Basic Information
Accession number
GCA_000007545.1
Release date
2003-03-21
Organism
Salmonella enterica subsp. enterica serovar Typhi str. Ty2
Species name
Salmonella enterica

Assembly level
Complete Genome
Assembly name
ASM754v1
Assembly submitter
Laboratory of Genetics, University of Wisconsin - Madison
Assembly Type
haploid
Genome size
4.8 Mb
GC percent
52.0
Contig count
1

Collection date
-
Sample location
-
Host
-
Isolation source
-
Isolate type
-
Strain
Ty2
Isolate
-
ARG List
ORF_ID Pass_Bitscore Best_Hit_Bitscore Best_Hit_ARO Best_Identities ARO Model_type SNPs_in_Best_Hit_ARO Other_SNPs Drug class Resistance mechanism AMR gene family Description
AE014613.1_119 # 135975 # 136919 500.0 582.793 leuO 86.94 ARO:3003843 protein homolog model nucleoside antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump leuO, a LysR family transcription factor, exists in a wide variety of bacteria of the family Enterobacteriaceae and is involved in the regulation of as yet unidentified genes affecting the stress response and pathogenesis expression. LeuO is also an activator of the MdtNOP efflux pump.
AE014613.1_388 # 447848 # 450961 1900.0 2020.74 acrD 94.31 ARO:3000491 protein homolog model aminoglycoside antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AcrD is an aminoglycoside efflux pump expressed in E. coli. Its expression can be induced by indole, and is regulated by baeRS and cpxAR.
AE014613.1_567 # 636507 # 638153 400.0 711.835 ArnT 62.43 ARO:3005053 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase ArnT is involved in Cell Wall Biosynthesis, specifically 4-amino-4-deoxy-L-arabinose (Ara4N). It confers resistance to peptide antibiotics.
AE014613.1_570 # 641025 # 642008 550.0 590.497 PmrF 87.74 ARO:3003578 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase PmrF is required for the synthesis and transfer of 4-amino-4-deoxy-L-arabinose (Ara4N) to Lipid A, which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. pmrF corresponds to 1 locus in Pseudomonas aeruginosa PAO1 and 1 locus in Pseudomonas aeruginosa LESB58.
AE014613.1_740 # 820714 # 821436 450.0 467.233 baeR 96.25 ARO:3000828 protein homolog model aminoglycoside antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump BaeR is a response regulator that promotes the expression of MdtABC and AcrD efflux complexes.
AE014613.1_743 # 824245 # 827325 1800.0 1857.03 mdtC 91.51 ARO:3000794 protein homolog model aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MdtC is a transporter that forms a heteromultimer complex with MdtB to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex. In the absence of MdtB, MdtC can form a homomultimer complex that results in a functioning efflux complex with a narrower drug specificity. mdtC corresponds to 3 loci in Pseudomonas aeruginosa PAO1 (gene name: muxC/muxB) and 3 loci in Pseudomonas aeruginosa LESB58.
AE014613.1_744 # 827326 # 830448 1800.0 1870.9 mdtB 91.83 ARO:3000793 protein homolog model aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MdtB is a transporter that forms a heteromultimer complex with MdtC to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex.
AE014613.1_795 # 888023 # 889189 700.0 709.909 ugd 88.14 ARO:3003577 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase PmrE is required for the synthesis and transfer of 4-amino-4-deoxy-L-arabinose (Ara4N) to Lipid A, which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin.
AE014613.1_865 # 951395 # 952819 900.0 928.702 MdtK 99.37 ARO:3001327 protein homolog model fluoroquinolone antibiotic antibiotic efflux multidrug and toxic compound extrusion (MATE) transporter A multidrug and toxic compound extrusions (MATE) transporter conferring resistance to norfloxacin, doxorubicin and acriflavine.
AE014613.1_937 # 1021875 # 1022597 470.0 499.59 sdiA 98.75 ARO:3000826 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump SdiA is a cell division regulator that is also a positive regulator of AcrAB only when it's expressed from a plasmid. When the sdiA gene is on the chromosome, it has no effect on expression of acrAB.
AE014613.1_1393 # 1447973 # 1448335 150.0 177.178 Klebsiella pneumoniae KpnE 76.67 ARO:3004580 protein homolog model macrolide antibiotic; aminoglycoside antibiotic; cephalosporin; tetracycline antibiotic; peptide antibiotic; rifamycin antibiotic; disinfecting agents and antiseptics antibiotic efflux small multidrug resistance (SMR) antibiotic efflux pump KpnE subunit of KpnEF resembles EbrAB from E. coli. Mutation in KpnEF resulted in increased susceptibility to cefepime, ceftriaxon, colistin, erythromycin, rifampin, tetracycline, and streptomycin as well as enhanced sensitivity toward sodium dodecyl sulfate, deoxycholate, dyes, benzalkonium chloride, chlorhexidine, and triclosan.
AE014613.1_1394 # 1448322 # 1448651 150.0 185.267 Klebsiella pneumoniae KpnF 87.16 ARO:3004583 protein homolog model macrolide antibiotic; aminoglycoside antibiotic; cephalosporin; tetracycline antibiotic; peptide antibiotic; rifamycin antibiotic; disinfecting agents and antiseptics antibiotic efflux small multidrug resistance (SMR) antibiotic efflux pump KpnF subunit of KpnEF resembles EbrAB from E. coli. Mutation in KpnEF resulted in increased susceptibility to cefepime, ceftriaxon, colistin, erythromycin, rifampin, tetracycline, and streptomycin as well as enhanced sensitivity toward sodium dodecyl sulfate, deoxycholate, dyes, benzalkonium chloride, chlorhexidine, and triclosan.
AE014613.1_1435 # 1485351 # 1485734 230.0 251.136 marA 95.24 ARO:3000263 protein homolog model fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; glycylcycline; cephamycin; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic efflux; reduced permeability to antibiotic resistance-nodulation-cell division (RND) antibiotic efflux pump; General Bacterial Porin with reduced permeability to beta-lactams In the presence of antibiotic stress, E. coli overexpresses the global activator protein MarA, which besides inducing MDR efflux pump AcrAB, also down- regulates synthesis of the porin OmpF.
AE014613.1_1527 # 1582846 # 1583364 275.0 300.442 AAC(6')-Iy 97.93 ARO:3002569 protein homolog model aminoglycoside antibiotic antibiotic inactivation AAC(6') AAC(6')-Iy is a chromosomal-encoded aminoglycoside acetyltransferase in S. enteritidis and S. enterica. Regulatory mutation required to increase expression of this chromosomally-encoded gene for resistance. In the specific system, aminoglycoside resistance was due to a transcriptional fusion secondary to a chromosomal deletion in which the downstream aac(6')-Iy gene was placed under the control of the upstream nmpC promoter.
AE014613.1_1954 # 1998383 # 2000131 1000.0 1160.59 msbA 96.39 ARO:3003950 protein homolog model nitroimidazole antibiotic antibiotic efflux ATP-binding cassette (ABC) antibiotic efflux pump MsbA is a multidrug resistance transporter homolog from E. coli and belongs to a superfamily of transporters that contain an adenosine triphosphate (ATP) binding cassette (ABC) which is also called a nucleotide-binding domain (NBD). MsbA is a member of the MDR-ABC transporter group by sequence homology. MsbA transports lipid A, a major component of the bacterial outer cell membrane, and is the only bacterial ABC transporter that is essential for cell viability.
AE014613.1_2031 # 2086937 # 2088169 700.0 726.087 Escherichia coli mdfA 87.93 ARO:3001328 protein homolog model tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Multidrug efflux pump in E. coli. This multidrug efflux system was originally identified as the Cmr/CmlA chloramphenicol exporter.
AE014613.1_2177 # 2238199 # 2238876 400.0 424.091 kdpE 91.96 ARO:3003841 protein homolog model aminoglycoside antibiotic antibiotic efflux kdpDE kdpE is a transcriptional activator that is part of the two-component system KdpD/KdpE that is studied for its regulatory role in potassium transport and has been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria. kdpE regulates a range of virulence loci through direct promoter binding.
AE014613.1_2387 # 2454627 # 2455820 670.0 694.886 Escherichia coli acrA 91.44 ARO:3004043 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AcrA is a subunit of the AcrAB-TolC multidrug efflux system found in E. coli.
AE014613.1_2388 # 2455843 # 2458992 1900.0 1999.17 acrB 94.47 ARO:3000216 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump Protein subunit of AcrA-AcrB-TolC multidrug efflux complex. AcrB functions as a herterotrimer which forms the inner membrane component and is primarily responsible for substrate recognition and energy transduction by acting as a drug/proton antiporter.
AE014613.1_2489 # 2554945 # 2556057 250.0 268.47 vanG 38.98 ARO:3002909 protein homolog model glycopeptide antibiotic antibiotic target alteration glycopeptide resistance gene cluster; Van ligase VanG is a D-Ala-D-Ala ligase homolog that can synthesize D-Ala-D-Ser, an alternative substrate for peptidoglycan synthesis that reduces vancomycin binding affinity in Enterococcus faecalis.
AE014613.1_2712 # 2799873 # 2800403 280.0 337.806 emrR 93.14 ARO:3000516 protein homolog model fluoroquinolone antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump EmrR is a negative regulator for the EmrAB-TolC multidrug efflux pump in E. coli. Mutations lead to EmrAB-TolC overexpression.
AE014613.1_2713 # 2800530 # 2801702 675.0 702.205 emrA 89.49 ARO:3000027 protein homolog model fluoroquinolone antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump EmrA is a membrane fusion protein, providing an efflux pathway with EmrB and TolC between the inner and outer membranes of E. coli, a Gram-negative bacterium.
AE014613.1_2714 # 2801719 # 2803257 900.0 994.956 emrB 95.51 ARO:3000074 protein homolog model fluoroquinolone antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump emrB is a translocase in the emrB -TolC efflux protein in E. coli. It recognizes substrates including carbonyl cyanide m-chlorophenylhydrazone (CCCP), nalidixic acid, and thioloactomycin.
AE014613.1_2720 # 2809707 # 2809892 100.0 109.383 rsmA 85.25 ARO:3005069 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump rsmA is a gene that regulates virulence of Pseudomonas aeruginosa. However, its negative effect on MexEF-OprN overexpression has been noted to confer resistance to various antibiotics. It's Escherichia coli homolog is csrA.
AE014613.1_3115 # 3213563 # 3214384 500.0 532.717 bacA 97.07 ARO:3002986 protein homolog model peptide antibiotic antibiotic target alteration undecaprenyl pyrophosphate related proteins The bacA gene product (BacA) recycles undecaprenyl pyrophosphate during cell wall biosynthesis which confers resistance to bacitracin.
AE014613.1_3540 # 3661344 # 3662717 890.0 908.286 cpxA 96.94 ARO:3000830 protein homolog model aminoglycoside antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CpxA is a membrane-localized sensor kinase that is activated by envelope stress. It starts a kinase cascade that activates CpxR, which promotes efflux complex expression.
AE014613.1_4035 # 4197972 # 4198604 400.0 431.409 CRP 98.57 ARO:3000518 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; penam antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CRP is a global regulator that represses MdtEF multidrug efflux pump expression.
AE014613.1_4561 # 4718906 # 4720147 700.0 708.753 mdtM 86.03 ARO:3001214 protein homolog model fluoroquinolone antibiotic; lincosamide antibiotic; nucleoside antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Multidrug resistance protein MdtM.
AE014613.1_126 # 143132 # 144898 500.0 587.8 Haemophilus influenzae PBP3 conferring resistance to beta-lactam antibiotics 52.9 ARO:3004446 protein variant model D350N, S357N cephalosporin; cephamycin; penam antibiotic target alteration Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics PBP3 is a penicillin-binding protein and beta-lactam resistance enzyme encoded by the ftsI gene in Haemophilus influenzae. Mutations in ftsI confer resistance to beta-lactam antibiotics.
AE014613.1_585 # 657089 # 658447 850.0 887.486 Escherichia coli GlpT with mutation conferring resistance to fosfomycin 96.24 ARO:3003889 protein variant model E448K phosphonic acid antibiotic antibiotic target alteration antibiotic-resistant GlpT Point mutations to the active importer GlpT, which is involved with the uptake of many phosphorylated sugars, confer resistance to fosfomycin by reducing import of the drug into the bacteria.
AE014613.1_3466 # 3575081 # 3576265 700.0 796.579 Escherichia coli EF-Tu mutants conferring resistance to Pulvomycin 99.49 ARO:3003369 protein variant model R234F elfamycin antibiotic antibiotic target alteration elfamycin resistant EF-Tu Sequence variants of Escherichia coli elongation factor Tu that confer resistance to Pulvomycin.
AE014613.1_3716 # 3846715 # 3848106 850.0 868.226 Escherichia coli UhpT with mutation conferring resistance to fosfomycin 95.03 ARO:3003890 protein variant model E350Q phosphonic acid antibiotic antibiotic target alteration antibiotic-resistant UhpT Mutations to the active importer UhpT, which is involved with the uptake of many phosphorylated sugars, confer resistance to fosfomycin by reducing import of the drug into the bacteria.
AE014613.1_4057 # 4214664 # 4215848 700.0 796.579 Escherichia coli EF-Tu mutants conferring resistance to Pulvomycin 99.49 ARO:3003369 protein variant model R234F elfamycin antibiotic antibiotic target alteration elfamycin resistant EF-Tu Sequence variants of Escherichia coli elongation factor Tu that confer resistance to Pulvomycin.
AE014613.1_1436 # 1485754 # 1486188 210.0 273.478 Escherichia coli AcrAB-TolC with MarR mutations conferring resistance to ciprofloxacin and tetracycline 92.36 ARO:3003378 protein overexpression model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MarR is a repressor of the mar operon marRAB, thus regulating the expression of marA, the activator of multidrug efflux pump AcrAB.
AE014613.1_2386 # 2453832 # 2454485 375.0 394.815 Escherichia coli AcrAB-TolC with AcrR mutation conferring resistance to ciprofloxacin, tetracycline, and ceftazidime 87.38 ARO:3003807 protein overexpression model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AcrR is a repressor of the AcrAB-TolC multidrug efflux complex. AcrR mutations result in high level antibiotic resistance. The mutations associated with this model are specific to E. coli.
AE014613.1_4166 # 4333745 # 4334068 200.0 211.075 Escherichia coli soxS with mutation conferring antibiotic resistance 94.39 ARO:3003511 protein overexpression model fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; glycylcycline; cephamycin; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux; reduced permeability to antibiotic ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; General Bacterial Porin with reduced permeability to beta-lactams SoxS is a global regulator that up-regulates the expression of AcrAB efflux genes. It also reduces OmpF expression to decrease cell membrane permeability.
AE014613.1_4167 # 4334155 # 4334613 300.0 300.056 Escherichia coli soxR with mutation conferring antibiotic resistance 96.05 ARO:3003381 protein overexpression model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump SoxR is a sensory protein that upregulates soxS expression in the presence of redox-cycling drugs. This stress response leads to the expression many multidrug efflux pumps.
VF List
Query_id %Identity E-value Related genes VF ID Virulence factor VFcategory VFcategoryID Characteristics Description Strain
AE014613.1_138 76.974 0.0 lpxC VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxC) UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_229 64.201 5.76E-159 lpxD VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxD) UDP-3-O-(3-hydroxymyristoyl) glucosamine N-acyltransferase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_231 67.557 2.72E-130 lpxA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxA) UDP-N-acetylglucosamine acyltransferase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_232 64.721 5.2E-179 lpxB VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxB) lipid-A-disaccharide synthase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_252 67.528 1.07E-126 IlpA VF0513 IlpA Adherence VFC0001 (IlpA) immunogenic lipoprotein A [IlpA (VF0513) - Adherence (VFC0001)] [Vibrio vulnificus YJ016] Vibrio vulnificus
AE014613.1_272 65.445 1.05E-90 algU VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algU) alginate biosynthesis protein AlgZ/FimS [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AE014613.1_345 96.386 2.16E-48 sinH VF0400 SinH Adherence VFC0001 N-terminal 350 residues exhibits homology with invasin of Yersinia pseudotuberculosis (49.5% identity) and intimin of E. coli O111 (enteropathogenic E. coli) (48% identity). The amino termini of invasin and intimin serve as membrane-spanning anchors in the bacterial outer membrane. (sinH) intimin-like protein [SinH (VF0400) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_346 97.764 0.0 sinH VF0400 SinH Adherence VFC0001 N-terminal 350 residues exhibits homology with invasin of Yersinia pseudotuberculosis (49.5% identity) and intimin of E. coli O111 (enteropathogenic E. coli) (48% identity). The amino termini of invasin and intimin serve as membrane-spanning anchors in the bacterial outer membrane. (sinH) intimin-like protein [SinH (VF0400) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_349 84.096 0.0 ratB VF0399 RatB Adherence VFC0001 Three putative intestinal colonization factors SinH, RatB and ShdA, are located in the same 25-kb pathogenicity island, called CS54. This island is present only in subspecies 1 of S. enterica. (ratB) putative outer membrane protein [RatB (VF0399) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_350 87.079 0.0 ratB VF0399 RatB Adherence VFC0001 Three putative intestinal colonization factors SinH, RatB and ShdA, are located in the same 25-kb pathogenicity island, called CS54. This island is present only in subspecies 1 of S. enterica. (ratB) putative outer membrane protein [RatB (VF0399) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_351 82.071 0.0 ratB VF0399 RatB Adherence VFC0001 Three putative intestinal colonization factors SinH, RatB and ShdA, are located in the same 25-kb pathogenicity island, called CS54. This island is present only in subspecies 1 of S. enterica. (ratB) putative outer membrane protein [RatB (VF0399) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_352 82.236 0.0 ratB VF0399 RatB Adherence VFC0001 Three putative intestinal colonization factors SinH, RatB and ShdA, are located in the same 25-kb pathogenicity island, called CS54. This island is present only in subspecies 1 of S. enterica. (ratB) putative outer membrane protein [RatB (VF0399) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_354 98.828 1.53E-174 shdA VF0398 ShdA Adherence VFC0001 The shdA gene is carried on a 25-kb genetic island at centisome 54 (CS54 island) of the Salmonella enterica serotype Typhimurium chromosome. (shdA) AIDA autotransporter-like protein [ShdA (VF0398) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_388 65.029 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_470 71.474 2.48E-172 pla VF0139 Pla Exoenzyme VFC0251 Belongs to the family of OM proteases/adhesins known as omptins that share high sequence identity but differ in biological function; Omptins appear to constitute a unique class of proteases. Other omptin family outer membrane proteases include PgtE from S. enterica, OmpT and OmpR from E. coli, and SopA/IcsP from S. flexneri. Their catalytic residues are conserved. They require the presence of rough LPS for enzymatic activity and are inhibited by the O-antigen chains present in smooth LPS; unique to Y. pestis encoded by the pPCP1 plasmid not present in the enteropathogenic yersiniae Y. pseudotuberculosis and Y. enterocolitica (pla) plasminogen activator protease precursor [Pla (VF0139) - Exoenzyme (VFC0251)] [Yersinia pestis CO92] Yersinia pestis
AE014613.1_474 73.973 5.56E-34 gtrB VF0124 LPS Immune modulation VFC0258 Composed of the O-antigen, core polysaccharides and lipid A; the genes involved in the biosynthesis of the basic O-antigen are located in the rfb/rfc loci; O-antigen modification is associated with temperate bacteriophages. Four different serotype-converting phages have been found: SfII, Sf6, SfV and SfX, which are involved in conversion of a serotype Y stain to serotypes 2a, 3b, 5a and X, respectively (gtrB) bactoprenol glucosyl transferase [LPS (VF0124) - Immune modulation (VFC0258)] [Shigella flexneri 2a str. 301] Shigella flexneri
AE014613.1_475 72.34 7.54E-49 gtrA VF0124 LPS Immune modulation VFC0258 Composed of the O-antigen, core polysaccharides and lipid A; the genes involved in the biosynthesis of the basic O-antigen are located in the rfb/rfc loci; O-antigen modification is associated with temperate bacteriophages. Four different serotype-converting phages have been found: SfII, Sf6, SfV and SfX, which are involved in conversion of a serotype Y stain to serotypes 2a, 3b, 5a and X, respectively (gtrA) bactoprenol-linked glucose translocase/flippase [LPS (VF0124) - Immune modulation (VFC0258)] [Shigella flexneri 2a str. 301] Shigella flexneri
AE014613.1_581 93.691 0.0 sseL VF0947 TTSS-2 secreted effectors Effector delivery system VFC0086 (sseL) type III secretion system effector SseL, deubiquitinase [TTSS-2 secreted effectors (VF0947) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_601 97.222 1.05E-153 rcsB VF0571 RcsAB Regulation VFC0301 (rcsB) transcriptional regulator RcsB [RcsAB (VF0571) - Regulation (VFC0301)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_628 99.619 0.0 sspH2 VF0947 TTSS-2 secreted effectors Effector delivery system VFC0086 (sspH2) type III secretion system effector SspH2 (Salmonella secreted protein H2), novel E3 ubiquitin ligase [TTSS-2 secreted effectors (VF0947) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_722 93.694 3.5E-65 steD VF0947 TTSS-2 secreted effectors Effector delivery system VFC0086 (steD) type III secretion system effector SteD [TTSS-2 secreted effectors (VF0947) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_754 64.116 0.0 KP1_RS17340 VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (KP1_RS17340) polysaccharide export protein [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_764 88.108 0.0 gmd VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (gmd) GDP-mannose 4,6-dehydratase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_765 76.489 0.0 KP1_RS17305 VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (KP1_RS17305) GDP-L-fucose synthase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_767 60.688 0.0 KP1_RS17295 VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (KP1_RS17295) glycosyltransferase WbuB [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_768 62.076 0.0 KP1_RS17280 VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (KP1_RS17280) mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_769 75.604 0.0 rfbK1 VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (rfbK1) O9 family phosphomannomutase RfbK1 [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_770 63.383 0.0 wcaJ VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (wcaJ) undecaprenyl-phosphate glucose phosphotransferase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_776 92.542 0.0 galF VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (galF) GalU regulator GalF [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_777 62.573 2.18E-159 rffG VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rffG) dTDP-glucose 46-dehydratase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_779 62.414 7.55E-140 wbtL VF0542 LPS Immune modulation VFC0258 The structure of Francisella spp. lipid A is unique in that it is modified by various carbohydrates that greatly reduce TLR4 activation and allow for immune evasion (wbtL) glucose-1-phosphate thymidylyltransferase [LPS (VF0542) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AE014613.1_782 79.377 3.74E-162 rfbF VF0392 O-antigen Immune modulation VFC0258 Clinical Y. enterocolitica isolates from humans predominantly belong to serotypes O:3, O:9, O:8 and O:5,27; Y. enterocolitica O antigen expression is temperature regulated. (rfbF) glucose-1-phosphate cytidylyltransferase [O-antigen (VF0392) - Immune modulation (VFC0258)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_783 69.944 0.0 rfbG VF0392 O-antigen Immune modulation VFC0258 Clinical Y. enterocolitica isolates from humans predominantly belong to serotypes O:3, O:9, O:8 and O:5,27; Y. enterocolitica O antigen expression is temperature regulated. (rfbG) CDP-glucose 4,6-dehydratase [O-antigen (VF0392) - Immune modulation (VFC0258)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_794 95.085 0.0 gndA VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (gndA) NADP-dependent phosphogluconate dehydrogenase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_795 82.216 0.0 ugd VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (ugd) UDP-glucose 6-dehydrogenase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_809 96.238 0.0 sopA VF0949 TTSS-1 secreted effectors Effector delivery system VFC0086 (sopA) type III secretion system effector SopA, HECT-like E3 ubiquitin ligase [TTSS-1 secreted effectors (VF0949) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_810 93.567 2.33E-109 sopA VF0949 TTSS-1 secreted effectors Effector delivery system VFC0086 (sopA) type III secretion system effector SopA, HECT-like E3 ubiquitin ligase [TTSS-1 secreted effectors (VF0949) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_811 92.308 1.05E-26 sopA VF0949 TTSS-1 secreted effectors Effector delivery system VFC0086 (sopA) type III secretion system effector SopA, HECT-like E3 ubiquitin ligase [TTSS-1 secreted effectors (VF0949) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_905 64.251 1.97E-98 rcsA VF0571 RcsAB Regulation VFC0301 (rcsA) transcriptional activator for ctr capsule biosynthesis [RcsAB (VF0571) - Regulation (VFC0301)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_906 66.406 4.07E-103 fliR VF0394 Flagella Motility VFC0204 (fliR) flagellar biosynthetic protein FliR [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_907 74.157 2.47E-36 fliQ VF0394 Flagella Motility VFC0204 (fliQ) flagellar biosynthetic protein FliQ [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_908 85.652 1.94E-141 fliP VF0394 Flagella Motility VFC0204 (fliP) flagellar biosynthetic protein FliP [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_910 76.087 4.03E-70 fliN VF0394 Flagella Motility VFC0204 (fliN) flagellar motor switch protein FliN [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_911 84.685 0.0 fliM VF0394 Flagella Motility VFC0204 (fliM) flagellar motor switch protein FliM [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_915 83.48 0.0 fliI VF0394 Flagella Motility VFC0204 (fliI) flagellum-specific ATP synthase FliI [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_917 83.283 0.0 fliG VF0394 Flagella Motility VFC0204 (fliG) flagellar motor switch protein G [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_918 63.309 0.0 fliF VF0394 Flagella Motility VFC0204 (fliF) flagellar M-ring protein FliF [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_926 71.875 1.3E-62 fliS VF0394 Flagella Motility VFC0204 (fliS) flagellar protein FliS [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_931 83.193 9.01E-144 fliA VF0394 Flagella Motility VFC0204 (fliA) flagellar biosynthesis sigma factor [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_955 75.862 5.28E-53 flhD VF0394 Flagella Motility VFC0204 (flhD) flagellar transcriptional activator FlhD [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_956 80.612 8.47E-116 flhC VF0394 Flagella Motility VFC0204 (flhC) flagellar biosynthesis transcription activator FlhC [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_957 82.712 0.0 motA VF0394 Flagella Motility VFC0204 (motA) flagellar motor protein MotA [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_958 68.571 3.79E-154 motB VF0394 Flagella Motility VFC0204 (motB) flagellar motor protein MotB [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_959 75.664 0.0 cheA VF0394 Flagella Motility VFC0204 (cheA) chemotaxis protein CheA [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_960 84.375 4.41E-96 cheW VF0394 Flagella Motility VFC0204 (cheW) purine-binding chemotaxis protein CheW [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_962 73.239 3.85E-151 cheR VF0394 Flagella Motility VFC0204 (cheR) chemotaxis methyltransferase CheR [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_963 85.387 0.0 cheB VF0394 Flagella Motility VFC0204 (cheB) chemotaxis-specific methylesterase CheB [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_964 90.698 5.38E-84 cheY VF0394 Flagella Motility VFC0204 (cheY) chemotaxis regulatory protein CheY [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_965 78.155 2.28E-110 cheZ VF0394 Flagella Motility VFC0204 (cheZ) chemotaxis regulator CheZ [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_966 65.789 0.0 flhB VF0394 Flagella Motility VFC0204 (flhB) flagellar biosynthetic protein FlhB [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_967 85.507 0.0 flhA VF0394 Flagella Motility VFC0204 (flhA) flagellar biosynthesis protein FlhA [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_982 60.494 6.26E-107 CBU_1566 VF0696 T4SS secreted effectors Effector delivery system VFC0086 (CBU_1566) Coxiella Dot/Icm type IVB secretion system translocated effector [T4SS secreted effectors (VF0696) - Effector delivery system (VFC0086)] [Coxiella burnetii RSA 493] Coxiella burnetii
AE014613.1_1023 97.403 8.37E-111 sopE2 VF0949 TTSS-1 secreted effectors Effector delivery system VFC0086 (sopE2) type III secretion system effector SopE2, guanine nucleotide exchange factor [TTSS-1 secreted effectors (VF0949) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1109 81.915 1.9E-178 kdsA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (kdsA) 2-dehydro-3-deoxyphosphooctonate aldolase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_1112 100.0 4.5E-102 pltB VF0407 Typhoid toxin Exotoxin VFC0235 Classic cytolethal distending toxins (CDTs) are three component AB toxins, composed of CdtA, CdtB and CdtC. CdtA and CdtC mediate target cell binding and membrane translocation of CdtB, which then induces DNA damage, most probably through its nuclease activity; In the case of S. typhi, however, genes encoding CdtA and CdtC are absent. CdtB from S. typhi is produced with the pertussis-like toxins PltA and PltB only inside the host cell and is then secreted from the infected Cell in a PltA/B-Dependent manner and acts then as a classical CDT from outside;typhoid toxin seemed to have evolved from the combination of the activities of two exotoxin ancestors, CDT and pertussis toxins; The typhoid toxin is an atypical AB toxin encoded on SPI-11; The toxin is expressed exclusively when S. Typhi is intracellualr and localized within the Salmonella containing vacuole (SCV); Homologues are found in S. Paratyphi A and several NTS serovars, but are absent from S. Typhimurium and S. Enteritidis; The typhoid toxin is secreted within vesicles originating from the SCV and released into the extracellular space (pltB) typhoid-like toxin S-CDT binding subunit PltB [Typhoid toxin (VF0407) - Exotoxin (VFC0235)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_1113 100.0 0.0 pltA VF0407 Typhoid toxin Exotoxin VFC0235 Classic cytolethal distending toxins (CDTs) are three component AB toxins, composed of CdtA, CdtB and CdtC. CdtA and CdtC mediate target cell binding and membrane translocation of CdtB, which then induces DNA damage, most probably through its nuclease activity; In the case of S. typhi, however, genes encoding CdtA and CdtC are absent. CdtB from S. typhi is produced with the pertussis-like toxins PltA and PltB only inside the host cell and is then secreted from the infected Cell in a PltA/B-Dependent manner and acts then as a classical CDT from outside;typhoid toxin seemed to have evolved from the combination of the activities of two exotoxin ancestors, CDT and pertussis toxins; The typhoid toxin is an atypical AB toxin encoded on SPI-11; The toxin is expressed exclusively when S. Typhi is intracellualr and localized within the Salmonella containing vacuole (SCV); Homologues are found in S. Paratyphi A and several NTS serovars, but are absent from S. Typhimurium and S. Enteritidis; The typhoid toxin is secreted within vesicles originating from the SCV and released into the extracellular space (pltA) typhoid-like toxin S-CDT ADP-ribosylating subunit PltA [Typhoid toxin (VF0407) - Exotoxin (VFC0235)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_1116 100.0 0.0 cdtB VF0407 Typhoid toxin Exotoxin VFC0235 Classic cytolethal distending toxins (CDTs) are three component AB toxins, composed of CdtA, CdtB and CdtC. CdtA and CdtC mediate target cell binding and membrane translocation of CdtB, which then induces DNA damage, most probably through its nuclease activity; In the case of S. typhi, however, genes encoding CdtA and CdtC are absent. CdtB from S. typhi is produced with the pertussis-like toxins PltA and PltB only inside the host cell and is then secreted from the infected Cell in a PltA/B-Dependent manner and acts then as a classical CDT from outside;typhoid toxin seemed to have evolved from the combination of the activities of two exotoxin ancestors, CDT and pertussis toxins; The typhoid toxin is an atypical AB toxin encoded on SPI-11; The toxin is expressed exclusively when S. Typhi is intracellualr and localized within the Salmonella containing vacuole (SCV); Homologues are found in S. Paratyphi A and several NTS serovars, but are absent from S. Typhimurium and S. Enteritidis; The typhoid toxin is secreted within vesicles originating from the SCV and released into the extracellular space (cdtB) cytolethal distending toxin B [Typhoid toxin (VF0407) - Exotoxin (VFC0235)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_1257 100.0 5.31E-159 ssrB VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssrB) DNA-binding response regulator [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1258 98.261 0.0 ssrA VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssrA) hybrid sensor histidine kinase/response regulator [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1259 100.0 5.49E-93 spiC/ssaB VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (spiC/ssaB) Salmonella pathogenicity island 2 protein C (SpiC); Type III secretion system apparatus protein B (SsaB) [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1260 99.396 0.0 ssaC VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaC) type III secretion system secretin SsaC [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1261 99.504 0.0 ssaD VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaD) type III secretion system outer MS ring protein SsaD [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1262 98.75 6.07E-53 ssaE VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaE) chaperone for sseB [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1263 99.065 1.98E-75 sseA VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (sseA) chaperone for sseB and sseD [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1264 100.0 6.21E-145 sseB VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (sseB) type III secretion system effector SseB [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1265 98.089 8.56E-116 sscA VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (sscA) chaperone for sseC [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1266 95.248 0.0 sseC VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (sseC) type III secretion system hydrophilic translocator, pore protein SseC [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1267 98.462 1.44E-139 sseD VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (sseD) type III secretion system hydrophilic translocator, pore protein SseD [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1268 99.275 7.9E-100 sseE VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (sseE) type III secretion system effector SseE [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1269 99.296 2.35E-105 sscB VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (sscB) chaperone for sseF [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1270 96.538 0.0 sseF VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (sseF) type III secretion system effector SseF [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1271 98.253 4.85E-170 sseG VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (sseG) type III secretion system effector SseG [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1272 100.0 1.02E-47 ssaG VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaG) type III secretion system needle filament protein SsaG [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1274 95.062 6.48E-53 ssaI VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaI) type III secretion system inner rod protein SsaI [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1275 99.07 3.5E-160 ssaJ VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaJ) type III secretion system inner MS ring protein SsaJ [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1276 98.795 1.96E-55 ssaX VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaX) type III secretion system base-pod connector [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1277 98.661 4.92E-167 ssaK VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaK) type III secretion system stator SsaK [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1278 97.576 0.0 ssaL VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaL) type III secretion system gatekeeper SsaL [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1279 99.18 1.59E-88 ssaM VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaM) type III secretion system protein SsaM [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1280 99.266 0.0 ssaV VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaV) type III secretion system major export apparatus protein ssaV [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1281 99.307 0.0 ssaN VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaN) type III secretion system ATPase SsaN [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1282 98.4 2.4E-86 ssaO VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaO) type III secretion system stalk protein SsaO [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1283 100.0 2.45E-92 ssaP VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaP) type III secretion system needle length regulator SsaP [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1284 98.758 0.0 ssaQ VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaQ) type III secretion system C ring protein SsaQ [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1285 99.535 8.59E-153 ssaR VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaR) type III secretion system minor export apparatus protein SsaR [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1286 98.864 1.18E-58 ssaS VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaS) type III secretion system minor export apparatus protein SsaS [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1287 98.456 0.0 ssaT VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaT) type III secretion system minor export apparatus protein SsaT [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1288 99.716 0.0 ssaU VF0321 TTSS (SPI-2 encode) Effector delivery system VFC0086 SPI-2 T3SS effector repertoire varies greatly among different Salmonella serovars.; All serovars seem to have a set of 'core' effectors (SseF, SseG, PipB, SteA, SifA, SteD and PipB2), suggesting that they are critical for virulence in different hosts.; Another group of effectors (SseL, SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) always seem to be present in intestinal serovars but are frequently non-functional in extraintestinal or highly host-adapted serovars, suggesting these effectors contribute to virulence in the intestine, but not always in deeper tissues.;A further group of 'accessory' effectors (SspH2, SseK1, SrfJ, GtgA, GtgE, SseI, GogB, SteE, SseK3, SspH1, SpvB, SpvC, and SpvD) encoded on mobile genetic elements (MGEs) or DNA close to the remnants of MGEs are found sporadically across different serovars.;The only known effector genes in SPI-2, sseF and sseG, are likely to have conferred an early selective advantage to intracellular bacteria.;several sets of effectors that share high levels of sequence similarity. Examples of paralog effectors include Pathogenicity island-encoded protein B (PipB) and PipB2, which share 33% identity and 67% similarity, SifA and SifB that share 26% identity and 46% similarity, SopE and SopE2, which share 69% similarity, SopD and SopD2 that share 43% identity and 63% similarity. These effector protein paralogs often share structural similarity and/or biochemical activities but demonstrate functional divergence in intracellular localization and/or host protein targets or interaction partners. (ssaU) type III secretion system export apparatus switch protein SsaU [TTSS (SPI-2 encode) (VF0321) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1296 68.063 3.66E-100 sodB VF0169 SodB Stress survival VFC0282 (sodB) superoxide dismutase [SodB (VF0169) - Stress survival (VFC0282)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AE014613.1_1492 88.571 6.64E-139 steA VF0948 TTSS effectors secreted via both systems Effector delivery system VFC0086 (steA) type III secretion system effector SteA (Salmonella translocated effector A) [TTSS effectors secreted via both systems (VF0948) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1510 98.544 2.33E-151 sifB VF0947 TTSS-2 secreted effectors Effector delivery system VFC0086 (sifB) type III secretion system effector SifB (Salmonella induced filament protein B) [TTSS-2 secreted effectors (VF0947) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1604 100.0 6.03E-105 pltC VF0407 Typhoid toxin Exotoxin VFC0235 Classic cytolethal distending toxins (CDTs) are three component AB toxins, composed of CdtA, CdtB and CdtC. CdtA and CdtC mediate target cell binding and membrane translocation of CdtB, which then induces DNA damage, most probably through its nuclease activity; In the case of S. typhi, however, genes encoding CdtA and CdtC are absent. CdtB from S. typhi is produced with the pertussis-like toxins PltA and PltB only inside the host cell and is then secreted from the infected Cell in a PltA/B-Dependent manner and acts then as a classical CDT from outside;typhoid toxin seemed to have evolved from the combination of the activities of two exotoxin ancestors, CDT and pertussis toxins; The typhoid toxin is an atypical AB toxin encoded on SPI-11; The toxin is expressed exclusively when S. Typhi is intracellualr and localized within the Salmonella containing vacuole (SCV); Homologues are found in S. Paratyphi A and several NTS serovars, but are absent from S. Typhimurium and S. Enteritidis; The typhoid toxin is secreted within vesicles originating from the SCV and released into the extracellular space (pltC) an orphan pertussis-like toxin delivery subunit [Typhoid toxin (VF0407) - Exotoxin (VFC0235)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_1611 91.304 0.0 steC VF0947 TTSS-2 secreted effectors Effector delivery system VFC0086 (steC) type III secretion system effector SteC (Salmonella translocated effector C), kinase [TTSS-2 secreted effectors (VF0947) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1667 75.0 3.37E-161 galU VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (galU) glucosephosphate uridylyltransferase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_1692 99.554 6.41E-166 phoP VF0111 PhoPQ Regulation VFC0301 (phoP) response regulator in two-component regulatory system with PhoQ [PhoPQ (VF0111) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1693 99.795 0.0 phoQ VF0111 PhoPQ Regulation VFC0301 (phoQ) sensor protein PhoQ [PhoPQ (VF0111) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1699 93.452 0.0 sifA VF0947 TTSS-2 secreted effectors Effector delivery system VFC0086 (sifA) type III secretion system effector SifA (Salmonella induced filament protein A) [TTSS-2 secreted effectors (VF0947) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1729 61.538 1.93E-27 acpXL VF0367 LPS Immune modulation VFC0258 Brucella possesses a non-classical LPS as compared with the so-called classical LPS from enterobacteria such as Escherichia coli. B. abortus lipid A possesses a diaminoglucose backbone (rather than glucosamine), and acyl groups are longer (C28 rather than C12 and C16) and are only linked to the core by amide bounds (rather than ester and amide bonds).; In contrast to enterobacterial LPSs, Brucella LPS is several-hundred-times less active and toxic than E. coli LPS.; this is an evolutionary adaptation to an intracellular lifestyle, low endotoxic activity is shared by other intracellular pathogens such as Bartonella and Legionella. (acpXL) acyl carrier protein [LPS (VF0367) - Immune modulation (VFC0258)] [Brucella melitensis bv. 1 str. 16M] Brucella melitensis
AE014613.1_1730 77.459 1.72E-139 flmH VF0473 Polar flagella Motility VFC0204 Types of bacterial movement: swimming, swarming, gliding, twitching and sliding. Only swimming and swarming are correlated with the presence of flagella. Swimming is an individual endeavour, while swarming is the movement of a group of bacteria; constitutively expressed for motility in liquid environments (flmH) short chain dehydrogenase/reductase family oxidoreductase [Polar flagella (VF0473) - Motility (VFC0204)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AE014613.1_1742 61.146 1.96E-137 flgJ VF0394 Flagella Motility VFC0204 (flgJ) <beta>-N-acetylglucosaminidase [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_1743 79.05 0.0 flgI VF0394 Flagella Motility VFC0204 (flgI) flagellar P-ring protein precursor FlgI [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_1744 82.16 4.37E-122 flgH VF0394 Flagella Motility VFC0204 (flgH) flagellar L-ring protein precursor FlgH [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_1745 87.308 5.49E-170 flgG VF0394 Flagella Motility VFC0204 (flgG) flagellar basal-body rod protein FlgG [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_1746 70.12 5.52E-127 flgF VF0394 Flagella Motility VFC0204 (flgF) flagellar basal-body rod protein FlgF [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_1747 63.183 2.55E-180 flgE VF0394 Flagella Motility VFC0204 (flgE) flagellar hook protein FlgE [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_1748 71.287 9.94E-99 flgD VF0394 Flagella Motility VFC0204 (flgD) flagellar basal-body rod modification protein FlgD [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_1749 81.343 1.06E-80 flgC VF0394 Flagella Motility VFC0204 (flgC) flagellar basal-body rod protein FlgC [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_1750 78.102 2.17E-77 flgB VF0394 Flagella Motility VFC0204 (flgB) flagellar basal-body rod protein FlgB [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_1752 60.606 2.28E-33 flgM VF0394 Flagella Motility VFC0204 (flgM) negative regulator of flagellin synthesis [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AE014613.1_1779 99.074 6.2E-74 csgC VF0103 Agf Adherence VFC0001 Homology to csg of E.coli; nucleator-dependent assembly pathway (csgC) curli assembly protein CsgC [Agf (VF0103) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1780 100.0 3.01E-106 csgA VF0103 Agf Adherence VFC0001 Homology to csg of E.coli; nucleator-dependent assembly pathway (csgA) curlin major subunit CsgA [Agf (VF0103) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1781 99.338 1.41E-107 csgB VF0103 Agf Adherence VFC0001 Homology to csg of E.coli; nucleator-dependent assembly pathway (csgB) minor curlin subunit precursor, curli nucleator protein CsgB [Agf (VF0103) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1782 100.0 5.77E-157 csgD VF0103 Agf Adherence VFC0001 Homology to csg of E.coli; nucleator-dependent assembly pathway (csgD) DNA-binding transcriptional regulator CsgD [Agf (VF0103) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1783 100.0 1.59E-96 csgE VF0103 Agf Adherence VFC0001 Homology to csg of E.coli; nucleator-dependent assembly pathway (csgE) curli production assembly/transport protein CsgE [Agf (VF0103) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1784 100.0 2.24E-100 csgF VF0103 Agf Adherence VFC0001 Homology to csg of E.coli; nucleator-dependent assembly pathway (csgF) curli production assembly/transport protein CsgF [Agf (VF0103) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1785 100.0 0.0 csgG VF0103 Agf Adherence VFC0001 Homology to csg of E.coli; nucleator-dependent assembly pathway (csgG) curli production assembly/transport protein CsgG [Agf (VF0103) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1831 98.396 0.0 sopB/sigD VF0949 TTSS-1 secreted effectors Effector delivery system VFC0086 (sopB/sigD) type III secretion system effector SopB, phosphoinositide phosphatase [TTSS-1 secreted effectors (VF0949) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1833 97.595 0.0 pipB VF0947 TTSS-2 secreted effectors Effector delivery system VFC0086 (pipB) type III secretion system effector PipB [TTSS-2 secreted effectors (VF0947) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_1855 92.571 0.0 ompA VF0236 OmpA Invasion VFC0083 Major outer membrane protein in E. coli, homologous to Neisseria Opa proteins which have been shown to be involved in invasion of eukaryotic cells (ompA) outer membrane protein A [OmpA (VF0236) - Invasion (VFC0083)] [Escherichia coli O18:K1:H7 str. RS218] Escherichia coli (NMEC)
AE014613.1_1949 69.478 4.07E-125 nueA VF0473 Polar flagella Motility VFC0204 Types of bacterial movement: swimming, swarming, gliding, twitching and sliding. Only swimming and swarming are correlated with the presence of flagella. Swimming is an individual endeavour, while swarming is the movement of a group of bacteria; constitutively expressed for motility in liquid environments (nueA) NeuA protein [Polar flagella (VF0473) - Motility (VFC0204)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AE014613.1_1954 66.263 0.0 msbA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (msbA) lipid transporter ATP-binding/permease [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_1966 90.868 4.78E-149 sopD2 VF0947 TTSS-2 secreted effectors Effector delivery system VFC0086 (sopD2) type III secretion system effector SopD2 [TTSS-2 secreted effectors (VF0947) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2093 91.737 0.0 slrP VF0948 TTSS effectors secreted via both systems Effector delivery system VFC0086 (slrP) type III secretion system effector SlrP (Salmonella leucine-rich repeat protein),novel E3 ubiquitin ligase [TTSS effectors secreted via both systems (VF0948) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2094 97.468 6.29E-48 slrP VF0948 TTSS effectors secreted via both systems Effector delivery system VFC0086 (slrP) type III secretion system effector SlrP (Salmonella leucine-rich repeat protein),novel E3 ubiquitin ligase [TTSS effectors secreted via both systems (VF0948) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2160 69.6 0.0 KP1_RS17225 VF0561 LPS Immune modulation VFC0258 In K. pneumoniae there are nine main O-serotypes. Three of these, O1, O2, and O3, are responsible for almost 80% of all Klebsiella infections.; Compared with other Enterobacteriaceae, such as Escherichia coli 161 defined O serotypes and Shigella flexneri at least 47 O serotypes, Klebsiella has a surprisingly low number of reported O serotypes which promises a more viable alternative for vaccine development compared with K-antigen-based vaccines; The O-antigen biosynthesis enzymes are encoded on the rfb locus. (KP1_RS17225) glycosyltransferase family 4 protein [LPS (VF0561) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2162 76.716 0.0 rfbD VF0561 LPS Immune modulation VFC0258 In K. pneumoniae there are nine main O-serotypes. Three of these, O1, O2, and O3, are responsible for almost 80% of all Klebsiella infections.; Compared with other Enterobacteriaceae, such as Escherichia coli 161 defined O serotypes and Shigella flexneri at least 47 O serotypes, Klebsiella has a surprisingly low number of reported O serotypes which promises a more viable alternative for vaccine development compared with K-antigen-based vaccines; The O-antigen biosynthesis enzymes are encoded on the rfb locus. (rfbD) UDP-galactopyranose mutase [LPS (VF0561) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2165 62.703 2.76E-79 fimB VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimB) tyrosine recombinase [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2189 100.0 4.99E-111 fur VF0113 Fur Regulation VFC0301 (fur) ferric iron uptake transcriptional regulator [Fur (VF0113) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2272 88.71 5.05E-163 entA VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entA) 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase EntA [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2273 88.421 0.0 entB VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entB) isochorismatase [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2274 85.768 0.0 entE VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entE) 2,3-dihydroxybenzoate-AMP ligase component of enterobactin synthase multienzyme complex [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2275 84.143 0.0 entC VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entC) isochorismate synthase 1 [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2276 79.56 0.0 fepB VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepB) ferrienterobactin ABC transporter periplasmic binding protein [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2277 90.709 0.0 entS VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entS) enterobactin exporter, iron-regulated [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2278 84.478 0.0 fepD VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fepD) iron-enterobactin transporter membrane protein [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2279 86.93 0.0 fepG VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepG) iron-enterobactin ABC transporter permease [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2280 92.395 0.0 fepC VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepC) ferrienterobactin ABC transporter ATPase [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2281 77.083 1.01E-166 fepE VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepE) LPS O-antigen length regulator [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2282 60.256 4.68E-28 fepE VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepE) LPS O-antigen length regulator [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2283 78.825 0.0 entF VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entF) enterobactin synthase multienzyme complex component, ATP-dependent [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2285 73.869 0.0 fes VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fes) enterobactin/ferric enterobactin esterase [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2286 82.119 0.0 fepA VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepA) ferrienterobactin outer membrane transporter [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2304 79.167 2.31E-70 gtrA VF0124 LPS Immune modulation VFC0258 Composed of the O-antigen, core polysaccharides and lipid A; the genes involved in the biosynthesis of the basic O-antigen are located in the rfb/rfc loci; O-antigen modification is associated with temperate bacteriophages. Four different serotype-converting phages have been found: SfII, Sf6, SfV and SfX, which are involved in conversion of a serotype Y stain to serotypes 2a, 3b, 5a and X, respectively (gtrA) bactoprenol-linked glucose translocase/flippase [LPS (VF0124) - Immune modulation (VFC0258)] [Shigella flexneri 2a str. 301] Shigella flexneri
AE014613.1_2305 88.235 0.0 gtrB VF0124 LPS Immune modulation VFC0258 Composed of the O-antigen, core polysaccharides and lipid A; the genes involved in the biosynthesis of the basic O-antigen are located in the rfb/rfc loci; O-antigen modification is associated with temperate bacteriophages. Four different serotype-converting phages have been found: SfII, Sf6, SfV and SfX, which are involved in conversion of a serotype Y stain to serotypes 2a, 3b, 5a and X, respectively (gtrB) bactoprenol glucosyl transferase [LPS (VF0124) - Immune modulation (VFC0258)] [Shigella flexneri 2a str. 301] Shigella flexneri
AE014613.1_2309 98.485 1.05E-147 fimW VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimW) helix-turn-helix transcriptional regulator [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2311 97.083 1.62E-173 fimY VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimY) fimbriae Y protein [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2312 99.048 6.24E-154 fimZ VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimZ) DNA-binding response regulator [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2313 98.837 6.17E-125 fimF VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimF) type I fimbriae adaptor protein FimF [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2314 97.015 0.0 fimH VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimH) type I fimbriae minor fimbrial subunit FimH, adhesin [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2315 98.276 0.0 fimD VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimD) usher protein FimD [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2316 98.261 7.07E-168 fimC VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimC) chaperone protein FimC [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2317 98.305 1.99E-129 fimI VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimI) fimbrial protein internal segment [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2318 96.757 1.89E-127 fimA VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimA) type-1 fimbrial protein subunit A [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2331 81.662 0.0 allD VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allD) ureidoglycolate dehydrogenase [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2332 79.951 0.0 allC VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allC) allantoate amidohydrolase [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2336 93.377 0.0 allB VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allB) allantoinase [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2343 85.874 3.12E-176 allR VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allR) DNA-binding transcriptional repressor AllR [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2344 82.474 2.53E-58 allA VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allA) ureidoglycolate hydrolase [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2345 67.857 4.89E-8 allA VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allA) ureidoglycolate hydrolase [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2346 73.443 1.6E-171 allS VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allS) DNA-binding transcriptional activator AllS [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2387 85.025 0.0 acrA VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrA) acriflavine resistance protein A [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2388 91.992 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2415 66.495 2.42E-98 clpP VF0074 ClpP Stress survival VFC0282 21.6 kDa protein belongs to a family of proteases highly conserved in prokaryotes and eukaryotes (clpP) ATP-dependent Clp protease proteolytic subunit [ClpP (VF0074) - Stress survival (VFC0282)] [Listeria monocytogenes EGD-e] Listeria monocytogenes
AE014613.1_2546 76.042 9.67E-111 gmhA/lpcA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (gmhA/lpcA) phosphoheptose isomerase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_2550 98.326 7.57E-176 pagN VF0968 PagN Invasion VFC0083 Unlike rck, pagN is encoded on bacterial chromosome.;PagN is well conserved and widely distributed among the different species and subspecies of Salmonella.;PagN protein displays similarity to the Hek and Tia invasins/adhesins of pathogenic E. coli (pagN) outer membrane adhesin/invasin protein [PagN (VF0968) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2574 98.082 0.0 tre<sup>Tu</sup> VF1195 SCI T6SS secreted effectors Effector delivery system VFC0086 (tre<up>Tu</up>) Rhs polymorphic toxin, ADP-ribosyltransferase, type VI ribosyltransferase effector targeting EF-Tu [SCI T6SS secreted effectors (VF1195) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2575 100.0 2.92E-111 STM0290 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2576 99.726 0.0 vgrG VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2577 100.0 1.34E-109 tlde1 VF1195 SCI T6SS secreted effectors Effector delivery system VFC0086 (tlde1) type VI secretion system effector tlde1, L,D-transpeptidase [SCI T6SS secreted effectors (VF1195) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2578 98.438 5.72E-95 STM0287 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2581 98.039 0.0 STM0286 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2582 98.752 0.0 STM0285 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2583 99.334 0.0 STM0285 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2585 80.321 1.56E-150 STM0283 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2586 99.77 0.0 STM0282 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2587 100.0 0.0 tssK VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2588 99.438 2.47E-131 tssJ VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2589 100.0 2.36E-121 STM0276 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2592 99.751 0.0 STM0274 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2593 97.826 5.29E-24 STM0274 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2594 99.444 6.21E-130 STM0273 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2597 98.744 0.0 STM0272 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2598 99.0 0.0 STM0271 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2599 98.54 0.0 STM0270 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2600 98.78 3.17E-120 STM0269 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2601 99.362 0.0 STM0268 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2602 98.489 0.0 STM0267 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2603 99.254 2.23E-91 STM0266 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2604 97.619 2.53E-143 STM0266 VF0974 SCI (Salmonella centrisome island)/SPI-6 T6SS Effector delivery system VFC0086 "The T6SS is widely distributed in all Salmonella species and subspecies.; Salmonella T6SSs are located on five different Salmonella pathogenicity island and phylogenetically belong to i1,
AE014613.1_2642 82.248 0.0 bapA VF0971 BapA Adherence VFC0001 "
AE014613.1_2668 86.523 0.0 iroB VF0230 Salmochelin siderophore Nutritional/Metabolic factor VFC0272 Also identified as virulence factors in extracellular pathogenic Escherichia coli and Salmonella enterica serotype Typhi (iroB) glucosyltransferase IroB [Salmochelin siderophore (VF0230) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2669 82.051 0.0 iroC VF0563 Sal Nutritional/Metabolic factor VFC0272 Salmochelin is a glycosylated Ent that requires the iroA locus for production and transport (iroC) ABC transporter [Sal (VF0563) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2670 68.861 0.0 iroD VF0230 Salmochelin siderophore Nutritional/Metabolic factor VFC0272 Also identified as virulence factors in extracellular pathogenic Escherichia coli and Salmonella enterica serotype Typhi (iroD) esterase [Salmochelin siderophore (VF0230) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2671 61.812 3.08E-128 iroE VF0230 Salmochelin siderophore Nutritional/Metabolic factor VFC0272 Also identified as virulence factors in extracellular pathogenic Escherichia coli and Salmonella enterica serotype Typhi (iroE) esterase [Salmochelin siderophore (VF0230) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AE014613.1_2672 83.425 0.0 iroN VF0563 Sal Nutritional/Metabolic factor VFC0272 Salmochelin is a glycosylated Ent that requires the iroA locus for production and transport (iroN) salmochelin receptor IroN [Sal (VF0563) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_2673 91.714 0.0 pipB2 VF0947 TTSS-2 secreted effectors Effector delivery system VFC0086 (pipB2) type III secretion system effector PipB3 [TTSS-2 secreted effectors (VF0947) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2675 98.993 0.0 mig-14 VF0395 Mig-14 Antimicrobial activity/Competitive advantage VFC0325 Mig-14 expression is induced within macrophages and is under the control of the global regulator PhoP (mig-14) antimicrobial peptide resistance protein Mig-14 [Mig-14 (VF0395) - Antimicrobial activity/Competitive advantage (VFC0325)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2716 71.93 2.39E-93 luxS VF0406 AI-2 Biofilm VFC0271 AI-2 is produced and detected by a wide variety of bacteria and is presumed to facilitate interspecies communications. (luxS) S-ribosylhomocysteinase [AI-2 (VF0406) - Biofilm (VFC0271)] [Vibrio cholerae O1 biovar El Tor str. N16961] Vibrio cholerae
AE014613.1_2720 76.667 1.4E-30 csrA VF0261 CsrA Regulation VFC0301 Belongs to a highly conserved family of global regulators that typically control stationary phase traits post-transcriptionally (csrA) carbon storage regulator CsrA [CsrA (VF0261) - Regulation (VFC0301)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AE014613.1_2760 99.203 0.0 sprB VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (sprB) transcriptional regulator [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2761 99.322 0.0 hilC VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (hilC) AraC family transcriptional regulator [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2762 97.333 4.5E-108 orgC VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (orgC) type III secretion system effector OrgC [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2763 99.55 6.17E-169 orgB/SctL VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (orgB/SctL) type III secretion system stator OrgB [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2764 98.958 7.37E-140 orgA/sctK VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (orgA/sctK) type III secretion system accessory cytosolic protein OrgA [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2765 99.603 0.0 prgK VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (prgK) type III secretion system inner MS ring protein PrgK [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2766 98.02 2.71E-68 prgJ VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (prgJ) type III secretion system inner rod protein PrgJ [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2767 95.0 3.68E-52 prgI VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (prgI) type III secretion system needle filament protein PrgI [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2768 99.235 0.0 prgH VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (prgH) type III secretion system outer MS ring protein PrgH [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2769 99.353 0.0 hilD VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (hilD) AraC family transcriptional regulator [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2770 99.819 0.0 hilA VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (hilA) transcriptional regulator [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2771 98.125 1.85E-117 iagB VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (iagB) invasion protein IagB [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2772 94.291 0.0 sptP VF0949 TTSS-1 secreted effectors Effector delivery system VFC0086 (sptP) type III secretion system effector SptP, tyrosine phosphatase and GTPase-activating protein [TTSS-1 secreted effectors (VF0949) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2773 97.692 1.88E-91 sicP VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (sicP) chaparone for SptP [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2775 98.78 4.73E-55 iacP VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (iacP) putative acyl carrier protein [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2776 97.81 0.0 sipA/sspA VF0949 TTSS-1 secreted effectors Effector delivery system VFC0086 (sipA/sspA) type III secretion system effector SipA (Salmonella invasion protein A) [TTSS-1 secreted effectors (VF0949) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2777 87.172 0.0 sipD VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (sipD) type III secretion system hydrophilic translocator, needle tip protein SipD [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2778 99.511 0.0 sipC/sspC VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (sipC/sspC) type III secretion system hydrophilic translocator, pore protein SipC [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2779 99.831 0.0 sipB/sspB VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (sipB/sspB) type III secretion system hydrophilic translocator, pore protein SipB (Salmonella invasion protein B) [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2780 100.0 1.17E-124 sicA VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (sicA) chaparone for SipC and SipB [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2781 99.438 0.0 spaS VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (spaS) type III secretion system export apparatus switch protein SpaS [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2782 99.24 0.0 spaR VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (spaR) type III secretion system minor export apparatus protein SpaR [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2783 100.0 1.03E-56 spaQ VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (spaQ) type III secretion system minor export apparatus protein SpaQ [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2784 99.554 7.25E-165 spaP VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (spaP) type III secretion system minor export apparatus protein SpaP [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2785 99.34 0.0 spaO/sctQ VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (spaO/sctQ) type III secretion system C ring protein SpaO [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2786 98.214 0.0 invJ VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (invJ) type III secretion system needle length regulator InvJ [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2787 99.32 2.44E-99 invI VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (invI) type III secretion system stalk protein InvI [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2788 100.0 0.0 invC/sctN VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (invC/sctN) type III secretion system ATPase InvC [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2789 100.0 5.36E-99 invB VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (invB) type III secretion system protein InvB [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2790 100.0 0.0 invA VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (invA) type III secretion system major export apparatus protein InvA [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2791 99.731 0.0 invE VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (invE) type III secretion system gatekeeper invE [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2792 99.288 0.0 invG VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (invG) type III secretion system secretin invG [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2793 100.0 1.76E-163 invF VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (invF) type III secretion system regulatory protein InvF [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2794 99.32 2.83E-106 invH VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (invH) type III secretion system pilotin invG [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2814 100.0 0.0 rpoS VF0112 RpoS Regulation VFC0301 (rpoS) RNA polymerase sigma factor RpoS [RpoS (VF0112) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_2836 98.423 0.0 sopD VF0949 TTSS-1 secreted effectors Effector delivery system VFC0086 (sopD) type III secretion system effector SopD [TTSS-1 secreted effectors (VF0949) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_3037 61.212 6.88E-73 hcp/tssD VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (hcp/tssD) Hcp family type VI secretion system effector [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AE014613.1_3110 69.892 0.0 rfaE VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rfaE) ADP-heptose synthase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_3300 72.222 5.09E-65 acrA VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrA) acriflavine resistance protein A [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_3301 79.36 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_3302 91.892 3.31E-61 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AE014613.1_3364 66.323 4.11E-142 wbtL VF0542 LPS Immune modulation VFC0258 The structure of Francisella spp. lipid A is unique in that it is modified by various carbohydrates that greatly reduce TLR4 activation and allow for immune evasion (wbtL) glucose-1-phosphate thymidylyltransferase [LPS (VF0542) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AE014613.1_3365 65.476 7.71E-171 rffG VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rffG) dTDP-glucose 46-dehydratase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_3466 80.153 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AE014613.1_3483 89.081 0.0 ibeC VF0237 Ibes Invasion VFC0083 IbeA is unique to E. coli K1. The ibeB and ibeC are found to have K12 homologues p77211 and yijP respectively. (ibeC) phosphoethanolamine transferase CptA [Ibes (VF0237) - Invasion (VFC0083)] [Escherichia coli O45:K1:H7 str. S88] Escherichia coli (NMEC)
AE014613.1_3740 99.119 1.03E-166 mgtC VF1365 MgtC Nutritional/Metabolic factor VFC0272 An inner membrane protein; anti-virulence protein CigR inhibits the virulence functions of MgtC at early times inside macrophages (mgtC) Salmonella virulence protein MgtC [MgtC (VF1365) - Nutritional/Metabolic factor (VFC0272)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_3741 99.339 0.0 mgtB VF0106 MgtB Nutritional/Metabolic factor VFC0272 A magnesium transporter (mgtB) Mg2+ transport protein [MgtB (VF0106) - Nutritional/Metabolic factor (VFC0272)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_3749 97.328 0.0 misL VF0397 MisL Adherence VFC0001 MisL is located within Salmonella Pathogenicity Island SPI-3 (misL) putative autotransporter [MisL (VF0397) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_3750 99.119 2.75E-156 misL VF0397 MisL Adherence VFC0001 MisL is located within Salmonella Pathogenicity Island SPI-3 (misL) putative autotransporter [MisL (VF0397) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_3798 63.714 2.03E-157 rfaF VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rfaF) ADP-heptose-LPS heptosyltransferase II [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_3799 77.922 0.0 rfaD VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rfaD) ADP-L-glycero-D-mannoheptose-6-epimerase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AE014613.1_4017 63.964 7.82E-102 rpe VF0543 Capsule Immune modulation VFC0258 Group 4 capsule; high molecular weight (HMW) O-antigen capsule (rpe) ribulose-phosphate 3-epimerase [Capsule (VF0543) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AE014613.1_4035 67.327 4.49E-100 vfr VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (vfr) cAMP-regulatory protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AE014613.1_4057 80.153 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AE014613.1_4108 61.593 0.0 icl VF0253 Isocitrate lyase Others VFC0346 (icl) Isocitrate lyase Icl (isocitrase) (isocitratase) [Isocitrate lyase (VF0253) - Others (VFC0346)] [Mycobacterium tuberculosis H37Rv] Mycobacterium tuberculosis
AE014613.1_4161 98.538 0.0 siiE VF0970 SiiE Adherence VFC0001 SiiE is located within Salmonella Pathogenicity Island SPI-4, a 27-kb region that carries six genes designated siiABCDEF. SiiC, SiiD, and SiiF form a type I secretion apparatus for the secretion of SiiE.;With 595 kDa, SiiE is the largest protein of the Salmonella proteome.;SiiE, like many other non-fimbrial adhesins binds to glycostructures at the cell surface. (siiE) non-fimbrial adhesin SiiE [SiiE (VF0970) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_4162 98.051 0.0 siiE VF0970 SiiE Adherence VFC0001 SiiE is located within Salmonella Pathogenicity Island SPI-4, a 27-kb region that carries six genes designated siiABCDEF. SiiC, SiiD, and SiiF form a type I secretion apparatus for the secretion of SiiE.;With 595 kDa, SiiE is the largest protein of the Salmonella proteome.;SiiE, like many other non-fimbrial adhesins binds to glycostructures at the cell surface. (siiE) non-fimbrial adhesin SiiE [SiiE (VF0970) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_4194 98.876 0.0 pmrB VF1355 PmrAB Regulation VFC0301 (pmrB) sensory kinase PmrB [PmrAB (VF1355) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_4195 99.099 2.37E-163 pmrA VF1355 PmrAB Regulation VFC0301 (pmrA) response regulator PmrA [PmrAB (VF1355) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_4241 100.0 6.86E-99 pilM VF0966 T4P Invasion VFC0083 The T4P operon resides on Salmonella Pathogenicity Island SPI-7 in serovar Typhi along with the viaB gene cluster that encodes the Vi capsular antigen. (pilM) type IV pilus biogenesis protein PilM [T4P (VF0966) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4244 100.0 0.0 pilO VF0966 T4P Invasion VFC0083 The T4P operon resides on Salmonella Pathogenicity Island SPI-7 in serovar Typhi along with the viaB gene cluster that encodes the Vi capsular antigen. (pilO) type 4b pilus protein PilO2 [T4P (VF0966) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4245 100.0 6.86E-138 pilP VF0966 T4P Invasion VFC0083 The T4P operon resides on Salmonella Pathogenicity Island SPI-7 in serovar Typhi along with the viaB gene cluster that encodes the Vi capsular antigen. (pilP) type IV pilus biogenesis protein PilP [T4P (VF0966) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4246 100.0 0.0 pilQ VF0966 T4P Invasion VFC0083 The T4P operon resides on Salmonella Pathogenicity Island SPI-7 in serovar Typhi along with the viaB gene cluster that encodes the Vi capsular antigen. (pilQ) Flp pilus assembly complex ATPase component TadA [T4P (VF0966) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4247 100.0 0.0 pilR VF0966 T4P Invasion VFC0083 The T4P operon resides on Salmonella Pathogenicity Island SPI-7 in serovar Typhi along with the viaB gene cluster that encodes the Vi capsular antigen. (pilR) type II secretion system F family protein [T4P (VF0966) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4248 100.0 1.28E-143 pilS VF0966 T4P Invasion VFC0083 The T4P operon resides on Salmonella Pathogenicity Island SPI-7 in serovar Typhi along with the viaB gene cluster that encodes the Vi capsular antigen. (pilS) pilus assembly protein PilX [T4P (VF0966) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4249 100.0 2.39E-121 pilT VF0966 T4P Invasion VFC0083 The T4P operon resides on Salmonella Pathogenicity Island SPI-7 in serovar Typhi along with the viaB gene cluster that encodes the Vi capsular antigen. (pilT) lytic transglycosylase domain-containing protein [T4P (VF0966) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4250 100.0 6.48E-159 pilU VF0966 T4P Invasion VFC0083 The T4P operon resides on Salmonella Pathogenicity Island SPI-7 in serovar Typhi along with the viaB gene cluster that encodes the Vi capsular antigen. (pilU) prepilin peptidase [T4P (VF0966) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4251 100.0 0.0 pilV VF0966 T4P Invasion VFC0083 The T4P operon resides on Salmonella Pathogenicity Island SPI-7 in serovar Typhi along with the viaB gene cluster that encodes the Vi capsular antigen. (pilV) shufflon system plasmid conjugative transfer pilus tip adhesin PilV [T4P (VF0966) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4254 100.0 1.11E-112 pilK VF0966 T4P Invasion VFC0083 The T4P operon resides on Salmonella Pathogenicity Island SPI-7 in serovar Typhi along with the viaB gene cluster that encodes the Vi capsular antigen. (pilK) hypothetical protein [T4P (VF0966) - Invasion (VFC0083)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4303 69.62 1.59E-123 sopE2 VF0949 TTSS-1 secreted effectors Effector delivery system VFC0086 (sopE2) type III secretion system effector SopE2, guanine nucleotide exchange factor [TTSS-1 secreted effectors (VF0949) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AE014613.1_4343 100.0 0.0 vexE VF0101 Vi antigen Immune modulation VFC0258 Vi is abbreviation for virulence; the viaB locus is within Salmonella pathogenicity island SPI-7, which also encodes SopE and a type IVB pilus; The viaB locus encodes genes involved in regulation (tviA), Vi biosynthesis (tviBCDE), export, and retention of the Vi on the bacterial cell surface (vexABCDE); A viaB locus is absent from S. Paratyphi A, and most gastroenteritis-causing serovars including S. Typhimurium (vexE) Vi polysaccharide export protein VexE [Vi antigen (VF0101) - Immune modulation (VFC0258)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4344 100.0 0.0 vexD VF0101 Vi antigen Immune modulation VFC0258 Vi is abbreviation for virulence; the viaB locus is within Salmonella pathogenicity island SPI-7, which also encodes SopE and a type IVB pilus; The viaB locus encodes genes involved in regulation (tviA), Vi biosynthesis (tviBCDE), export, and retention of the Vi on the bacterial cell surface (vexABCDE); A viaB locus is absent from S. Paratyphi A, and most gastroenteritis-causing serovars including S. Typhimurium (vexD) Vi polysaccharide export inner-membrane protein VexD [Vi antigen (VF0101) - Immune modulation (VFC0258)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4345 100.0 1.25E-174 vexC VF0101 Vi antigen Immune modulation VFC0258 Vi is abbreviation for virulence; the viaB locus is within Salmonella pathogenicity island SPI-7, which also encodes SopE and a type IVB pilus; The viaB locus encodes genes involved in regulation (tviA), Vi biosynthesis (tviBCDE), export, and retention of the Vi on the bacterial cell surface (vexABCDE); A viaB locus is absent from S. Paratyphi A, and most gastroenteritis-causing serovars including S. Typhimurium (vexC) Vi polysaccharide export ATP-binding protein VexC [Vi antigen (VF0101) - Immune modulation (VFC0258)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4346 100.0 0.0 vexB VF0101 Vi antigen Immune modulation VFC0258 Vi is abbreviation for virulence; the viaB locus is within Salmonella pathogenicity island SPI-7, which also encodes SopE and a type IVB pilus; The viaB locus encodes genes involved in regulation (tviA), Vi biosynthesis (tviBCDE), export, and retention of the Vi on the bacterial cell surface (vexABCDE); A viaB locus is absent from S. Paratyphi A, and most gastroenteritis-causing serovars including S. Typhimurium (vexB) Vi polysaccharide export inner-membrane protein (ABC-2 type transporter) VexB [Vi antigen (VF0101) - Immune modulation (VFC0258)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4347 100.0 0.0 vexA VF0101 Vi antigen Immune modulation VFC0258 Vi is abbreviation for virulence; the viaB locus is within Salmonella pathogenicity island SPI-7, which also encodes SopE and a type IVB pilus; The viaB locus encodes genes involved in regulation (tviA), Vi biosynthesis (tviBCDE), export, and retention of the Vi on the bacterial cell surface (vexABCDE); A viaB locus is absent from S. Paratyphi A, and most gastroenteritis-causing serovars including S. Typhimurium (vexA) Vi polysaccharide export protein VexA [Vi antigen (VF0101) - Immune modulation (VFC0258)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4348 99.827 0.0 tviE VF0101 Vi antigen Immune modulation VFC0258 Vi is abbreviation for virulence; the viaB locus is within Salmonella pathogenicity island SPI-7, which also encodes SopE and a type IVB pilus; The viaB locus encodes genes involved in regulation (tviA), Vi biosynthesis (tviBCDE), export, and retention of the Vi on the bacterial cell surface (vexABCDE); A viaB locus is absent from S. Paratyphi A, and most gastroenteritis-causing serovars including S. Typhimurium (tviE) Vi polysaccharide biosynthesis protein TviE, Glycosyl transferases group 1 [Vi antigen (VF0101) - Immune modulation (VFC0258)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4349 100.0 0.0 tviD VF0101 Vi antigen Immune modulation VFC0258 Vi is abbreviation for virulence; the viaB locus is within Salmonella pathogenicity island SPI-7, which also encodes SopE and a type IVB pilus; The viaB locus encodes genes involved in regulation (tviA), Vi biosynthesis (tviBCDE), export, and retention of the Vi on the bacterial cell surface (vexABCDE); A viaB locus is absent from S. Paratyphi A, and most gastroenteritis-causing serovars including S. Typhimurium (tviD) Vi polysaccharide biosynthesis protein TviD [Vi antigen (VF0101) - Immune modulation (VFC0258)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4350 100.0 0.0 tviC VF0101 Vi antigen Immune modulation VFC0258 Vi is abbreviation for virulence; the viaB locus is within Salmonella pathogenicity island SPI-7, which also encodes SopE and a type IVB pilus; The viaB locus encodes genes involved in regulation (tviA), Vi biosynthesis (tviBCDE), export, and retention of the Vi on the bacterial cell surface (vexABCDE); A viaB locus is absent from S. Paratyphi A, and most gastroenteritis-causing serovars including S. Typhimurium (tviC) Vi polysaccharide biosynthesis protein, UDP-GlcNAcA 4-epimerase TviC [Vi antigen (VF0101) - Immune modulation (VFC0258)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4351 100.0 0.0 tviB VF0101 Vi antigen Immune modulation VFC0258 Vi is abbreviation for virulence; the viaB locus is within Salmonella pathogenicity island SPI-7, which also encodes SopE and a type IVB pilus; The viaB locus encodes genes involved in regulation (tviA), Vi biosynthesis (tviBCDE), export, and retention of the Vi on the bacterial cell surface (vexABCDE); A viaB locus is absent from S. Paratyphi A, and most gastroenteritis-causing serovars including S. Typhimurium (tviB) Vi polysaccharide biosynthesis protein, UDP-N-acetylglucosamine (UPD-GlcNAc) 6-dehydrogenase TviB [Vi antigen (VF0101) - Immune modulation (VFC0258)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4352 100.0 3.23E-134 tviA VF0101 Vi antigen Immune modulation VFC0258 Vi is abbreviation for virulence; the viaB locus is within Salmonella pathogenicity island SPI-7, which also encodes SopE and a type IVB pilus; The viaB locus encodes genes involved in regulation (tviA), Vi biosynthesis (tviBCDE), export, and retention of the Vi on the bacterial cell surface (vexABCDE); A viaB locus is absent from S. Paratyphi A, and most gastroenteritis-causing serovars including S. Typhimurium (tviA) Vi polysaccharide biosynthesis regulator TviA [Vi antigen (VF0101) - Immune modulation (VFC0258)] [Salmonella enterica subsp. enterica serovar Typhi str. CT18] Salmonella enterica (serovar typhi)
AE014613.1_4377 75.758 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AE014613.1_4579 77.26 4.48E-177 cheD VF0394 Flagella Motility VFC0204 (cheD) methyl-accepting chemotaxis protein CheD [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica