Gene "NOS1"
Found 11 records
Gene information
Gene symbol:
NOS1
See related:
Ensembl: ENSG00000089250, Gene ID: 4842
Additive variants :
Detected
Genetic interaction partners
No data
Modifier statisitcs
Record:
11 
Disorder:
Vriant:
Reference:
Effect type:
Expressivity(8) ,Pleiotropy(3)  
Modifier effect:
Altered HbF levels(4) ,Altered response to hydroxyurea(2) ,Altered FEV1 level(1) ,Altered Pseudomonas aeruginosa colonization rate(1) ,Altered lung function(1) ,Altered severity(1) ,Altered variability of FENO and P. aeruginosa colonization(1)  
Details:
  • Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Cystic fibrosis(DOID_1485)
    Effect type:
    Pleiotropy 
    Modifier effect:
    Altered FEV1 level 
    Evidence:
    From review article 
    Effect:
    Lower annual rate of FEV1 decline with both alleles >27 repeats
    Reference:
    Title:
    Modifier genetics: cystic fibrosis.
    Species studied:
    Human
    Abstract:
    Cystic fibrosis (CF) is the most common lethal autosomal recessive disorder in the Caucasian population, affecting about 30,000 individuals in the United States. The gene responsible for CF, the CF transmembrane conductance regulator (CFTR), was identified 15 years ago. Substantial variation in the many aspects of the CF phenotype among individuals with the same CFTR genotype demonstrates that factors independent of CFTR exert considerable influence on outcome in CF. To date, the majority of published studies investigating the cause of disease variability in CF report associations between candidate genes and some aspect of the CF phenotype. However, a definitive modifier gene for CF remains to be identified. Despite the challenges posed by searches for modifier effects, studies of affected twins and siblings indicate that genetic factors play a substantial role in intestinal manifestations. Identifying the factors contributing to variation in pulmonary disease, the primary cause of mortality, remains a challenge for CF research.
  • Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Cystic fibrosis(DOID_1485)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered lung function 
    Evidence:
    P=0.025 
    Effect:
    The annual percentage loss of FEV1 was 3.3% (95% CI 1.1 to 5.4), 3.2% (95% CI 2.4 to 4.0),and 0.8% (20.5 to 2.1) for patients with 0, 1, and 2 alleles with > 27 repeats, respectively
    Reference:
    Title:
    Nitric oxide synthase 1 as a potential modifier gene of decline in lung function in patients with cystic fibrosis.
    Species studied:
    Human
    Abstract:
    The severity of lung disease varies widely in patients with cystic fibrosis (CF) who have the same type of mutations of the cystic fibrosis transmembrane regulator (CFTR) gene, suggesting involvement of modifier genes. The nitric oxide synthase 1 (NOS1) gene is a candidate for this role because exhaled nitric oxide (NO) is reduced in patients with CF and NOS1 activity contributes to transepithelial ionic transport, immune defence, and non-specific inflammation of the airways.
  • Variant 3:
    Gene:
    Genomic location:
    chr12:117730340
    dbSNP ID:
    Target disease:
    Sickle Cell Anemia(DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered response to hydroxyurea 
    Evidence:
    Recessive model: P=0.045 
    Effect:
    Polymorphisms in genes regulating HbF expression, HU metabolism and erythroid progenitor proliferation might modulate the patient response to HU
    Reference:
    Title:
    Fetal hemoglobin in sickle cell anemia: genetic determinants of response to hydroxyurea.
    Species studied:
    Human
    Abstract:
    The increase in fetal hemoglobin (HbF) in response to hydroxyurea (HU) varies among patients with sickle cell anemia. Twenty-nine candidate genes within loci previously reported to be linked to HbF level (6q22.3-q23.2, 8q11-q12 and Xp22.2-p22.3), involved in metabolism of HU and related to erythroid progenitor proliferation were studied in 137 sickle cell anemia patients treated with HU. Three-hundred and twenty tagging single nucleotide polymorphisms (SNPs) for genotyping were selected based on HapMap data. Multiple linear regression and the nonlinear regression Random Forest method were used to investigate the association between SNPs and the change in HbF level after 2 years of treatment with HU. Both methods revealed that SNPs in genes within the 6q22.3-23.2 and 8q11-q12 linkage peaks, and also the ARG2, FLT1, HAO2 and NOS1 genes were associated with the HbF response to HU. Polymorphisms in genes regulating HbF expression, HU metabolism and erythroid progenitor proliferation might modulate the patient response to HU.
  • Variant 4:
    Gene:
    Genomic location:
    chr12:117729274
    dbSNP ID:
    Target disease:
    Sickle Cell Anemia(DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered response to hydroxyurea 
    Evidence:
    Recessive model: P=0.029 
    Effect:
    Polymorphisms in genes regulating HbF expression, HU metabolism and erythroid progenitor proliferation might modulate the patient response to HU
    Reference:
    Title:
    Fetal hemoglobin in sickle cell anemia: genetic determinants of response to hydroxyurea.
    Species studied:
    Human
    Abstract:
    The increase in fetal hemoglobin (HbF) in response to hydroxyurea (HU) varies among patients with sickle cell anemia. Twenty-nine candidate genes within loci previously reported to be linked to HbF level (6q22.3-q23.2, 8q11-q12 and Xp22.2-p22.3), involved in metabolism of HU and related to erythroid progenitor proliferation were studied in 137 sickle cell anemia patients treated with HU. Three-hundred and twenty tagging single nucleotide polymorphisms (SNPs) for genotyping were selected based on HapMap data. Multiple linear regression and the nonlinear regression Random Forest method were used to investigate the association between SNPs and the change in HbF level after 2 years of treatment with HU. Both methods revealed that SNPs in genes within the 6q22.3-23.2 and 8q11-q12 linkage peaks, and also the ARG2, FLT1, HAO2 and NOS1 genes were associated with the HbF response to HU. Polymorphisms in genes regulating HbF expression, HU metabolism and erythroid progenitor proliferation might modulate the patient response to HU.
  • Variant 5:
    Gene:
    Genomic location:
    chr12:117761540
    dbSNP ID:
    Target disease:
    Sickle Cell Anemia(DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered HbF levels 
    Evidence:
    Bayesian approach 
    Effect:
    Different genes might modulate the rate of decline of HbF and the final level of HbF levels in sickle cell anemia.
    Reference:
    Title:
    Fetal hemoglobin in sickle cell anemia: Bayesian modeling of genetic associations.
    Species studied:
    Human
    Abstract:
    We genotyped single nucleotide polymorphisms (SNPs) in: (1) the beta-globin gene-like cluster, (2) quantitative trait loci (QTL) previously associated with fetal hemoglobin (HbF) concentration on chromosomes 6q, 8q, and Xp, and (3) candidate genes that could effect HbF levels, in sickle cell anemia subjects. HbF concentration was modeled as a continuous variable with values in a finite interval using a novel Bayesian approach. We first tested the associations of SNPs with HbF in a group of 1,518 adults and children (CSSCD study), and validated the results in a second independent group of 211 adults (MSH study). In subjects aged >or=24 years, 5 SNPs in TOX (8q12.1), 2 SNPs in the beta-globin gene-like cluster, 2 SNPs in the Xp QTL, and 1 SNP in chromosome 15q22 were associated with HbF in the CSSCD and also validated in the MSH. Four other SNPs in 15q22 were associated with HbF only in the larger CSSCD data. When patients aged <24 years in the CSSCD were examined, additional genes, including 4 with roles in nitric oxide metabolism, were associated with HbF level. These studies confirm prior analyses using traditional analytical approaches showing associations of SNPs in TOX, GPM6B, and the beta-globin gene-like cluster with HbF levels. We also identified an additional candidate regulatory region in chromosome 15q22 that is associated with HbF level. By stratifying patients by age, our results also suggest that different genes might modulate the rate of decline of HbF and the final level of HbF levels in sickle cell anemia.
  • Variant 6:
    Gene:
    Genomic location:
    chr12:117655131
    dbSNP ID:
    Target disease:
    Sickle Cell Anemia(DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered HbF levels 
    Evidence:
    Bayesian approach 
    Effect:
    Different genes might modulate the rate of decline of HbF and the final level of HbF levels in sickle cell anemia.
    Reference:
    Title:
    Fetal hemoglobin in sickle cell anemia: Bayesian modeling of genetic associations.
    Species studied:
    Human
    Abstract:
    We genotyped single nucleotide polymorphisms (SNPs) in: (1) the beta-globin gene-like cluster, (2) quantitative trait loci (QTL) previously associated with fetal hemoglobin (HbF) concentration on chromosomes 6q, 8q, and Xp, and (3) candidate genes that could effect HbF levels, in sickle cell anemia subjects. HbF concentration was modeled as a continuous variable with values in a finite interval using a novel Bayesian approach. We first tested the associations of SNPs with HbF in a group of 1,518 adults and children (CSSCD study), and validated the results in a second independent group of 211 adults (MSH study). In subjects aged >or=24 years, 5 SNPs in TOX (8q12.1), 2 SNPs in the beta-globin gene-like cluster, 2 SNPs in the Xp QTL, and 1 SNP in chromosome 15q22 were associated with HbF in the CSSCD and also validated in the MSH. Four other SNPs in 15q22 were associated with HbF only in the larger CSSCD data. When patients aged <24 years in the CSSCD were examined, additional genes, including 4 with roles in nitric oxide metabolism, were associated with HbF level. These studies confirm prior analyses using traditional analytical approaches showing associations of SNPs in TOX, GPM6B, and the beta-globin gene-like cluster with HbF levels. We also identified an additional candidate regulatory region in chromosome 15q22 that is associated with HbF level. By stratifying patients by age, our results also suggest that different genes might modulate the rate of decline of HbF and the final level of HbF levels in sickle cell anemia.
  • Variant 7:
    Gene:
    Genomic location:
    chr12:117696041
    dbSNP ID:
    Target disease:
    Sickle Cell Anemia(DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered HbF levels 
    Evidence:
    Bayesian approach 
    Effect:
    Different genes might modulate the rate of decline of HbF and the final level of HbF levels in sickle cell anemia.
    Reference:
    Title:
    Fetal hemoglobin in sickle cell anemia: Bayesian modeling of genetic associations.
    Species studied:
    Human
    Abstract:
    We genotyped single nucleotide polymorphisms (SNPs) in: (1) the beta-globin gene-like cluster, (2) quantitative trait loci (QTL) previously associated with fetal hemoglobin (HbF) concentration on chromosomes 6q, 8q, and Xp, and (3) candidate genes that could effect HbF levels, in sickle cell anemia subjects. HbF concentration was modeled as a continuous variable with values in a finite interval using a novel Bayesian approach. We first tested the associations of SNPs with HbF in a group of 1,518 adults and children (CSSCD study), and validated the results in a second independent group of 211 adults (MSH study). In subjects aged >or=24 years, 5 SNPs in TOX (8q12.1), 2 SNPs in the beta-globin gene-like cluster, 2 SNPs in the Xp QTL, and 1 SNP in chromosome 15q22 were associated with HbF in the CSSCD and also validated in the MSH. Four other SNPs in 15q22 were associated with HbF only in the larger CSSCD data. When patients aged <24 years in the CSSCD were examined, additional genes, including 4 with roles in nitric oxide metabolism, were associated with HbF level. These studies confirm prior analyses using traditional analytical approaches showing associations of SNPs in TOX, GPM6B, and the beta-globin gene-like cluster with HbF levels. We also identified an additional candidate regulatory region in chromosome 15q22 that is associated with HbF level. By stratifying patients by age, our results also suggest that different genes might modulate the rate of decline of HbF and the final level of HbF levels in sickle cell anemia.
  • Variant 8:
    Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    Pedigree analysis and gene activity study 
    Effect:
    Mutations in five genes (SMPD1, WNK3, NOS1, ATF6, and EFHC1) that could contribute to the more severe phenotype in the probands in comparison to their mildly affected or unaffected 1q21.1 CNV carrying relatives.
    Reference:
    Title:
    Whole exome sequencing of families with 1q21.1 microdeletion or microduplication.
    Species studied:
    Human
    Abstract:
    Recurrent microduplications/microdeletions of 1q21.1 are characterized by variable phenotypes ranging from normal development to developmental delay (DD) and congenital anomalies. Their interpretation is challenging especially in families with affected and unaffected carriers. We used whole exome sequencing (WES) to look for sequence variants in two male probands with inherited 1q21.1 CNVs that could explain their more severe phenotypes. One proband had a 1q21.1 deletion transmitted from maternal grandmother, while the other had a paternal duplication. We found mutations in five genes (SMPD1, WNK3, NOS1, ATF6, and EFHC1) that could contribute to the more severe phenotype in the probands in comparison to their mildly affected or unaffected 1q21.1 CNV carrying relatives. Interestingly, all genes have roles in stress responses (oxidative/Endoplasmic Reticulum (ER)/osmotic). One of the variants was in an X-linked gene WNK3 and segregated with the developmental features and X inactivation pattern in the family with 1q21.1 deletion transmitted from maternal grandmother. In silico analysis of all rare deleterious variants in both probands identified enrichment in nervous system diseases, metabolic pathways, protein processing in the ER and protein export. Our studies suggest that rare deleterious variants outside of the 1q21.1 CNV, individually or as a pool, could contribute to phenotypic variability in carriers of this CNV. Rare deleterious variants in stress response genes are of interest and raise the possibility of susceptibility of carriers to variable environmental influences. Next generation sequencing of additional familial cases with 1q21.1 CNV could further help determine the possible causes of phenotypic variability in carriers of this CNV.
  • Variant 9:
    Gene:
    Genomic location:
    chr12:117720185
    dbSNP ID:
    Target disease:
    Sickle Cell Anemia(DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered HbF levels 
    Evidence:
    Bayesian approach 
    Effect:
    Different genes might modulate the rate of decline of HbF and the final level of HbF levels in sickle cell anemia.
    Reference:
    Title:
    Fetal hemoglobin in sickle cell anemia: Bayesian modeling of genetic associations.
    Species studied:
    Human
    Abstract:
    We genotyped single nucleotide polymorphisms (SNPs) in: (1) the beta-globin gene-like cluster, (2) quantitative trait loci (QTL) previously associated with fetal hemoglobin (HbF) concentration on chromosomes 6q, 8q, and Xp, and (3) candidate genes that could effect HbF levels, in sickle cell anemia subjects. HbF concentration was modeled as a continuous variable with values in a finite interval using a novel Bayesian approach. We first tested the associations of SNPs with HbF in a group of 1,518 adults and children (CSSCD study), and validated the results in a second independent group of 211 adults (MSH study). In subjects aged >or=24 years, 5 SNPs in TOX (8q12.1), 2 SNPs in the beta-globin gene-like cluster, 2 SNPs in the Xp QTL, and 1 SNP in chromosome 15q22 were associated with HbF in the CSSCD and also validated in the MSH. Four other SNPs in 15q22 were associated with HbF only in the larger CSSCD data. When patients aged <24 years in the CSSCD were examined, additional genes, including 4 with roles in nitric oxide metabolism, were associated with HbF level. These studies confirm prior analyses using traditional analytical approaches showing associations of SNPs in TOX, GPM6B, and the beta-globin gene-like cluster with HbF levels. We also identified an additional candidate regulatory region in chromosome 15q22 that is associated with HbF level. By stratifying patients by age, our results also suggest that different genes might modulate the rate of decline of HbF and the final level of HbF levels in sickle cell anemia.
  • Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Cystic fibrosis(DOID_1485)
    Effect type:
    Pleiotropy 
    Modifier effect:
    Altered variability of FENO and P. aeruginosa colonization 
    Evidence:
    4.0 +/- 0.8 [mean +/- sem] ppb versus 6.4 +/- 0.9 ppb, P=0.027 
    Effect:
    The NOS1 gene is not only associated with the variability of FENO, but also with P. aeruginosa colonization of airways in CF patients.
    Reference:
    Title:
    Airway nitric oxide levels in cystic fibrosis patients are related to a polymorphism in the neuronal nitric oxide synthase gene.
    Species studied:
    Human
    Abstract:
    Patients with cystic fibrosis (CF) have decreased concentrations of expired nitric oxide (FENO) as compared with healthy individuals. A number of factors, including viscous mucus as a diffusion barrier for airway NO, consumption of NO by bacterial enzymes, and decreased NO production have been hypothesized to account for these low levels of FENO. We examined the relationship between the size of an AAT repeat polymorphism in intron 20 of the NOS1 gene and FENO in 75 patients with CF. Mean FENO was significantly (p = 0.027) lower in CF patients who harbored two alleles with a high number of repeats (>/= 12) than in those who harbored alleles with fewer repeats at this locus (4.0 +/- 0.8 [mean +/- SEM] ppb versus 6.4 +/- 0.9 ppb). Colonization of the airways with Pseudomonas aeruginosa was significantly (p = 0.0358) more common in CF patients with high numbers of AAT repeats in the NOS1 gene. Significant differences between NOS1 genotypes were also observed among patients homozygous for the cystic fibrosis transmembrane regulator delta F508 mutation for FENO (2.3 +/- 0.4 ppb versus 5.3 +/- 0.7 ppb, p = 0.0006), and this was also true for colonization of the airways with P. aeruginosa (p = 0.0147) and Aspergillus fumigatus (p = 0.0221). These data provide evidence that the NOS1 gene is not only associated with the variability of FENO, but also with P. aeruginosa colonization of airways in CF patients.
  • Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Cystic fibrosis(DOID_1485)
    Effect type:
    Pleiotropy 
    Modifier effect:
    Altered Pseudomonas aeruginosa colonization rate 
    Evidence:
    From review article 
    Effect:
    Higher Pseudomonas aeruginosa colonization rate with both alleles >12 repeats
    Reference:
    Title:
    Modifier genetics: cystic fibrosis.
    Species studied:
    Human
    Abstract:
    Cystic fibrosis (CF) is the most common lethal autosomal recessive disorder in the Caucasian population, affecting about 30,000 individuals in the United States. The gene responsible for CF, the CF transmembrane conductance regulator (CFTR), was identified 15 years ago. Substantial variation in the many aspects of the CF phenotype among individuals with the same CFTR genotype demonstrates that factors independent of CFTR exert considerable influence on outcome in CF. To date, the majority of published studies investigating the cause of disease variability in CF report associations between candidate genes and some aspect of the CF phenotype. However, a definitive modifier gene for CF remains to be identified. Despite the challenges posed by searches for modifier effects, studies of affected twins and siblings indicate that genetic factors play a substantial role in intestinal manifestations. Identifying the factors contributing to variation in pulmonary disease, the primary cause of mortality, remains a challenge for CF research.