Gene "METTL13"
Found 1 record
Gene information
Gene symbol:
METTL13
See related:
Ensembl: ENSG00000010165, Gene ID: 51603
Additive variants :
Undetected
Genetic interaction partners
No data
Modifier statisitcs
Record:
Disorder:
Vriant:
Reference:
Effect type:
Expressivity(1)  
Modifier effect:
Risk factor(1)  
Detail:
  • Variant 1:
    Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Diabetes Mellitus(DOID_9351)
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor 
    Evidence:
    Pedigree analysis 
    Effect:
    A dominant substitution (p.Arg544Gln) of METTL13 was associated with deafness
    Reference:
    Title:
    Modifier variant of METTL13 suppresses human GAB1-associated profound deafness.
    Species studied:
    Human
    Abstract:
    A modifier variant can abrogate the risk of a monogenic disorder. DFNM1 is a locus on chromosome 1 encoding a dominant suppressor of human DFNB26 recessive, profound deafness. Here, we report that DFNB26 is associated with a substitution (p.Gly116Glu) in the pleckstrin homology domain of GRB2-associated binding protein 1 (GAB1), an essential scaffold in the MET proto-oncogene, receptor tyrosine kinase/HGF (MET/HGF) pathway. A dominant substitution (p.Arg544Gln) of METTL13, encoding a predicted methyltransferase, is the DFNM1 suppressor of GAB1-associated deafness. In zebrafish, human METTL13 mRNA harboring the modifier allele rescued the GAB1-associated morphant phenotype. In mice, GAB1 and METTL13 colocalized in auditory sensory neurons, and METTL13 coimmunoprecipitated with GAB1 and SPRY2, indicating at least a tripartite complex. Expression of MET-signaling genes in human lymphoblastoid cells of individuals homozygous for p.Gly116Glu GAB1 revealed dysregulation of HGF, MET, SHP2, and SPRY2, all of which have reported variants associated with deafness. However, SPRY2 was not dysregulated in normal-hearing humans homozygous for both the GAB1 DFNB26 deafness variant and the dominant METTL13 deafness suppressor, indicating a plausible mechanism of suppression. Identification of METTL13-based modification of MET signaling offers a potential therapeutic strategy for a wide range of associated hearing disorders. Furthermore, MET signaling is essential for diverse functions in many tissues including the inner ear. Therefore, identification of the modifier of MET signaling is likely to have broad clinical implications.