Variant "KL:c.1109G>C(p.Cys370Ser)"
Search results: 9 records
Variant information
Gene:
KL 
Variant:
KL:c.1109G>C(p.Cys370Ser) 
Genomic location:
chr13:33628193(hg19) 
HGVS:
SO Term RefSeq
protein_coding NM_004795.3:c.1109G>C(p.Cys370Ser)
Alias:
KL:C370S 
dbSNP ID:
GWAS trait:
no data 
Modifier statisitcs
Record:
Disorder:
Reference:
Effect type:
Expressivity(8) ,Dominance(1)  
Modifier effect:
Altered onset time and severity(3) ,Altered HbF levels(1) ,Altered klotho levels(1) ,Expressivity(1) ,Heterozygote susceptibility(1) ,Risk factor(1) ,Risk factor and altered life span(1)  
Details:
  • Target disease:
    Arteriosclerosis (DOID_2349)
    Effect type:
    Dominance 
    Modifier effect:
    Heterozygote susceptibility 
    Evidence:
    Combined OR=2.59, P<0.0023 
    Effect:
    The KL-VS allele influences the trafficking and catalytic activity of klotho, and that variation in klotho function contributes to heterogeneity in the onset and severity of human age-related phenotypes.
    Alias in reference:
    KL:C370S
    Reference:
    Title:
    Association of human aging with a functional variant of klotho.
    Species studied:
    Human
    Abstract:
    Mice deficient in Klotho gene expression exhibit a syndrome resembling premature human aging. To determine whether variation in the human KLOTHO locus contributes to survival, we applied two newly characterized polymorphic microsatellite markers flanking the gene in a population-based association study. In a cohort chosen for its homogeneity, Bohemian Czechs, we demonstrated significant differences in selected marker allele frequencies between newborn and elderly individuals (P < 0.05). These results precipitated a search for functional variants of klotho. We identified an allele, termed KL-VS, containing six sequence variants in complete linkage disequilibrium, two of which result in amino acid substitutions F352V and C370S. Homozygous elderly individuals were underrepresented in three distinct populations: Bohemian Czechs, Baltimore Caucasians, and Baltimore African-Americans [combined odds ratio (OR) = 2.59, P < 0.0023]. In a transient transfection assay, secreted levels of klotho harboring V352 are reduced 6-fold, whereas extracellular levels of the S370 form are increased 2.9-fold. The V352/S370 double mutant exhibits an intermediate phenotype (1.6-fold increase), providing a rare example of intragenic complementation in cis by human single nucleotide polymorphisms. The remarkable conservation of F352 among homologous proteins suggests that it is functionally important. The corresponding substitution, F289V, in the closest human klotho paralog with a known substrate, cBGL1, completely eliminates its ability to cleave p-nitrophenyl-beta-D-glucoside. These results suggest that the KL-VS allele influences the trafficking and catalytic activity of klotho, and that variation in klotho function contributes to heterogeneity in the onset and severity of human age-related phenotypes.
  • Target disease:
    Breast Cancer (DOID_1612)
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor 
    Evidence:
    HR=1.40, 95% CI: 1.08-1.83, P=0.01 
    Effect:
    KL-VS as a breast and ovarian cancer risk modifier among BRCA1 mutation carriers
    Alias in reference:
    KL:C370S
    Reference:
    Title:
    Functional variant of KLOTHO: a breast cancer risk modifier among BRCA1 mutation carriers of Ashkenazi origin.
    Species studied:
    Human
    Abstract:
    Klotho is a transmembrane protein that can be shed and act as a circulating hormone and is a putative tumor suppressor in breast cancer. A functional variant of KLOTHO (KL-VS) contains two amino acid substitutions F352V and C370S and shows reduced activity. Germ-line mutations in BRCA1 and BRCA2 substantially increase lifetime risk of breast and ovarian cancers. Yet, penetrance of deleterious BRCA1 and BRCA2 mutations is incomplete even among carriers of identical mutations. We examined the association between KL-VS and cancer risk among 1115 Ashkenazi Jewish women: 236 non-carriers, 631 BRCA1 (185delAG, 5382insC) carriers and 248 BRCA2 (6174delT) carriers. Among BRCA1 carriers, heterozygosity for the KL-VS allele was associated with increased breast and ovarian cancer risk (hazard ratio 1.40, 95% confidence intervals 1.08-1.83, P=0.01) and younger age at breast cancer diagnosis (median age 48 vs 43 P=0.04). KLOTHO and BRCA2 are located on 13q12, and we identified linkage disequilibrium between KL-VS and BRCA2 6174delT mutation. Studies in breast cancer cells showed reduced growth inhibitory activity and reduced secretion of klotho F352V compared with wild-type klotho. These data suggest KL-VS as a breast and ovarian cancer risk modifier among BRCA1 mutation carriers. If validated in additional cohorts, the presence of KL-VS may serve as a predictor of cancer risk among BRCA1 mutation carriers.
  • Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered onset time and severity 
    Evidence:
    Combined OR=2.59, P<0.0023 
    Effect:
    The KL-VS allele influences the trafficking and catalytic activity of klotho, and that variation in klotho function contributes to heterogeneity in the onset and severity of human age-related phenotypes.
    Alias in reference:
    KL:C370S
    Reference:
    Title:
    Association of human aging with a functional variant of klotho.
    Species studied:
    Human
    Abstract:
    Mice deficient in Klotho gene expression exhibit a syndrome resembling premature human aging. To determine whether variation in the human KLOTHO locus contributes to survival, we applied two newly characterized polymorphic microsatellite markers flanking the gene in a population-based association study. In a cohort chosen for its homogeneity, Bohemian Czechs, we demonstrated significant differences in selected marker allele frequencies between newborn and elderly individuals (P < 0.05). These results precipitated a search for functional variants of klotho. We identified an allele, termed KL-VS, containing six sequence variants in complete linkage disequilibrium, two of which result in amino acid substitutions F352V and C370S. Homozygous elderly individuals were underrepresented in three distinct populations: Bohemian Czechs, Baltimore Caucasians, and Baltimore African-Americans [combined odds ratio (OR) = 2.59, P < 0.0023]. In a transient transfection assay, secreted levels of klotho harboring V352 are reduced 6-fold, whereas extracellular levels of the S370 form are increased 2.9-fold. The V352/S370 double mutant exhibits an intermediate phenotype (1.6-fold increase), providing a rare example of intragenic complementation in cis by human single nucleotide polymorphisms. The remarkable conservation of F352 among homologous proteins suggests that it is functionally important. The corresponding substitution, F289V, in the closest human klotho paralog with a known substrate, cBGL1, completely eliminates its ability to cleave p-nitrophenyl-beta-D-glucoside. These results suggest that the KL-VS allele influences the trafficking and catalytic activity of klotho, and that variation in klotho function contributes to heterogeneity in the onset and severity of human age-related phenotypes.
  • Target disease:
    Dermal Atrophy (HP:0004334)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered onset time and severity 
    Evidence:
    Combined OR=2.59, P<0.0023 
    Effect:
    The KL-VS allele influences the trafficking and catalytic activity of klotho, and that variation in klotho function contributes to heterogeneity in the onset and severity of human age-related phenotypes.
    Alias in reference:
    KL:C370S
    Reference:
    Title:
    Association of human aging with a functional variant of klotho.
    Species studied:
    Human
    Abstract:
    Mice deficient in Klotho gene expression exhibit a syndrome resembling premature human aging. To determine whether variation in the human KLOTHO locus contributes to survival, we applied two newly characterized polymorphic microsatellite markers flanking the gene in a population-based association study. In a cohort chosen for its homogeneity, Bohemian Czechs, we demonstrated significant differences in selected marker allele frequencies between newborn and elderly individuals (P < 0.05). These results precipitated a search for functional variants of klotho. We identified an allele, termed KL-VS, containing six sequence variants in complete linkage disequilibrium, two of which result in amino acid substitutions F352V and C370S. Homozygous elderly individuals were underrepresented in three distinct populations: Bohemian Czechs, Baltimore Caucasians, and Baltimore African-Americans [combined odds ratio (OR) = 2.59, P < 0.0023]. In a transient transfection assay, secreted levels of klotho harboring V352 are reduced 6-fold, whereas extracellular levels of the S370 form are increased 2.9-fold. The V352/S370 double mutant exhibits an intermediate phenotype (1.6-fold increase), providing a rare example of intragenic complementation in cis by human single nucleotide polymorphisms. The remarkable conservation of F352 among homologous proteins suggests that it is functionally important. The corresponding substitution, F289V, in the closest human klotho paralog with a known substrate, cBGL1, completely eliminates its ability to cleave p-nitrophenyl-beta-D-glucoside. These results suggest that the KL-VS allele influences the trafficking and catalytic activity of klotho, and that variation in klotho function contributes to heterogeneity in the onset and severity of human age-related phenotypes.
  • Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Risk factor and altered life span 
    Evidence:
    1.57-fold (95% CI: 1.23 to 1.98) increased odds ratio (or) for 5-year survival in two independent populations (p<0.0002) 
    Effect:
    The KL-VS allele confers a heterozygous advantage in conjunction with a marked homozygous disadvantage for HDL-C levels, SBP, stroke, and longevity
    Alias in reference:
    KL:C370S
    Reference:
    Title:
    Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity.
    Species studied:
    Human
    Abstract:
    We previously identified a functional variant of KLOTHO, termed KL-VS, that is associated with human aging and early-onset occult coronary artery disease. Here, we determine whether the KL-VS allele influences cardiovascular disease risk factors, cardiovascular events, and ultimately, mortality. A total of 525 Ashkenazi Jews composed of 216 probands (age > or =95 years) and 309 unrelated individuals (ages 51 to 94) were genotyped for the KL-VS allele. In concordance with our previous data in Czech individuals (age > or =79; P<0.01), a heterozygous advantage for longevity was observed for individuals > or =79 years of age (P<0.004). Combined analysis indicates a 1.57-fold (95% CI, 1.23 to 1.98) increased odds ratio (OR) for 5-year survival in two independent populations (P<0.0002). Cardiovascular disease risk factors were assessed through multivariate regression analysis, demonstrating that high-density lipoprotein cholesterol (HDL-C; P<0.05) and systolic blood pressure (SBP; P<0.008) are associated with KL-VS genotype. History of vascular events was analyzed using logistic regression, indicating that after adjustment for traditional risk factors, heterozygous individuals were at significantly lower risk for stroke than wild-type individuals (OR, 5.88; 95% CI, 1.18 to 29.41), whereas homozygous KL-VS individuals had the highest risk (OR, 30.65; 95% CI, 2.55 to 368.00). Similarly, prospective analysis of mortality in probands using Cox regression indicates that wild-type individuals have a 2.15-fold (95% CI, 1.18 to 3.91) and homozygous KL-VS individuals a 4.49-fold (95% CI, 1.35 to 14.97) increase in relative risk for mortality after adjusting for potential confounders. Thus, cross-sectional and prospective studies confirm a genetic model in which the KL-VS allele confers a heterozygous advantage in conjunction with a marked homozygous disadvantage for HDL-C levels, SBP, stroke, and longevity.
  • Target disease:
    Effect type:
    Expressivity 
    Modifier effect:
    Altered klotho levels 
    Evidence:
    Study on animal models 
    Effect:
    This allele increased klotho levels in serum enhance cognition and counteract cognitive deficits at different life stages.
    Alias in reference:
    KL:C370S
    Reference:
    Title:
    Life extension factor klotho enhances cognition.
    Species studied:
    Human
    Abstract:
    Aging is the primary risk factor for cognitive decline, an emerging health threat to aging societies worldwide. Whether anti-aging factors such as klotho can counteract cognitive decline is unknown. We show that a lifespan-extending variant of the human KLOTHO gene, KL-VS, is associated with enhanced cognition in heterozygous carriers. Because this allele increased klotho levels in serum, we analyzed transgenic mice with systemic overexpression of klotho. They performed better than controls in multiple tests of learning and memory. Elevating klotho in mice also enhanced long-term potentiation, a form of synaptic plasticity, and enriched synaptic GluN2B, an N-methyl-D-aspartate receptor (NMDAR) subunit with key functions in learning and memory. Blockade of GluN2B abolished klotho-mediated effects. Surprisingly, klotho effects were evident also in young mice and did not correlate with age in humans, suggesting independence from the aging process. Augmenting klotho or its effects may enhance cognition and counteract cognitive deficits at different life stages.
  • Target disease:
    Osteoporosis (DOID_11476)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered onset time and severity 
    Evidence:
    Combined OR=2.59, P<0.0023 
    Effect:
    The KL-VS allele influences the trafficking and catalytic activity of klotho, and that variation in klotho function contributes to heterogeneity in the onset and severity of human age-related phenotypes.
    Alias in reference:
    KL:C370S
    Reference:
    Title:
    Association of human aging with a functional variant of klotho.
    Species studied:
    Human
    Abstract:
    Mice deficient in Klotho gene expression exhibit a syndrome resembling premature human aging. To determine whether variation in the human KLOTHO locus contributes to survival, we applied two newly characterized polymorphic microsatellite markers flanking the gene in a population-based association study. In a cohort chosen for its homogeneity, Bohemian Czechs, we demonstrated significant differences in selected marker allele frequencies between newborn and elderly individuals (P < 0.05). These results precipitated a search for functional variants of klotho. We identified an allele, termed KL-VS, containing six sequence variants in complete linkage disequilibrium, two of which result in amino acid substitutions F352V and C370S. Homozygous elderly individuals were underrepresented in three distinct populations: Bohemian Czechs, Baltimore Caucasians, and Baltimore African-Americans [combined odds ratio (OR) = 2.59, P < 0.0023]. In a transient transfection assay, secreted levels of klotho harboring V352 are reduced 6-fold, whereas extracellular levels of the S370 form are increased 2.9-fold. The V352/S370 double mutant exhibits an intermediate phenotype (1.6-fold increase), providing a rare example of intragenic complementation in cis by human single nucleotide polymorphisms. The remarkable conservation of F352 among homologous proteins suggests that it is functionally important. The corresponding substitution, F289V, in the closest human klotho paralog with a known substrate, cBGL1, completely eliminates its ability to cleave p-nitrophenyl-beta-D-glucoside. These results suggest that the KL-VS allele influences the trafficking and catalytic activity of klotho, and that variation in klotho function contributes to heterogeneity in the onset and severity of human age-related phenotypes.
  • Target disease:
    Ovarian Cancer (DOID_2394)
    Effect type:
    Expressivity 
    Modifier effect:
    Expressivity 
    Evidence:
    HR=1.40, 95% CI: 1.08-1.83, P=0.01 
    Effect:
    KL-VS as a breast and ovarian cancer risk modifier among BRCA1 mutation carriers
    Alias in reference:
    KL:C370S
    Reference:
    Title:
    Functional variant of KLOTHO: a breast cancer risk modifier among BRCA1 mutation carriers of Ashkenazi origin.
    Species studied:
    Human
    Abstract:
    Klotho is a transmembrane protein that can be shed and act as a circulating hormone and is a putative tumor suppressor in breast cancer. A functional variant of KLOTHO (KL-VS) contains two amino acid substitutions F352V and C370S and shows reduced activity. Germ-line mutations in BRCA1 and BRCA2 substantially increase lifetime risk of breast and ovarian cancers. Yet, penetrance of deleterious BRCA1 and BRCA2 mutations is incomplete even among carriers of identical mutations. We examined the association between KL-VS and cancer risk among 1115 Ashkenazi Jewish women: 236 non-carriers, 631 BRCA1 (185delAG, 5382insC) carriers and 248 BRCA2 (6174delT) carriers. Among BRCA1 carriers, heterozygosity for the KL-VS allele was associated with increased breast and ovarian cancer risk (hazard ratio 1.40, 95% confidence intervals 1.08-1.83, P=0.01) and younger age at breast cancer diagnosis (median age 48 vs 43 P=0.04). KLOTHO and BRCA2 are located on 13q12, and we identified linkage disequilibrium between KL-VS and BRCA2 6174delT mutation. Studies in breast cancer cells showed reduced growth inhibitory activity and reduced secretion of klotho F352V compared with wild-type klotho. These data suggest KL-VS as a breast and ovarian cancer risk modifier among BRCA1 mutation carriers. If validated in additional cohorts, the presence of KL-VS may serve as a predictor of cancer risk among BRCA1 mutation carriers.
  • Target disease:
    Sickle Cell Anemia (DOID_10923)
    Effect type:
    Expressivity 
    Modifier effect:
    Altered HbF levels 
    Evidence:
    Bayesian approach 
    Effect:
    Different genes might modulate the rate of decline of HbF and the final level of HbF levels in sickle cell anemia.
    Alias in reference:
    KL:c.1109G>C(p.Cys370Ser)
    Reference:
    Title:
    Fetal hemoglobin in sickle cell anemia: Bayesian modeling of genetic associations.
    Species studied:
    Human
    Abstract:
    We genotyped single nucleotide polymorphisms (SNPs) in: (1) the beta-globin gene-like cluster, (2) quantitative trait loci (QTL) previously associated with fetal hemoglobin (HbF) concentration on chromosomes 6q, 8q, and Xp, and (3) candidate genes that could effect HbF levels, in sickle cell anemia subjects. HbF concentration was modeled as a continuous variable with values in a finite interval using a novel Bayesian approach. We first tested the associations of SNPs with HbF in a group of 1,518 adults and children (CSSCD study), and validated the results in a second independent group of 211 adults (MSH study). In subjects aged >or=24 years, 5 SNPs in TOX (8q12.1), 2 SNPs in the beta-globin gene-like cluster, 2 SNPs in the Xp QTL, and 1 SNP in chromosome 15q22 were associated with HbF in the CSSCD and also validated in the MSH. Four other SNPs in 15q22 were associated with HbF only in the larger CSSCD data. When patients aged <24 years in the CSSCD were examined, additional genes, including 4 with roles in nitric oxide metabolism, were associated with HbF level. These studies confirm prior analyses using traditional analytical approaches showing associations of SNPs in TOX, GPM6B, and the beta-globin gene-like cluster with HbF levels. We also identified an additional candidate regulatory region in chromosome 15q22 that is associated with HbF level. By stratifying patients by age, our results also suggest that different genes might modulate the rate of decline of HbF and the final level of HbF levels in sickle cell anemia.