angiotensin-1 converting enzyme 1 gene, which is associated with the risk of sudden cardiac death and the severity of hypertrophy. Therapeutic interventions aimed at targeting the modifier genes have shown salutary effects in animal models of HCM. It has now recognized that modifier genes affect the expression of cardiac phenotype. Identification of the modifier genes will complement the results of studies of causative genes and could enhance genetic based diagnosis, risk stratification, and implementation of preventive and therapeutic measures in patients with HCM.
  • Variant 3:
    Gene:
    Genomic location:
    chr3:148418168
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    P=0.001 
    Effect:
    Associated with the development NAFLD or disease severity.
    Reference:
    Title:
    Genetic analysis of nonalcoholic fatty liver disease within a Caribbean-Hispanic population.
    Species studied:
    Human
    Abstract:
    We explored potential genetic risk factors implicated in nonalcoholic fatty liver disease (NAFLD) within a Caribbean-Hispanic population in New York City. A total of 316 individuals including 40 subjects with biopsy-proven NAFLD, 24 ethnically matched non-NAFLD controls, and a 252 ethnically mixed random sampling of Bronx County, New York were analyzed. Genotype analysis was performed to determine allelic frequencies of 74 known single-nucleotide polymorphisms (SNPs) associated with NAFLD risk based on previous genome-wide association study (GWAS) and candidate gene studies. Additionally, the entire coding region of PNPLA3, a gene showing the strongest association to NAFLD was subjected to Sanger sequencing. Results suggest that both rare and common DNA variations in PNPLA3 and SAMM50 may be correlated with NAFLD in this small population study, while common DNA variations in CHUK and ERLIN1, may have a protective interaction. Common SNPs in ENPP1 and ABCC2 have suggestive association with fatty liver, but with less compelling significance. In conclusion, Hispanic patients of Caribbean ancestry may have different interactions with NAFLD genetic modifiers; therefore, further investigation with a larger sample size, into this Caribbean-Hispanic population is warranted.
  • Variant 4:
    Gene:
    Genomic location:
    chr3:148435753
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    P=0.000047 
    Effect:
    Associated with the development NAFLD or disease severity.
    Reference:
    Title:
    Genetic analysis of nonalcoholic fatty liver disease within a Caribbean-Hispanic population.
    Species studied:
    Human
    Abstract:
    We explored potential genetic risk factors implicated in nonalcoholic fatty liver disease (NAFLD) within a Caribbean-Hispanic population in New York City. A total of 316 individuals including 40 subjects with biopsy-proven NAFLD, 24 ethnically matched non-NAFLD controls, and a 252 ethnically mixed random sampling of Bronx County, New York were analyzed. Genotype analysis was performed to determine allelic frequencies of 74 known single-nucleotide polymorphisms (SNPs) associated with NAFLD risk based on previous genome-wide association study (GWAS) and candidate gene studies. Additionally, the entire coding region of PNPLA3, a gene showing the strongest association to NAFLD was subjected to Sanger sequencing. Results suggest that both rare and common DNA variations in PNPLA3 and SAMM50 may be correlated with NAFLD in this small population study, while common DNA variations in CHUK and ERLIN1, may have a protective interaction. Common SNPs in ENPP1 and ABCC2 have suggestive association with fatty liver, but with less compelling significance. In conclusion, Hispanic patients of Caribbean ancestry may have different interactions with NAFLD genetic modifiers; therefore, further investigation with a larger sample size, into this Caribbean-Hispanic population is warranted.
  • Variant 5:
    Gene:
    Genomic location:
    chr3:148426472
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    P=0.000042 
    Effect:
    Associated with the development NAFLD or disease severity.
    Reference:
    Title:
    Genetic analysis of nonalcoholic fatty liver disease within a Caribbean-Hispanic population.
    Species studied:
    Human
    Abstract:
    We explored potential genetic risk factors implicated in nonalcoholic fatty liver disease (NAFLD) within a Caribbean-Hispanic population in New York City. A total of 316 individuals including 40 subjects with biopsy-proven NAFLD, 24 ethnically matched non-NAFLD controls, and a 252 ethnically mixed random sampling of Bronx County, New York were analyzed. Genotype analysis was performed to determine allelic frequencies of 74 known single-nucleotide polymorphisms (SNPs) associated with NAFLD risk based on previous genome-wide association study (GWAS) and candidate gene studies. Additionally, the entire coding region of PNPLA3, a gene showing the strongest association to NAFLD was subjected to Sanger sequencing. Results suggest that both rare and common DNA variations in PNPLA3 and SAMM50 may be correlated with NAFLD in this small population study, while common DNA variations in CHUK and ERLIN1, may have a protective interaction. Common SNPs in ENPP1 and ABCC2 have suggestive association with fatty liver, but with less compelling significance. In conclusion, Hispanic patients of Caribbean ancestry may have different interactions with NAFLD genetic modifiers; therefore, further investigation with a larger sample size, into this Caribbean-Hispanic population is warranted.
  • Variant 6:
    Gene:
    Genomic location:
    chr3:148425873
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    P=6.5×10(-6) 
    Effect:
    Associated with the development NAFLD or disease severity.
    Reference:
    Title:
    Genetic analysis of nonalcoholic fatty liver disease within a Caribbean-Hispanic population.
    Species studied:
    Human
    Abstract:
    We explored potential genetic risk factors implicated in nonalcoholic fatty liver disease (NAFLD) within a Caribbean-Hispanic population in New York City. A total of 316 individuals including 40 subjects with biopsy-proven NAFLD, 24 ethnically matched non-NAFLD controls, and a 252 ethnically mixed random sampling of Bronx County, New York were analyzed. Genotype analysis was performed to determine allelic frequencies of 74 known single-nucleotide polymorphisms (SNPs) associated with NAFLD risk based on previous genome-wide association study (GWAS) and candidate gene studies. Additionally, the entire coding region of PNPLA3, a gene showing the strongest association to NAFLD was subjected to Sanger sequencing. Results suggest that both rare and common DNA variations in PNPLA3 and SAMM50 may be correlated with NAFLD in this small population study, while common DNA variations in CHUK and ERLIN1, may have a protective interaction. Common SNPs in ENPP1 and ABCC2 have suggestive association with fatty liver, but with less compelling significance. In conclusion, Hispanic patients of Caribbean ancestry may have different interactions with NAFLD genetic modifiers; therefore, further investigation with a larger sample size, into this Caribbean-Hispanic population is warranted.
  • Variant 7:
    Gene:
    Genomic location:
    chr3:148430254
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    P=4.1×10(-6) 
    Effect:
    Associated with the development NAFLD or disease severity.
    Reference:
    Title:
    Genetic analysis of nonalcoholic fatty liver disease within a Caribbean-Hispanic population.
    Species studied:
    Human
    Abstract:
    We explored potential genetic risk factors implicated in nonalcoholic fatty liver disease (NAFLD) within a Caribbean-Hispanic population in New York City. A total of 316 individuals including 40 subjects with biopsy-proven NAFLD, 24 ethnically matched non-NAFLD controls, and a 252 ethnically mixed random sampling of Bronx County, New York were analyzed. Genotype analysis was performed to determine allelic frequencies of 74 known single-nucleotide polymorphisms (SNPs) associated with NAFLD risk based on previous genome-wide association study (GWAS) and candidate gene studies. Additionally, the entire coding region of PNPLA3, a gene showing the strongest association to NAFLD was subjected to Sanger sequencing. Results suggest that both rare and common DNA variations in PNPLA3 and SAMM50 may be correlated with NAFLD in this small population study, while common DNA variations in CHUK and ERLIN1, may have a protective interaction. Common SNPs in ENPP1 and ABCC2 have suggestive association with fatty liver, but with less compelling significance. In conclusion, Hispanic patients of Caribbean ancestry may have different interactions with NAFLD genetic modifiers; therefore, further investigation with a larger sample size, into this Caribbean-Hispanic population is warranted.