Gene "SLC26A9"
Found 6 records
Gene information
Gene symbol:
SLC26A9
See related:
Ensembl: ENSG00000174502, Gene ID: 115019
Additive variants :
Undetected
Genetic interaction partners
No data
Modifier statisitcs
Record:
Disorder:
Vriant:
Reference:
Effect type:
Pleiotropy(4) ,Expressivity(2)  
Modifier effect:
Altered phenotype(3) ,Altered epithelial chloride secretion(1) ,Altered severity(1) ,Altered the contributing organ(1)  
Details:
  • Variant 1:
    Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Cystic fibrosis(DOID_1485)
    Effect type:
    Pleiotropy 
    Modifier effect:
    Altered phenotype 
    Evidence:
    From review article 
    Effect:
    Meconium ileus + diabetes
    Reference:
    Title:
    Disease-modifying genes and monogenic disorders: experience in cystic fibrosis.
    Species studied:
    Human
    Abstract:
    The mechanisms responsible for the determination of phenotypes are still not well understood; however, it has become apparent that modifier genes must play a considerable role in the phenotypic heterogeneity of Mendelian disorders. Significant advances in genetic technologies and molecular medicine allow huge amounts of information to be generated from individual samples within a reasonable time frame. This review focuses on the role of modifier genes using the example of cystic fibrosis, the most common lethal autosomal recessive disorder in the white population, and discusses the advantages and limitations of candidate gene approaches versus genome-wide association studies. Moreover, the implications of modifier gene research for other monogenic disorders, as well as its significance for diagnostic, prognostic, and therapeutic approaches are summarized. Increasing insight into modifying mechanisms opens up new perspectives, dispelling the idea of genetic disorders being caused by one single gene.
  • Variant 2:
    Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Cystic fibrosis(DOID_1485)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered epithelial chloride secretion 
    Evidence:
    Study on animal models 
    Effect:
    SLC26A9 as a disease modifier and supported an important role of this alternative chloride channel in the pathophysiology of several organ manifestations in CF
    Reference:
    Title:
    Role of the SLC26A9 Chloride Channel as Disease Modifier and Potential Therapeutic Target in Cystic Fibrosis.
    Species studied:
    Human
    Abstract:
    The solute carrier family 26, member 9 (SLC26A9) is an epithelial chloride channel that is expressed in several organs affected in patients with cystic fibrosis (CF) including the lungs, the pancreas, and the intestine. Emerging evidence suggests SLC26A9 as a modulator of wild-type and mutant CFTR function, and as a potential alternative target to circumvent the basic ion transport defect caused by deficient CFTR-mediated chloride transport in CF. In this review, we summarize in vitro studies that revealed multifaceted molecular and functional interactions between SLC26A9 and CFTR that may be implicated in normal transepithelial chloride secretion in health, as well as impaired chloride/fluid transport in CF. Further, we focus on recent genetic association studies and investigations utilizing genetically modified mouse models that identified SLC26A9 as a disease modifier and supported an important role of this alternative chloride channel in the pathophysiology of several organ manifestations in CF, as well as other chronic lung diseases such as asthma and non-CF bronchiectasis. Collectively, these findings and the overlapping endogenous expression with CFTR suggest SLC26A9 an attractive novel therapeutic target that may be exploited to restore epithelial chloride secretion in patients with CF irrespective of their CFTR genotype. In addition, pharmacological activation of SLC26A9 may help to augment the effect of CFTR modulator therapies in patients with CF carrying responsive mutations such as the most common disease-causing mutation F508del-CFTR. However, future research and development including the identification of compounds that activate SLC26A9-mediated chloride transport are needed to explore this alternative chloride channel as a therapeutic target in CF and potentially other muco-obstructive lung diseases.
  • Gene:
    Genomic location:
    chr1:205899595
    dbSNP ID:
    Alias:
    SLC26A9:rs7512462
    Target disease:
    Cystic fibrosis(DOID_1485)
    Effect type:
    Pleiotropy 
    Modifier effect:
    Altered phenotype 
    Evidence:
    FEVL(p=0.011), FEF50%(p=0.019), FEF75%(p=0.036) and FEF25-75%(p=0.008); 
    Effect:
    The clinical and laboratory variability of CF were associated with the variants in the genes of SLC family
    Reference:
    Title:
    Association of clinical severity of cystic fibrosis with variants in the SLC gene family (SLC6A14, SLC26A9, SLC11A1 and SLC9A3).
    Species studied:
    Human
    Abstract:
    Cystic fibrosis (CF) manifests with clinical and histopathological variability depending on environmental and genetic factors. Moreover, the genes encoding ion channels[rs3788766(SLC6A14), rs7512462(SLC26A9), rs17235416(SLC11A1) and rs17563161(SLC9A3)] have been insufficiently studied as modifier genes. Then, our objective was associate the variants in the genes of SLC family with 43 CF severity markers.
  • Gene:
    Genomic location:
    chr1:205899595
    dbSNP ID:
    Alias:
    SLC26A9:rs7512462
    Target disease:
    Cystic fibrosis(DOID_1485)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    P=0.02 
    Effect:
    The genetic modifier SLC26A9 contributes to disease severity in the CF pancreas and intestine at birth and here we assess its relationship with disease severity and therapeutic response in the airways.
    Reference:
    Title:
    Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics.
    Species studied:
    Human
    Abstract:
    Cystic fibrosis is realizing the promise of personalized medicine. Recent advances in drug development that target the causal CFTR directly result in lung function improvement, but variability in response is demanding better prediction of outcomes to improve management decisions. The genetic modifier SLC26A9 contributes to disease severity in the CF pancreas and intestine at birth and here we assess its relationship with disease severity and therapeutic response in the airways. SLC26A9 association with lung disease was assessed in individuals from the Canadian and French CF Gene Modifier consortia with CFTR-gating mutations and in those homozygous for the common Phe508del mutation. Variability in response to a CFTR-directed therapy attributed to SLC26A9 genotype was assessed in Canadian patients with gating mutations. A primary airway model system determined if SLC26A9 shows modification of Phe508del CFTR function upon treatment with a CFTR corrector. In those with gating mutations that retain cell surface-localized CFTR we show that SLC26A9 modifies lung function while this is not the case in individuals homozygous for Phe508del where cell surface expression is lacking. Treatment response to ivacaftor, which aims to improve CFTR-channel opening probability in patients with gating mutations, shows substantial variability in response, 28% of which can be explained by rs7512462 in SLC26A9 (P=0.0006). When homozygous Phe508del primary bronchial cells are treated to restore surface CFTR, SLC26A9 likewise modifies treatment response (P=0.02). Our findings indicate that SLC26A9 airway modification requires CFTR at the cell surface, and that a common variant in SLC26A9 may predict response to CFTR-directed therapeutics.
  • Gene:
    Genomic location:
    chr1:205899595
    dbSNP ID:
    Alias:
    SLC26A9:rs7512462
    Target disease:
    Cystic fibrosis(DOID_1485)
    Effect type:
    Pleiotropy 
    Modifier effect:
    Altered phenotype 
    Evidence:
    From review article 
    Effect:
    Meconium ileus + lung disease
    Reference:
    Title:
    Disease-modifying genes and monogenic disorders: experience in cystic fibrosis.
    Species studied:
    Human
    Abstract:
    The mechanisms responsible for the determination of phenotypes are still not well understood; however, it has become apparent that modifier genes must play a considerable role in the phenotypic heterogeneity of Mendelian disorders. Significant advances in genetic technologies and molecular medicine allow huge amounts of information to be generated from individual samples within a reasonable time frame. This review focuses on the role of modifier genes using the example of cystic fibrosis, the most common lethal autosomal recessive disorder in the white population, and discusses the advantages and limitations of candidate gene approaches versus genome-wide association studies. Moreover, the implications of modifier gene research for other monogenic disorders, as well as its significance for diagnostic, prognostic, and therapeutic approaches are summarized. Increasing insight into modifying mechanisms opens up new perspectives, dispelling the idea of genetic disorders being caused by one single gene.
  • Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Cystic fibrosis(DOID_1485)
    Effect type:
    Pleiotropy 
    Modifier effect:
    Altered the contributing organ 
    Evidence:
    P<2.81×10(-11) 
    Effect:
    The associated modifier loci colocalized with expression quantitative trait loci in the pancreas
    Reference:
    Title:
    Genetic association and transcriptome integration identify contributing genes and tissues at cystic fibrosis modifier loci.
    Species studied:
    Human
    Abstract:
    Cystic Fibrosis (CF) exhibits morbidity in several organs, including progressive lung disease in all patients and intestinal obstruction at birth (meconium ileus) in ~15%. Individuals with the same causal CFTR mutations show variable disease presentation which is partly attributed to modifier genes. With >6,500 participants from the International CF Gene Modifier Consortium, genome-wide association investigation identified a new modifier locus for meconium ileus encompassing ATP12A on chromosome 13 (min p = 3.83x10(-10)); replicated loci encompassing SLC6A14 on chromosome X and SLC26A9 on chromosome 1, (min p<2.2x10(-16), 2.81x10(-11), respectively); and replicated a suggestive locus on chromosome 7 near PRSS1 (min p = 2.55x10(-7)). PRSS1 is exclusively expressed in the exocrine pancreas and was previously associated with non-CF pancreatitis with functional characterization demonstrating impact on PRSS1 gene expression. We thus asked whether the other meconium ileus modifier loci impact gene expression and in which organ. We developed and applied a colocalization framework called the Simple Sum (SS) that integrates regulatory and genetic association information, and also contrasts colocalization evidence across tissues or genes. The associated modifier loci colocalized with expression quantitative trait loci (eQTLs) for ATP12A (p = 3.35x10(-8)), SLC6A14 (p = 1.12x10(-10)) and SLC26A9 (p = 4.48x10(-5)) in the pancreas, even though meconium ileus manifests in the intestine. The meconium ileus susceptibility locus on chromosome X appeared shifted in location from a previously identified locus for CF lung disease severity. Using the SS we integrated the lung disease association locus with eQTLs from nasal epithelia of 63 CF participants and demonstrated evidence of colocalization with airway-specific regulation of SLC6A14 (p = 2.3x10(-4)). Cystic Fibrosis is realizing the promise of personalized medicine, and identification of the contributing organ and understanding of tissue specificity for a gene modifier is essential for the next phase of personalizing therapeutic strategies.