Gene "SMN2"
Found 2 records
Gene information
Gene symbol:
SMN2
See related:
Ensembl: ENSG00000205571, Gene ID: 6607
Additive variants :
Undetected
Genetic interaction partners
No data
Modifier statisitcs
Record:
Disorder:
Vriant:
Reference:
Effect type:
Expressivity(2)  
Modifier effect:
Altered severity(2)  
Details:
  • Variant 1:
    Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    Assessment of genotype–phenotype associations and gene activity study 
    Effect:
    The A-44G change markedly decreases the binding affinity of HuR, resulting in a moderate increase in exon 7 inclusion.
    Reference:
    Title:
    A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy
    Species studied:
    Human
    Abstract:
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by reduced expression of survival of motor neuron (SMN), a protein expressed in humans by two paralogous genes, SMN1 and SMN2. These genes are nearly identical, except for 10 single-nucleotide differences and a 5-nucleotide insertion in SMN2. SMA is subdivided into four main types, with type I being the most severe. SMN2 copy number is a key positive modifier of the disease, but it is not always inversely correlated with clinical severity. We previously reported the c.859G>C variant in SMN2 exon 7 as a positive modifier in several patients. We have now identified A-44G as an additional positive disease modifier, present in a group of patients carrying 3 SMN2 copies but displaying milder clinical phenotypes than other patients with the same SMN2 copy number. One of the three SMN2 copies appears to have been converted from SMN1, but except for the C6T transition, no other changes were detected. Analyzed with minigenes, SMN1C6T displayed a 20% increase in exon 7 inclusion, compared to SMN2. Through systematic mutagenesis, we found that the improvement in exon 7 splicing is mainly attributable to the A-44G transition in intron 6. Using RNA-affinity chromatography and mass spectrometry, we further uncovered binding of the RNA-binding protein HuR to the -44 region, where it acts as a splicing repressor. The A-44G change markedly decreases the binding affinity of HuR, resulting in a moderate increase in exon 7 inclusion.
  • Variant 2:
    Gene:
    Genomic location:
    dbSNP ID:
    Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered severity 
    Evidence:
    Gene activity study 
    Effect:
    the change creates a new exonic splicing enhancer element and increases the amount of full-length transcripts, thus resulting in the less severe phenotypes.
    Reference:
    Title:
    A positive modifier of spinal muscular atrophy in the SMN2 gene
    Species studied:
    Human
    Abstract:
    Spinal muscular atrophy (SMA) is a common autosomal-recessive motor neuron disease caused by the homozygous loss of the SMN1 gene. A nearly identical gene, SMN2, has been shown to decrease the severity of SMA in a dose-dependent manner. However SMN2 is not the sole phenotypic modifier, because there are discrepant SMA cases in which the SMN2 copy number does not explain the clinical phenotype. This report describes three unrelated SMA patients who possessed SMN2 copy numbers that did not correlate with the observed mild clinical phenotypes. A single base substitution in SMN2, c.859G>C,, was identified in exon 7 in the patients' DNA. We now show that the change creates a new exonic splicing enhancer element and increases the amount of full-length transcripts, thus resulting in the less severe phenotypes. This demonstrates that the c.859G>C substitution is a positive modifier of the SMA phenotype and that not all SMN2 genes are equivalent. We have shown not only that the SMA phenotype is modified by the number of SMN2 genes but that SMN2 sequence variations can also affect the disease severity.