Basic Information
Accession number
GCA_000010765.1
Release date
2009-09-10
Organism
Escherichia coli O111:H- str. 11128
Species name
Escherichia coli

Assembly level
Complete Genome
Assembly name
ASM1076v1
Assembly submitter
Contact:Masahira Hattori University of Tokyo, Graduate School of Frontier Sciences; 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
Assembly Type
haploid
Genome size
5.8 Mb
GC percent
50.5
Contig count
6

Collection date
-
Sample location
-
Host
-
Isolation source
-
Isolate type
-
Strain
11128
Isolate
-
ARG List
ORF_ID Pass_Bitscore Best_Hit_Bitscore Best_Hit_ARO Best_Identities ARO Model_type SNPs_in_Best_Hit_ARO Other_SNPs Drug class Resistance mechanism AMR gene family Description
AP010960.1_73 # 86123 # 87067 500.0 648.662 leuO 99.04 ARO:3003843 protein homolog model nucleoside antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump leuO, a LysR family transcription factor, exists in a wide variety of bacteria of the family Enterobacteriaceae and is involved in the regulation of as yet unidentified genes affecting the stress response and pathogenesis expression. LeuO is also an activator of the MdtNOP efflux pump.
AP010960.1_403 # 439653 # 440747 250.0 266.544 vanG 39.5 ARO:3002909 protein homolog model glycopeptide antibiotic antibiotic target alteration glycopeptide resistance gene cluster; Van ligase VanG is a D-Ala-D-Ala ligase homolog that can synthesize D-Ala-D-Ser, an alternative substrate for peptidoglycan synthesis that reduces vancomycin binding affinity in Enterococcus faecalis.
AP010960.1_484 # 523195 # 526344 1900.0 2135.92 acrB 99.9 ARO:3000216 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump Protein subunit of AcrA-AcrB-TolC multidrug efflux complex. AcrB functions as a herterotrimer which forms the inner membrane component and is primarily responsible for substrate recognition and energy transduction by acting as a drug/proton antiporter.
AP010960.1_485 # 526367 # 527560 670.0 798.119 Escherichia coli acrA 100.0 ARO:3004043 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AcrA is a subunit of the AcrAB-TolC multidrug efflux system found in E. coli.
AP010960.1_704 # 766257 # 766934 400.0 449.129 kdpE 99.11 ARO:3003841 protein homolog model aminoglycoside antibiotic antibiotic efflux kdpDE kdpE is a transcriptional activator that is part of the two-component system KdpD/KdpE that is studied for its regulatory role in potassium transport and has been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria. kdpE regulates a range of virulence loci through direct promoter binding.
AP010960.1_902 # 972575 # 973807 700.0 784.252 Escherichia coli mdfA 96.59 ARO:3001328 protein homolog model tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Multidrug efflux pump in E. coli. This multidrug efflux system was originally identified as the Cmr/CmlA chloramphenicol exporter.
AP010960.1_974 # 1055612 # 1057360 1000.0 1191.79 msbA 100.0 ARO:3003950 protein homolog model nitroimidazole antibiotic antibiotic efflux ATP-binding cassette (ABC) antibiotic efflux pump MsbA is a multidrug resistance transporter homolog from E. coli and belongs to a superfamily of transporters that contain an adenosine triphosphate (ATP) binding cassette (ABC) which is also called a nucleotide-binding domain (NBD). MsbA is a member of the MDR-ABC transporter group by sequence homology. MsbA transports lipid A, a major component of the bacterial outer cell membrane, and is the only bacterial ABC transporter that is essential for cell viability.
AP010960.1_1313 # 1366532 # 1367758 700.0 806.979 mdtG 100.0 ARO:3001329 protein homolog model phosphonic acid antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump The MdtG protein, also named YceE, appears to be a member of the major facilitator superfamily of transporters, and it has been reported, when overexpressed, to increase fosfomycin and deoxycholate resistances. mdtG is a member of the marA-soxS-rob regulon.
AP010960.1_1325 # 1376387 # 1377595 750.0 801.201 mdtH 100.0 ARO:3001216 protein homolog model fluoroquinolone antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Multidrug resistance protein MdtH.
AP010960.1_1541 # 1587087 # 1587500 240.0 275.789 H-NS 99.27 ARO:3000676 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; cephalosporin; cephamycin; penam; tetracycline antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump H-NS is a histone-like protein involved in global gene regulation in Gram-negative bacteria. It is a repressor of the membrane fusion protein genes acrE, mdtE, and emrK as well as nearby genes of many RND-type multidrug exporters.
AP010960.1_1904 # 1957573 # 1957956 230.0 266.544 marA 100.0 ARO:3000263 protein homolog model fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; glycylcycline; cephamycin; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic efflux; reduced permeability to antibiotic resistance-nodulation-cell division (RND) antibiotic efflux pump; General Bacterial Porin with reduced permeability to beta-lactams In the presence of antibiotic stress, E. coli overexpresses the global activator protein MarA, which besides inducing MDR efflux pump AcrAB, also down- regulates synthesis of the porin OmpF.
AP010960.1_2034 # 2068931 # 2069260 150.0 186.808 Klebsiella pneumoniae KpnF 84.4 ARO:3004583 protein homolog model macrolide antibiotic; aminoglycoside antibiotic; cephalosporin; tetracycline antibiotic; peptide antibiotic; rifamycin antibiotic; disinfecting agents and antiseptics antibiotic efflux small multidrug resistance (SMR) antibiotic efflux pump KpnF subunit of KpnEF resembles EbrAB from E. coli. Mutation in KpnEF resulted in increased susceptibility to cefepime, ceftriaxon, colistin, erythromycin, rifampin, tetracycline, and streptomycin as well as enhanced sensitivity toward sodium dodecyl sulfate, deoxycholate, dyes, benzalkonium chloride, chlorhexidine, and triclosan.
AP010960.1_2035 # 2069247 # 2069612 150.0 182.57 Klebsiella pneumoniae KpnE 82.2 ARO:3004580 protein homolog model macrolide antibiotic; aminoglycoside antibiotic; cephalosporin; tetracycline antibiotic; peptide antibiotic; rifamycin antibiotic; disinfecting agents and antiseptics antibiotic efflux small multidrug resistance (SMR) antibiotic efflux pump KpnE subunit of KpnEF resembles EbrAB from E. coli. Mutation in KpnEF resulted in increased susceptibility to cefepime, ceftriaxon, colistin, erythromycin, rifampin, tetracycline, and streptomycin as well as enhanced sensitivity toward sodium dodecyl sulfate, deoxycholate, dyes, benzalkonium chloride, chlorhexidine, and triclosan.
AP010960.1_2480 # 2504024 # 2504356 190.0 216.083 Escherichia coli emrE 98.18 ARO:3004039 protein homolog model macrolide antibiotic antibiotic efflux small multidrug resistance (SMR) antibiotic efflux pump Member of the small MDR (multidrug resistance) family of transporters; in Escherichia coli this protein provides resistance against a number of positively charged compounds including ethidium bromide and erythromycin; proton-dependent secondary transporter which exchanges protons for compound translocation.
AP010960.1_2750 # 2723020 # 2724387 725.0 827.009 mdtA 99.04 ARO:3000792 protein homolog model aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MdtA is the membrane fusion protein of the multidrug efflux complex mdtABC.
AP010960.1_2751 # 2724387 # 2727509 1800.0 2075.83 mdtB 99.62 ARO:3000793 protein homolog model aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MdtB is a transporter that forms a heteromultimer complex with MdtC to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex.
AP010960.1_2752 # 2727510 # 2730587 1800.0 2063.11 mdtC 99.61 ARO:3000794 protein homolog model aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MdtC is a transporter that forms a heteromultimer complex with MdtB to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex. In the absence of MdtB, MdtC can form a homomultimer complex that results in a functioning efflux complex with a narrower drug specificity. mdtC corresponds to 3 loci in Pseudomonas aeruginosa PAO1 (gene name: muxC/muxB) and 3 loci in Pseudomonas aeruginosa LESB58.
AP010960.1_2754 # 2731982 # 2733385 850.0 944.495 baeS 99.14 ARO:3000829 protein homolog model aminoglycoside antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump BaeS is a sensor kinase in the BaeSR regulatory system. While it phosphorylates BaeR to increase its activity, BaeS is not necessary for overexpressed BaeR to confer resistance.
AP010960.1_2755 # 2733382 # 2734104 450.0 484.567 baeR 99.58 ARO:3000828 protein homolog model aminoglycoside antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump BaeR is a response regulator that promotes the expression of MdtABC and AcrD efflux complexes.
AP010960.1_2903 # 2883366 # 2885009 1050.0 1104.35 YojI 99.63 ARO:3003952 protein homolog model peptide antibiotic antibiotic efflux ATP-binding cassette (ABC) antibiotic efflux pump YojI mediates resistance to the peptide antibiotic microcin J25 when it is expressed from a multicopy vector. YojI is capable of pumping out microcin molecules. The outer membrane protein TolC in addition to YojI is required for export of microcin J25 out of the cell. Microcin J25 is thus the first known substrate for YojI.
AP010960.1_2952 # 2946318 # 2947286 550.0 666.766 PmrF 99.69 ARO:3003578 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase PmrF is required for the synthesis and transfer of 4-amino-4-deoxy-L-arabinose (Ara4N) to Lipid A, which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. pmrF corresponds to 1 locus in Pseudomonas aeruginosa PAO1 and 1 locus in Pseudomonas aeruginosa LESB58.
AP010960.1_2956 # 2950156 # 2951808 400.0 734.176 ArnT 63.88 ARO:3005053 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase ArnT is involved in Cell Wall Biosynthesis, specifically 4-amino-4-deoxy-L-arabinose (Ara4N). It confers resistance to peptide antibiotics.
AP010960.1_3053 # 3050431 # 3051969 900.0 1023.08 emrY 100.0 ARO:3000254 protein homolog model tetracycline antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump emrY is a multidrug transport that moves substrates across the inner membrane of the Gram-negative E. coli. It is a homolog of emrB.
AP010960.1_3054 # 3051969 # 3053132 600.0 715.301 emrK 99.43 ARO:3000206 protein homolog model tetracycline antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump emrK is a membrane fusion protein that is a homolog of EmrA. Together with the inner membrane transporter EmrY and the outer membrane channel TolC, it mediates multidrug efflux.
AP010960.1_3055 # 3053548 # 3054162 390.0 417.157 evgA 100.0 ARO:3000832 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; penam; tetracycline antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump EvgA, when phosphorylated, is a positive regulator for efflux protein complexes emrKY and mdtEF. While usually phosphorylated in a EvgS dependent manner, it can be phosphorylated in the absence of EvgS when overexpressed.
AP010960.1_3056 # 3054167 # 3057760 2300.0 2461.41 evgS 99.08 ARO:3000833 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; penam; tetracycline antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump EvgS is a sensor protein that phosphorylates the regulatory protein EvgA. evgS corresponds to 1 locus in Pseudomonas aeruginosa PAO1 and 1 locus in Pseudomonas aeruginosa LESB58.
AP010960.1_3140 # 3147874 # 3150987 1900.0 2126.29 acrD 100.0 ARO:3000491 protein homolog model aminoglycoside antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AcrD is an aminoglycoside efflux pump expressed in E. coli. Its expression can be induced by indole, and is regulated by baeRS and cpxAR.
AP010960.1_3356 # 3374391 # 3374921 280.0 361.303 emrR 100.0 ARO:3000516 protein homolog model fluoroquinolone antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump EmrR is a negative regulator for the EmrAB-TolC multidrug efflux pump in E. coli. Mutations lead to EmrAB-TolC overexpression.
AP010960.1_3357 # 3375048 # 3376220 675.0 791.186 emrA 99.74 ARO:3000027 protein homolog model fluoroquinolone antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump EmrA is a membrane fusion protein, providing an efflux pathway with EmrB and TolC between the inner and outer membranes of E. coli, a Gram-negative bacterium.
AP010960.1_3358 # 3376237 # 3377775 900.0 1029.24 emrB 100.0 ARO:3000074 protein homolog model fluoroquinolone antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump emrB is a translocase in the emrB -TolC efflux protein in E. coli. It recognizes substrates including carbonyl cyanide m-chlorophenylhydrazone (CCCP), nalidixic acid, and thioloactomycin.
AP010960.1_3363 # 3382448 # 3382633 100.0 109.383 rsmA 85.25 ARO:3005069 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump rsmA is a gene that regulates virulence of Pseudomonas aeruginosa. However, its negative effect on MexEF-OprN overexpression has been noted to confer resistance to various antibiotics. It's Escherichia coli homolog is csrA.
AP010960.1_3811 # 3840082 # 3841563 900.0 994.186 TolC 100.0 ARO:3000237 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; carbapenem; cephalosporin; glycylcycline; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; rifamycin antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic efflux ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump TolC is a protein subunit of many multidrug efflux complexes in Gram negative bacteria. It is an outer membrane efflux protein and is constitutively open. Regulation of efflux activity is often at its periplasmic entrance by other components of the efflux complex.
AP010960.1_3832 # 3863913 # 3864734 500.0 543.117 bacA 99.63 ARO:3002986 protein homolog model peptide antibiotic antibiotic target alteration undecaprenyl pyrophosphate related proteins The bacA gene product (BacA) recycles undecaprenyl pyrophosphate during cell wall biosynthesis which confers resistance to bacitracin.
AP010960.1_4041 # 4083703 # 4084365 380.0 456.062 AcrS 99.55 ARO:3000656 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; cephamycin; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AcrS is a repressor of the AcrAB efflux complex and is associated with the expression of AcrEF. AcrS is believed to regulate a switch between AcrAB and AcrEF efflux.
AP010960.1_4042 # 4084764 # 4085921 675.0 785.793 AcrE 100.0 ARO:3000499 protein homolog model fluoroquinolone antibiotic; cephalosporin; cephamycin; penam antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AcrE is a membrane fusion protein, similar to AcrA.
AP010960.1_4043 # 4085933 # 4089037 1900.0 2090.46 AcrF 99.52 ARO:3000502 protein homolog model fluoroquinolone antibiotic; cephalosporin; cephamycin; penam antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AcrF is a inner membrane transporter, similar to AcrB.
AP010960.1_4120 # 4141863 # 4142495 400.0 434.491 CRP 99.52 ARO:3000518 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; penam antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CRP is a global regulator that represses MdtEF multidrug efflux pump expression.
AP010960.1_4281 # 4318721 # 4319878 675.0 778.859 mdtE 100.0 ARO:3000795 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; penam antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MdtE is the membrane fusion protein of the MdtEF multidrug efflux complex. It shares 70% sequence similarity with AcrA.
AP010960.1_4282 # 4319903 # 4323016 1850.0 2102.79 mdtF 99.81 ARO:3000796 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; penam antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MdtF is the multidrug inner membrane transporter for the MdtEF-TolC efflux complex.
AP010960.1_4285 # 4324475 # 4325299 450.0 558.525 gadX 98.18 ARO:3000508 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; penam antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump GadX is an AraC-family regulator that promotes mdtEF expression to confer multidrug resistance.
AP010960.1_4694 # 4785697 # 4787070 890.0 926.391 cpxA 100.0 ARO:3000830 protein homolog model aminoglycoside antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CpxA is a membrane-localized sensor kinase that is activated by envelope stress. It starts a kinase cascade that activates CpxR, which promotes efflux complex expression.
AP010960.1_4926 # 5038805 # 5040271 875.0 976.852 mdtP 97.95 ARO:3003550 protein homolog model nucleoside antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Multidrug resistance efflux pump. Could be involved in resistance to puromycin, acriflavine and tetraphenylarsonium chloride.
AP010960.1_4927 # 5040268 # 5042319 1300.0 1387.47 mdtO 99.12 ARO:3003549 protein homolog model nucleoside antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Multidrug resistance efflux pump. Could be involved in resistance to puromycin, acriflavine and tetraphenylarsonium chloride.
AP010960.1_4928 # 5042319 # 5043350 600.0 685.256 mdtN 99.71 ARO:3003548 protein homolog model nucleoside antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Multidrug resistance efflux pump. Could be involved in resistance to puromycin, acriflavine and tetraphenylarsonium chloride.
AP010960.1_4955 # 5066052 # 5067695 1000.0 1131.32 eptA 99.45 ARO:3003576 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase PmrC mediates the modification of Lipid A by the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine, resulting in a less negative cell membrane and decreased binding of polymyxin B.
AP010960.1_5034 # 5154506 # 5155639 725.0 766.533 EC-14 98.67 ARO:3006875 protein homolog model cephalosporin antibiotic inactivation EC beta-lactamase EC-14 is a EC beta-lactamase.
AP010960.1_5167 # 5298754 # 5299986 700.0 798.89 mdtM 97.8 ARO:3001214 protein homolog model fluoroquinolone antibiotic; lincosamide antibiotic; nucleoside antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Multidrug resistance protein MdtM.
AP010961.1_111 # 96698 # 97903 700.0 785.023 tet(B) 99.25 ARO:3000166 protein homolog model tetracycline antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Tet(B) is a tetracycline efflux protein expressed in many Gram-negative bacteria. It confers resistance to tetracycline, doxycycline, and minocycline, but not tigecycline.
AP010961.1_125 # 106137 # 106952 500.0 560.066 APH(3')-Ia 98.52 ARO:3002641 protein homolog model aminoglycoside antibiotic antibiotic inactivation APH(3') APH(3')-Ia is a transposon-encoded aminoglycoside phosphotransferase in E. coli and S. enterica. It is identical at the protein sequence to APH(3')-Ic, an aminoglycoside phosphotransferase encoded by plasmids, transposons and genomic islands in K. pneumoniae, A. baumannii, S. marcescens, Corynebacterium spp., Photobacterium spp. and Citrobacter spp.
AP010961.1_127 # 107868 # 108704 500.0 568.155 APH(6)-Id 99.64 ARO:3002660 protein homolog model aminoglycoside antibiotic antibiotic inactivation APH(6) APH(6)-Id is an aminoglycoside phosphotransferase encoded by plasmids, integrative conjugative elements and chromosomal genomic islands in K. pneumoniae, Salmonella spp., E. coli, Shigella flexneri, Providencia alcalifaciens, Pseudomonas spp., V. cholerae, Edwardsiella tarda, Pasteurella multocida and Aeromonas bestiarum.
AP010961.1_128 # 108704 # 109507 500.0 541.191 APH(3'')-Ib 99.63 ARO:3002639 protein homolog model aminoglycoside antibiotic antibiotic inactivation APH(3'') APH(3'')-Ib is an aminoglycoside phosphotransferase encoded by plasmids, transposons, integrative conjugative elements and chromosomes in Enterobacteriaceae and Pseudomonas spp.
AP010961.1_129 # 109568 # 110383 500.0 526.554 sul2 99.63 ARO:3000412 protein homolog model sulfonamide antibiotic antibiotic target replacement sulfonamide resistant sul Sul2 is a sulfonamide resistant dihydropteroate synthase of Gram-negative bacteria, usually found on small plasmids.
AP010961.1_133 # 113600 # 114460 500.0 591.267 TEM-1 100.0 ARO:3000873 protein homolog model monobactam; cephalosporin; penam; penem antibiotic inactivation TEM beta-lactamase TEM-1 is a broad-spectrum beta-lactamase found in many Gram-negative bacteria. Confers resistance to penicillins and first generation cephalosphorins.
AP010961.1_138 # 119115 # 119774 400.0 465.692 catI 100.0 ARO:3002683 protein homolog model phenicol antibiotic antibiotic inactivation chloramphenicol acetyltransferase (CAT) catA1 (formerly in CARD as catI) is a chromosome and transposon-encoded variant of the cat gene found in Escherichia coli and Acinetobacter baumannii.
AP010960.1_80 # 93168 # 94934 500.0 595.89 Haemophilus influenzae PBP3 conferring resistance to beta-lactam antibiotics 53.11 ARO:3004446 protein variant model D350N, S357N cephalosporin; cephamycin; penam antibiotic target alteration Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics PBP3 is a penicillin-binding protein and beta-lactam resistance enzyme encoded by the ftsI gene in Haemophilus influenzae. Mutations in ftsI confer resistance to beta-lactam antibiotics.
AP010960.1_2941 # 2934321 # 2935679 850.0 919.842 Escherichia coli GlpT with mutation conferring resistance to fosfomycin 99.78 ARO:3003889 protein variant model E448K phosphonic acid antibiotic antibiotic target alteration antibiotic-resistant GlpT Point mutations to the active importer GlpT, which is involved with the uptake of many phosphorylated sugars, confer resistance to fosfomycin by reducing import of the drug into the bacteria.
AP010960.1_4099 # 4125925 # 4127109 700.0 797.734 Escherichia coli EF-Tu mutants conferring resistance to Pulvomycin 99.75 ARO:3003369 protein variant model R234F elfamycin antibiotic antibiotic target alteration elfamycin resistant EF-Tu Sequence variants of Escherichia coli elongation factor Tu that confer resistance to Pulvomycin.
AP010960.1_4758 # 4863143 # 4864327 700.0 795.808 Escherichia coli EF-Tu mutants conferring resistance to Pulvomycin 99.75 ARO:3003369 protein variant model R234F elfamycin antibiotic antibiotic target alteration elfamycin resistant EF-Tu Sequence variants of Escherichia coli elongation factor Tu that confer resistance to Pulvomycin.
AP010960.1_486 # 527702 # 528349 375.0 446.047 Escherichia coli AcrAB-TolC with AcrR mutation conferring resistance to ciprofloxacin, tetracycline, and ceftazidime 100.0 ARO:3003807 protein overexpression model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AcrR is a repressor of the AcrAB-TolC multidrug efflux complex. AcrR mutations result in high level antibiotic resistance. The mutations associated with this model are specific to E. coli.
AP010960.1_1903 # 1957119 # 1957553 210.0 289.656 Escherichia coli AcrAB-TolC with MarR mutations conferring resistance to ciprofloxacin and tetracycline 98.61 ARO:3003378 protein overexpression model Y137H, G103S fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MarR is a repressor of the mar operon marRAB, thus regulating the expression of marA, the activator of multidrug efflux pump AcrAB.
AP010960.1_4906 # 5016865 # 5017188 200.0 220.32 Escherichia coli soxS with mutation conferring antibiotic resistance 100.0 ARO:3003511 protein overexpression model fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; glycylcycline; cephamycin; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux; reduced permeability to antibiotic ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; General Bacterial Porin with reduced permeability to beta-lactams SoxS is a global regulator that up-regulates the expression of AcrAB efflux genes. It also reduces OmpF expression to decrease cell membrane permeability.
AP010960.1_4907 # 5017274 # 5017738 300.0 313.538 Escherichia coli soxR with mutation conferring antibiotic resistance 100.0 ARO:3003381 protein overexpression model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump SoxR is a sensory protein that upregulates soxS expression in the presence of redox-cycling drugs. This stress response leads to the expression many multidrug efflux pumps.
AP010961.1_110 # 95993 # 96616 400.0 427.172 tetR 100.0 ARO:3003479 protein overexpression model tetracycline antibiotic antibiotic target alteration; antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump TetR is the repressor of the tetracycline resistance element; its N-terminal region forms a helix-turn-helix structure and binds DNA. Binding of tetracycline to TetR reduces the repressor affinity for the tetracycline resistance gene (tetA) promoter operator sites. Mutations arise within tetR results in lower affinity for tetracyclin.
VF List
Query_id %Identity E-value Related genes VF ID Virulence factor VFcategory VFcategoryID Characteristics Description Strain
AP010960.1_19 91.121 0.0 espX1 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espX1) Type III secretion system effector EspX1 [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_92 77.303 0.0 lpxC VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxC) UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_174 65.089 4.81E-160 lpxD VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxD) UDP-3-O-(3-hydroxymyristoyl) glucosamine N-acyltransferase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_176 67.557 1.62E-132 lpxA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxA) UDP-N-acetylglucosamine acyltransferase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_177 62.76 3.7E-175 lpxB VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxB) lipid-A-disaccharide synthase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_193 67.528 1.16E-127 IlpA VF0513 IlpA Adherence VFC0001 (IlpA) immunogenic lipoprotein A [IlpA (VF0513) - Adherence (VFC0001)] [Vibrio vulnificus YJ016] Vibrio vulnificus
AP010960.1_210 100.0 1.24E-120 hcp1/tssD1 VF0579 T6SS Effector delivery system VFC0086 (hcp1/tssD1) type VI secretion system protein, Hcp family [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_211 98.444 0.0 tssA VF0579 T6SS Effector delivery system VFC0086 (tssA) Type VI secretion system protein TssA [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_213 100.0 1.03E-158 tssM VF0579 T6SS Effector delivery system VFC0086 (tssM) Type VI secretion system protein TssM [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_214 99.149 0.0 tssA VF0579 T6SS Effector delivery system VFC0086 (tssA) Type VI secretion system protein TssA [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_216 62.353 0.0 clpB VF0480 T6SS Effector delivery system VFC0086 (clpB) type VI secretion system ATPase ClpV1 [T6SS (VF0480) - Effector delivery system (VFC0086)] [Aeromonas hydrophila subsp. hydrophila ATCC 7966] Aeromonas hydrophila
AP010960.1_217 98.024 0.0 tssL VF0579 T6SS Effector delivery system VFC0086 (tssL) Type VI secretion system protein TssL [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_219 99.425 3.94E-129 tssJ VF0579 T6SS Effector delivery system VFC0086 (tssJ) Type VI secretion system protein TssJ [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_220 99.296 0.0 fha VF0579 T6SS Effector delivery system VFC0086 (fha) Type VI secretion system protein Fha [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_221 98.913 1.5E-60 tssG VF0579 T6SS Effector delivery system VFC0086 (tssG) Type VI secretion system protein TssG [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_222 95.582 1.52E-179 tssG VF0579 T6SS Effector delivery system VFC0086 (tssG) Type VI secretion system protein TssG [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_223 99.513 0.0 tssF VF0579 T6SS Effector delivery system VFC0086 (tssF) Type VI secretion system protein TssF [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_225 73.131 0.0 vipB VF0480 T6SS Effector delivery system VFC0086 (vipB) Type VI secretion system contractile sheath large subunit TssC/VipB [T6SS (VF0480) - Effector delivery system (VFC0086)] [Aeromonas hydrophila subsp. hydrophila ATCC 7966] Aeromonas hydrophila
AP010960.1_227 100.0 1.91E-120 tssB VF0579 T6SS Effector delivery system VFC0086 (tssB) Type VI secretion system protein TssB [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_228 99.419 6.02E-131 hcp2/tssD2 VF0579 T6SS Effector delivery system VFC0086 (hcp2/tssD2) Type VI secretion system protein, Hcp family [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_229 98.317 0.0 vgrG/tssI VF0579 T6SS Effector delivery system VFC0086 (vgrG/tssI) type VI secretion system effector VgrG [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_230 83.201 0.0 rhs/PAAR VF0579 T6SS Effector delivery system VFC0086 (rhs/PAAR) Type VI secretion system protein, PAAR family [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_237 74.479 8.28E-108 gmhA/lpcA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (gmhA/lpcA) phosphoheptose isomerase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_257 60.613 2.43E-169 lfiI VF0474 Lateral flagella Motility VFC0204 (lfiI) lateral flagellar FliI-like assembly ATPase [Lateral flagella (VF0474) - Motility (VFC0204)] [Aeromonas salmonicida subsp. salmonicida A449] Aeromonas salmonicida
AP010960.1_325 96.024 0.0 fdeC VF0506 FdeC Adherence VFC0001 (fdeC) adhesin FdeC [FdeC (VF0506) - Adherence (VFC0001)] [Escherichia coli O45:K1:H7 str. S88] Escherichia coli (NMEC)
AP010960.1_326 87.653 0.0 fdeC VF0506 FdeC Adherence VFC0001 (fdeC) adhesin FdeC [FdeC (VF0506) - Adherence (VFC0001)] [Escherichia coli O45:K1:H7 str. S88] Escherichia coli (NMEC)
AP010960.1_460 66.495 8.54E-98 clpP VF0074 ClpP Stress survival VFC0282 21.6 kDa protein belongs to a family of proteases highly conserved in prokaryotes and eukaryotes (clpP) ATP-dependent Clp protease proteolytic subunit [ClpP (VF0074) - Stress survival (VFC0282)] [Listeria monocytogenes EGD-e] Listeria monocytogenes
AP010960.1_484 91.42 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_485 84.887 0.0 acrA VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrA) acriflavine resistance protein A [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_522 73.247 0.0 rhs/PAAR VF0579 T6SS Effector delivery system VFC0086 (rhs/PAAR) Type VI secretion system protein, PAAR family [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_526 73.77 5.03E-174 allS VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allS) DNA-binding transcriptional activator AllS [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_527 74.375 1.46E-91 allA VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allA) ureidoglycolate hydrolase [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_528 86.194 1.18E-176 allR VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allR) DNA-binding transcriptional repressor AllR [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_533 91.391 0.0 allB VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allB) allantoinase [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_537 80.685 0.0 allC VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allC) allantoate amidohydrolase [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_538 83.381 0.0 allD VF0572 Allantion utilization Nutritional/Metabolic factor VFC0272 An allantoin utilization operon has been associated with hypervirulent K. pneumoniae strains that cause pyogenic liver abscesses. (allD) ureidoglycolate dehydrogenase [Allantion utilization (VF0572) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_551 64.865 1.92E-83 fimA VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimA) type-1 fimbrial protein subunit A [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_552 61.135 8.86E-104 fimC VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimC) chaperone protein FimC [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_553 70.712 0.0 fimD VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimD) usher protein FimD [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_554 69.966 1.28E-151 fimH VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimH) type I fimbriae minor fimbrial subunit FimH, adhesin [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_556 71.905 1.85E-112 fimZ VF0102 Type 1 fimbriae Adherence VFC0001 Chaperone-usher assembly pathway (fimZ) DNA-binding response regulator [Type 1 fimbriae (VF0102) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_586 91.682 0.0 vgrG/tssI VF0579 T6SS Effector delivery system VFC0086 (vgrG/tssI) type VI secretion system effector VgrG [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_589 98.468 0.0 ibeB VF0237 Ibes Invasion VFC0083 IbeA is unique to E. coli K1. The ibeB and ibeC are found to have K12 homologues p77211 and yijP respectively. (ibeB) Cu(+)/Ag(+) efflux RND transporter outer membrane channel CusC [Ibes (VF0237) - Invasion (VFC0083)] [Escherichia coli O45:K1:H7 str. S88] Escherichia coli (NMEC)
AP010960.1_601 94.175 5.25E-146 entD VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entD) phosphopantetheinyl transferase component of enterobactin synthase multienzyme complex [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_602 99.464 0.0 fepA VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepA) ferrienterobactin outer membrane transporter [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_603 96.25 0.0 fes VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fes) enterobactin/ferric enterobactin esterase [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_605 96.597 0.0 entF VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entF) enterobactin synthase multienzyme complex component, ATP-dependent [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_606 96.021 0.0 fepE VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepE) LPS O-antigen length regulator [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_607 98.889 0.0 fepC VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepC) ferrienterobactin ABC transporter ATPase [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_608 97.576 0.0 fepG VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepG) iron-enterobactin ABC transporter permease [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_609 99.401 0.0 fepD VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepD) ferrienterobactin ABC transporter permease [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_610 99.519 0.0 entS VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entS) enterobactin exporter, iron-regulated [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_611 99.057 0.0 fepB VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepB) ferrienterobactin ABC transporter periplasmic binding protein [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_612 99.233 0.0 entC VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entC) isochorismate synthase 1 [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_613 98.881 0.0 entE VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entE) 2,3-dihydroxybenzoate-AMP ligase component of enterobactin synthase multienzyme complex [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_614 98.947 0.0 entB VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entB) isochorismatase [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_615 97.984 0.0 entA VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (entA) 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase EntA [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_694 99.315 1.76E-107 fur VF0113 Fur Regulation VFC0301 (fur) ferric iron uptake transcriptional regulator [Fur (VF0113) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_710 68.417 0.0 rhs/PAAR VF0579 T6SS Effector delivery system VFC0086 (rhs/PAAR) Type VI secretion system protein, PAAR family [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_819 93.069 5.29E-142 nleH1 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleH1) Type III secretion system effector NleH1 [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_820 99.184 0.0 cif VF1110 TTSS secreted effectors Effector delivery system VFC0086 (cif) Type III secretion system effector Cif, cyclomodulin [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O26 str. C/15333] Escherichia coli (EHEC)
AP010960.1_821 83.871 1.39E-12 nleG2-2 VF1111 TTSS secreted effectors Effector delivery system VFC0086 (nleG2-2) DUF1076 domain-containing protein [TTSS secreted effectors (VF1111) - Effector delivery system (VFC0086)] [Escherichia coli O55:H7 str. CB9615] Escherichia coli (EPEC)
AP010960.1_824 79.263 6.39E-126 espJ VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espJ) Type III secretion system effector EspJ, adenosine diphosphate (ADP) ribosyltransferase [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_974 66.782 0.0 msbA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (msbA) lipid transporter ATP-binding/permease [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_978 69.478 7.45E-126 nueA VF0473 Polar flagella Motility VFC0204 Types of bacterial movement: swimming, swarming, gliding, twitching and sliding. Only swimming and swarming are correlated with the presence of flagella. Swimming is an individual endeavour, while swarming is the movement of a group of bacteria; constitutively expressed for motility in liquid environments (nueA) NeuA protein [Polar flagella (VF0473) - Motility (VFC0204)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AP010960.1_1017 99.133 0.0 ompA VF0236 OmpA Invasion VFC0083 Major outer membrane protein in E. coli, homologous to Neisseria Opa proteins which have been shown to be involved in invasion of eukaryotic cells (ompA) outer membrane protein A [OmpA (VF0236) - Invasion (VFC0083)] [Escherichia coli O18:K1:H7 str. RS218] Escherichia coli (NMEC)
AP010960.1_1071 61.458 3.27E-124 espFu/tccP VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espFu/tccP) Type III secretion system effector TccP [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_1072 84.252 9.46E-75 espV VF1111 TTSS secreted effectors Effector delivery system VFC0086 (espV) type III secretion system effector [TTSS secreted effectors (VF1111) - Effector delivery system (VFC0086)] [Escherichia coli E110019] Escherichia coli (EPEC)
AP010960.1_1085 72.414 0.0 KP1_RS17340 VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (KP1_RS17340) polysaccharide export protein [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_1221 61.336 0.0 ureB VF0050 Urease Stress survival VFC0282 (ureB) urease beta subunit UreB, urea amidohydrolase [Urease (VF0050) - Stress survival (VFC0282)] [Helicobacter pylori 26695] Helicobacter pylori
AP010960.1_1224 65.306 9.3E-97 ureG VF0050 Urease Stress survival VFC0282 (ureG) urease accessory protein (ureG) [Urease (VF0050) - Stress survival (VFC0282)] [Helicobacter pylori 26695] Helicobacter pylori
AP010960.1_1259 70.732 0.0 iroB VF0230 Salmochelin siderophore Nutritional/Metabolic factor VFC0272 Also identified as virulence factors in extracellular pathogenic Escherichia coli and Salmonella enterica serotype Typhi (iroB) glucosyltransferase IroB [Salmochelin siderophore (VF0230) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_1276 100.0 0.0 iucA VF0229 Aerobactin Nutritional/Metabolic factor VFC0272 A hydroxamate siderophore expressed in many strains of E. coli, Shigella flexneri and Klebsiella pneumoniae; TonB-dependent iron transport (iucA) aerobactin siderophore biosynthesis protein IucD [Aerobactin (VF0229) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_1277 100.0 0.0 iucB VF0229 Aerobactin Nutritional/Metabolic factor VFC0272 A hydroxamate siderophore expressed in many strains of E. coli, Shigella flexneri and Klebsiella pneumoniae; TonB-dependent iron transport (iucB) aerobactin siderophore biosynthesis protein IucB [Aerobactin (VF0229) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_1278 100.0 0.0 iucC VF0229 Aerobactin Nutritional/Metabolic factor VFC0272 A hydroxamate siderophore expressed in many strains of E. coli, Shigella flexneri and Klebsiella pneumoniae; TonB-dependent iron transport (iucC) aerobactin siderophore biosynthesis protein IucC [Aerobactin (VF0229) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_1279 99.775 0.0 iucD VF0229 Aerobactin Nutritional/Metabolic factor VFC0272 A hydroxamate siderophore expressed in many strains of E. coli, Shigella flexneri and Klebsiella pneumoniae; TonB-dependent iron transport (iucD) L-lysine 6-monooxygenase IucD [Aerobactin (VF0229) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_1280 99.726 0.0 iutA VF0229 Aerobactin Nutritional/Metabolic factor VFC0272 A hydroxamate siderophore expressed in many strains of E. coli, Shigella flexneri and Klebsiella pneumoniae; TonB-dependent iron transport (iutA) ferric aerobactin receptor precusor IutA [Aerobactin (VF0229) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_1298 99.639 0.0 cgsG VF1138 Curli fibers Adherence VFC0001 Many commensal E. coli strains and the commonly studied lab strains express curli at temperatures of <30°C. In contrast, pathogenic E. coli strains like UPECs, EAECs including the 2012 German outbreak strain and S. Typhimurium, have been shown to express curli at 37°C (cgsG) curli production assembly/transport protein CsgG [Curli fibers (VF1138) - Adherence (VFC0001)] [Escherichia coli O25b:H4-ST131] Escherichia coli (UPEC)
AP010960.1_1299 99.275 1.6E-99 cgsF VF1138 Curli fibers Adherence VFC0001 Many commensal E. coli strains and the commonly studied lab strains express curli at temperatures of <30°C. In contrast, pathogenic E. coli strains like UPECs, EAECs including the 2012 German outbreak strain and S. Typhimurium, have been shown to express curli at 37°C (cgsF) curli production assembly/transport protein CsgF [Curli fibers (VF1138) - Adherence (VFC0001)] [Escherichia coli O25b:H4-ST131] Escherichia coli (UPEC)
AP010960.1_1300 100.0 5.13E-95 cgsE VF1138 Curli fibers Adherence VFC0001 Many commensal E. coli strains and the commonly studied lab strains express curli at temperatures of <30°C. In contrast, pathogenic E. coli strains like UPECs, EAECs including the 2012 German outbreak strain and S. Typhimurium, have been shown to express curli at 37°C (cgsE) curli production assembly/transport protein CsgE [Curli fibers (VF1138) - Adherence (VFC0001)] [Escherichia coli O25b:H4-ST131] Escherichia coli (UPEC)
AP010960.1_1301 100.0 9.54E-163 cgsD VF1138 Curli fibers Adherence VFC0001 Many commensal E. coli strains and the commonly studied lab strains express curli at temperatures of <30°C. In contrast, pathogenic E. coli strains like UPECs, EAECs including the 2012 German outbreak strain and S. Typhimurium, have been shown to express curli at 37°C (cgsD) transcriptional regulator CsgD [Curli fibers (VF1138) - Adherence (VFC0001)] [Escherichia coli O25b:H4-ST131] Escherichia coli (UPEC)
AP010960.1_1302 100.0 1.13E-106 csgB VF1138 Curli fibers Adherence VFC0001 Many commensal E. coli strains and the commonly studied lab strains express curli at temperatures of <30°C. In contrast, pathogenic E. coli strains like UPECs, EAECs including the 2012 German outbreak strain and S. Typhimurium, have been shown to express curli at 37°C (csgB) curlin minor subunit CsgB [Curli fibers (VF1138) - Adherence (VFC0001)] [Escherichia coli O25b:H4-ST131] Escherichia coli (UPEC)
AP010960.1_1303 97.368 2.19E-101 csgA VF1138 Curli fibers Adherence VFC0001 Many commensal E. coli strains and the commonly studied lab strains express curli at temperatures of <30°C. In contrast, pathogenic E. coli strains like UPECs, EAECs including the 2012 German outbreak strain and S. Typhimurium, have been shown to express curli at 37°C (csgA) curlin major subunit CsgA [Curli fibers (VF1138) - Adherence (VFC0001)] [Escherichia coli O25b:H4-ST131] Escherichia coli (UPEC)
AP010960.1_1304 98.182 1.66E-75 csgC VF1138 Curli fibers Adherence VFC0001 Many commensal E. coli strains and the commonly studied lab strains express curli at temperatures of <30°C. In contrast, pathogenic E. coli strains like UPECs, EAECs including the 2012 German outbreak strain and S. Typhimurium, have been shown to express curli at 37°C (csgC) curli assembly protein CsgC [Curli fibers (VF1138) - Adherence (VFC0001)] [Escherichia coli O25b:H4-ST131] Escherichia coli (UPEC)
AP010960.1_1331 62.626 1.86E-34 flgM VF0394 Flagella Motility VFC0204 (flgM) negative regulator of flagellin synthesis [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1333 71.533 1.67E-73 flgB VF0394 Flagella Motility VFC0204 (flgB) flagellar basal-body rod protein FlgB [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1334 83.582 7.9E-82 flgC VF0394 Flagella Motility VFC0204 (flgC) flagellar basal-body rod protein FlgC [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1335 75.248 1.49E-104 flgD VF0394 Flagella Motility VFC0204 (flgD) flagellar basal-body rod modification protein FlgD [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1336 63.484 0.0 flgE VF0394 Flagella Motility VFC0204 (flgE) flagellar hook protein FlgE [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1337 66.135 5.94E-120 flgF VF0394 Flagella Motility VFC0204 (flgF) flagellar basal-body rod protein FlgF [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1338 86.923 7.79E-170 flgG VF0394 Flagella Motility VFC0204 (flgG) flagellar basal-body rod protein FlgG [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1339 81.193 3.69E-122 flgH VF0394 Flagella Motility VFC0204 (flgH) flagellar L-ring protein precursor FlgH [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1340 78.356 0.0 flgI VF0394 Flagella Motility VFC0204 (flgI) flagellar P-ring protein precursor FlgI [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1341 60.131 5.85E-129 flgJ VF0394 Flagella Motility VFC0204 (flgJ) <beta>-N-acetylglucosaminidase [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1343 60.123 2.27E-140 flgL VF0394 Flagella Motility VFC0204 (flgL) flagellar hook-associated protein 3 FlgL [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_1352 77.869 2.05E-140 flmH VF0473 Polar flagella Motility VFC0204 Types of bacterial movement: swimming, swarming, gliding, twitching and sliding. Only swimming and swarming are correlated with the presence of flagella. Swimming is an individual endeavour, while swarming is the movement of a group of bacteria; constitutively expressed for motility in liquid environments (flmH) short chain dehydrogenase/reductase family oxidoreductase [Polar flagella (VF0473) - Motility (VFC0204)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AP010960.1_1353 61.538 1.93E-27 acpXL VF0367 LPS Immune modulation VFC0258 Brucella possesses a non-classical LPS as compared with the so-called classical LPS from enterobacteria such as Escherichia coli. B. abortus lipid A possesses a diaminoglucose backbone (rather than glucosamine), and acyl groups are longer (C28 rather than C12 and C16) and are only linked to the core by amide bounds (rather than ester and amide bonds).; In contrast to enterobacterial LPSs, Brucella LPS is several-hundred-times less active and toxic than E. coli LPS.; this is an evolutionary adaptation to an intracellular lifestyle, low endotoxic activity is shared by other intracellular pathogens such as Bartonella and Legionella. (acpXL) acyl carrier protein [LPS (VF0367) - Immune modulation (VFC0258)] [Brucella melitensis bv. 1 str. 16M] Brucella melitensis
AP010960.1_1445 99.692 0.0 espX7/nleL VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espX7/nleL) Type III secretion system effector NleL, putative E3 ubiquitin ligase [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_1449 99.558 0.0 espK VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espK) Type III secretion system effector EspK [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_1454 85.421 0.0 phoQ VF0111 PhoPQ Regulation VFC0301 (phoQ) sensor protein PhoQ [PhoPQ (VF0111) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_1455 93.722 1.14E-157 phoP VF0111 PhoPQ Regulation VFC0301 (phoP) response regulator in two-component regulatory system with PhoQ [PhoPQ (VF0111) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_1520 81.625 1.99E-178 kdsA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (kdsA) 2-dehydro-3-deoxyphosphooctonate aldolase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_1540 73.958 2.16E-159 galU VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (galU) glucosephosphate uridylyltransferase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_1611 90.816 2.56E-135 ospG VF0978 TTSS secreted effectors Effector delivery system VFC0086 (ospG) type III secretion system effector OspG, protein kinase [TTSS secreted effectors (VF0978) - Effector delivery system (VFC0086)] [Shigella flexneri 2a str. 301] Shigella flexneri
AP010960.1_1741 100.0 4.22E-141 nleG2-2 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleG2-2) DUF1076 domain-containing protein [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_1742 100.0 2.58E-158 nleG6-1 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleG6-1) DUF1076 domain-containing protein [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_1743 100.0 5.19E-160 nleG5-1 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleG5-1) DUF1076 domain-containing protein [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_1822 88.64 0.0 vgrG/tssI VF0579 T6SS Effector delivery system VFC0086 (vgrG/tssI) type VI secretion system effector VgrG [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_1823 73.117 0.0 rhs/PAAR VF0579 T6SS Effector delivery system VFC0086 (rhs/PAAR) Type VI secretion system protein, PAAR family [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_1837 90.598 0.0 espR1 VF1111 TTSS secreted effectors Effector delivery system VFC0086 (espR1) Type III secretion system effector espR1 [TTSS secreted effectors (VF1111) - Effector delivery system (VFC0086)] [Escherichia coli O55:H7 str. CB9615] Escherichia coli (EPEC)
AP010960.1_1873 63.964 1.19E-100 focC VF0224 F1C fimbriae Adherence VFC0001 A nonhemagglutinating adherence factor and is expressed by approximately 14% of the E. coli known to cause urinary tract infections and 7% of E. coli fecal isolates; genetically homologous to S fimbriae, but differ in their receptor specificity (focC) F1C periplasmic chaperone [F1C fimbriae (VF0224) - Adherence (VFC0001)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_1874 66.845 5.21E-77 fimA VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimA) type 1 major fimbrial subunit precursor [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_1925 99.537 4.87E-164 nleG7 VF1111 TTSS secreted effectors Effector delivery system VFC0086 (nleG7) Type III secretion system effector NleG7, E3 Ubiquitin Ligase [TTSS secreted effectors (VF1111) - Effector delivery system (VFC0086)] [Escherichia coli O55:H7 str. CB9615] Escherichia coli (EPEC)
AP010960.1_1939 100.0 0.0 paa VF0194 Paa Adherence VFC0001 Paa sequences are often present in A/E strains, especially O157:H7 strains. The predicted amino acid sequence of Paa is identical to those of the Paa proteins of O157:H7 strains EDL933 and Sakai, and very similar to AcfC of V. cholerae; paa gene is absent in nonpathogenic E. coli, and the G+C content of paa (44%) differs from that of E. coli K-12 (50.8%) (paa) outer membrane adhesin Paa [Paa (VF0194) - Adherence (VFC0001)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_1961 99.49 9.57E-148 espM1 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espM1) Type III secretion system effector EspM1, Rho guanine exchange factor [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_1962 100.0 3.94E-161 nleG-1 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleG-1) T3SS effector E3 ubiquitin-protein ligase NleG [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_1965 100.0 2.51E-83 nleF VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleF) Type III secretion system effector NleF, caspase inhibitor [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_1966 100.0 0.0 nleH2 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleH2) Type III secretion system effector NleH2 [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_2092 67.539 7.96E-100 sodB VF0169 SodB Stress survival VFC0282 (sodB) superoxide dismutase [SodB (VF0169) - Stress survival (VFC0282)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AP010960.1_2195 94.435 0.0 espL1 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espL1) Type III secretion system effector espL1 [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_2355 93.293 0.0 nleC VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleC) Type III secretion system effector NleC, zinc metalloprotease [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_2391 98.876 1.89E-63 stx2B VF0206 Stx Exotoxin VFC0235 Also known as verotoxin, verocytotoxin or Shiga-like toxins, are produced by several enteric pathogens, most importantly Shigella dysenteriae (serotype 1 only) and EHEC; The Stx family contains two subgroups: Stx1 and Stx2, that share approximately 55% amino acid homology; Stx1 consists of three variants (stx1a, stx1c, and stx1d), whereas Stx2 has seven variants (stx2a, stx2b, stx2c, stx2d, stx2e, stx2f, and stx2g). Stx2a is a more potent toxin than Stx1; retrograde transport to the ER via a Rab6-dependent pathway (stx2B) shiga-like toxin II B subunit encoded by bacteriophage BP-933W [Stx (VF0206) - Exotoxin (VFC0235)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_2392 99.687 0.0 stx2A VF0206 Stx Exotoxin VFC0235 Also known as verotoxin, verocytotoxin or Shiga-like toxins, are produced by several enteric pathogens, most importantly Shigella dysenteriae (serotype 1 only) and EHEC; The Stx family contains two subgroups: Stx1 and Stx2, that share approximately 55% amino acid homology; Stx1 consists of three variants (stx1a, stx1c, and stx1d), whereas Stx2 has seven variants (stx2a, stx2b, stx2c, stx2d, stx2e, stx2f, and stx2g). Stx2a is a more potent toxin than Stx1; retrograde transport to the ER via a Rab6-dependent pathway (stx2A) shiga-like toxin II A subunit encoded by bacteriophage BP-933W [Stx (VF0206) - Exotoxin (VFC0235)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_2427 85.217 0.0 flhA VF0394 Flagella Motility VFC0204 (flhA) flagellar biosynthesis protein FlhA [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2428 65.172 1.35E-178 flhB VF0394 Flagella Motility VFC0204 (flhB) flagellar biosynthetic protein FlhB [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2429 77.67 1.61E-108 cheZ VF0394 Flagella Motility VFC0204 (cheZ) chemotaxis regulator CheZ [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2430 91.473 1.1E-84 cheY VF0394 Flagella Motility VFC0204 (cheY) chemotaxis regulatory protein CheY [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2431 85.96 0.0 cheB VF0394 Flagella Motility VFC0204 (cheB) chemotaxis-specific methylesterase CheB [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2432 72.464 8.27E-147 cheR VF0394 Flagella Motility VFC0204 (cheR) chemotaxis methyltransferase CheR [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2435 85.093 3.74E-98 cheW VF0394 Flagella Motility VFC0204 (cheW) purine-binding chemotaxis protein CheW [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2436 73.521 0.0 cheA VF0394 Flagella Motility VFC0204 (cheA) chemotaxis protein CheA [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2437 68.987 4.87E-152 motB VF0394 Flagella Motility VFC0204 (motB) flagellar motor protein MotB [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2438 81.017 0.0 motA VF0394 Flagella Motility VFC0204 (motA) flagellar motor protein MotA [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2439 82.902 3.72E-116 flhC VF0394 Flagella Motility VFC0204 (flhC) flagellar biosynthesis transcription activator FlhC [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2440 72.414 5.04E-52 flhD VF0394 Flagella Motility VFC0204 (flhD) flagellar transcriptional activator FlhD [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2464 83.613 4.37E-145 fliA VF0394 Flagella Motility VFC0204 (fliA) flagellar biosynthesis sigma factor [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2482 63.196 0.0 fliF VF0394 Flagella Motility VFC0204 (fliF) flagellar M-ring protein FliF [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2483 83.587 0.0 fliG VF0394 Flagella Motility VFC0204 (fliG) flagellar motor switch protein G [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2485 83.48 0.0 fliI VF0394 Flagella Motility VFC0204 (fliI) flagellum-specific ATP synthase FliI [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2489 84.384 0.0 fliM VF0394 Flagella Motility VFC0204 (fliM) flagellar motor switch protein FliM [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2490 74.638 3.17E-69 fliN VF0394 Flagella Motility VFC0204 (fliN) flagellar motor switch protein FliN [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2492 80.972 4.42E-141 fliP VF0394 Flagella Motility VFC0204 (fliP) flagellar biosynthetic protein FliP [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2493 77.528 1.94E-37 fliQ VF0394 Flagella Motility VFC0204 (fliQ) flagellar biosynthetic protein FliQ [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2494 68.992 1.31E-108 fliR VF0394 Flagella Motility VFC0204 (fliR) flagellar biosynthetic protein FliR [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2495 67.633 2.11E-102 rcsA VF0571 RcsAB Regulation VFC0301 (rcsA) transcriptional activator for ctr capsule biosynthesis [RcsAB (VF0571) - Regulation (VFC0301)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_2516 91.159 0.0 nleC VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleC) Type III secretion system effector NleC, zinc metalloprotease [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_2709 89.433 0.0 ugd VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (ugd) UDP-glucose 6-dehydrogenase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_2710 95.299 0.0 gndA VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (gndA) NADP-dependent phosphogluconate dehydrogenase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_2717 65.57 0.0 cpsG VF0392 O-antigen Immune modulation VFC0258 Clinical Y. enterocolitica isolates from humans predominantly belong to serotypes O:3, O:9, O:8 and O:5,27; Y. enterocolitica O antigen expression is temperature regulated. (cpsG) phosphomannomutase CpsG [O-antigen (VF0392) - Immune modulation (VFC0258)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010960.1_2720 82.162 0.0 gmd VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (gmd) GDP-mannose 4,6-dehydratase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_2722 90.878 0.0 galF VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (galF) GalU regulator GalF [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_2727 92.935 6.21E-130 gmd VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (gmd) GDP-mannose 4,6-dehydratase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_2737 70.157 4.12E-97 KP1_RS17340 VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (KP1_RS17340) polysaccharide export protein [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_2909 96.759 1.41E-152 rcsB VF0571 RcsAB Regulation VFC0301 (rcsB) transcriptional regulator RcsB [RcsAB (VF0571) - Regulation (VFC0301)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_2914 89.342 0.0 nleA/espI VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleA/espI) Type III secretion system effector NleA [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3140 64.931 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_3250 65.969 5.37E-91 algU VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algU) alginate biosynthesis protein AlgZ/FimS [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AP010960.1_3313 100.0 0.0 stxA VF0117 Shiga toxin Exotoxin VFC0235 Also known as verotoxin, verocytotoxin or Shiga-like toxins, are produced by several enteric pathogens, most importantly Shigella dysenteriae (serotype 1 only) and EHEC (stxA) Shiga toxin subunit A; RNA-N-glycosidase; catalytic subunit [Shiga toxin (VF0117) - Exotoxin (VFC0235)] [Shigella dysenteriae Sd197] Shigella dysenteriae (serotype 1 only)
AP010960.1_3314 100.0 1.34E-63 stxB VF0117 Shiga toxin Exotoxin VFC0235 Also known as verotoxin, verocytotoxin or Shiga-like toxins, are produced by several enteric pathogens, most importantly Shigella dysenteriae (serotype 1 only) and EHEC (stxB) Shiga toxin subunit B precursor [Shiga toxin (VF0117) - Exotoxin (VFC0235)] [Shigella dysenteriae Sd197] Shigella dysenteriae (serotype 1 only)
AP010960.1_3359 73.099 4.78E-96 luxS VF0406 AI-2 Biofilm VFC0271 AI-2 is produced and detected by a wide variety of bacteria and is presumed to facilitate interspecies communications. (luxS) S-ribosylhomocysteinase [AI-2 (VF0406) - Biofilm (VFC0271)] [Vibrio cholerae O1 biovar El Tor str. N16961] Vibrio cholerae
AP010960.1_3363 76.667 1.4E-30 csrA VF0261 CsrA Regulation VFC0301 Belongs to a highly conserved family of global regulators that typically control stationary phase traits post-transcriptionally (csrA) carbon storage regulator CsrA [CsrA (VF0261) - Regulation (VFC0301)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AP010960.1_3416 99.394 0.0 rpoS VF0112 RpoS Regulation VFC0301 (rpoS) RNA polymerase sigma factor RpoS [RpoS (VF0112) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_3549 62.626 3.96E-40 spaS VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (spaS) type III secretion system export apparatus switch protein SpaS [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_3552 68.605 1.08E-39 spaQ VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (spaQ) type III secretion system minor export apparatus protein SpaQ [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_3553 69.507 2.44E-98 spaP VF0116 TTSS (SPI-1 encode) Effector delivery system VFC0086 (spaP) type III secretion system minor export apparatus protein SpaP [TTSS (SPI-1 encode) (VF0116) - Effector delivery system (VFC0086)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_3677 99.089 0.0 espL2 VF1111 TTSS secreted effectors Effector delivery system VFC0086 (espL2) Type III secretion system secreted effector EspL2, cysteine protease [TTSS secreted effectors (VF1111) - Effector delivery system (VFC0086)] [Escherichia coli O55:H7 str. CB9615] Escherichia coli (EPEC)
AP010960.1_3678 98.784 0.0 nleB1 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleB1) Type III secretion system effector nleB1 [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3679 99.554 1.66E-168 nleE VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleE) Type III secretion system effector NleE [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3682 97.656 0.0 rorf1 VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (rorf1) SdiA-regulated domain-containing protein [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3683 96.325 0.0 espG VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espG) Type III secretion system effector EspG, GTPase activating protein [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3686 73.962 4.07E-110 espF VF1111 TTSS secreted effectors Effector delivery system VFC0086 (espF) Type III secretion system effector EspF [TTSS secreted effectors (VF1111) - Effector delivery system (VFC0086)] [Escherichia coli O55:H7 str. CB9615] Escherichia coli (EPEC)
AP010960.1_3687 97.826 1.07E-64 escG VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (escG) chaperone for EscF [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3688 100.0 1.86E-49 escF VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (escF) Type III secretion system needle filament protein EscF [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3689 97.778 9.49E-99 cesD2 VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (cesD2) chaperone for EspD [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3690 90.343 1.03E-170 espB VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (espB) Type III secretion system translocator protein EspB, pore protein [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3691 88.158 0.0 espD VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (espD) Type III secretion system translocator protein EspD, pore protein [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3692 88.021 3.25E-121 espA VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (espA) Type III secretion system translocator protein EspA [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3693 92.593 0.0 sepL VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (sepL) Type III secretion system secretion gatekeeper SepL [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3694 95.42 0.0 escD VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (escD) Type III secretion system outer MS ring protein EscD [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3695 89.305 0.0 eae VF0202 Intimin Effector delivery system VFC0086 94-kDa outer-membrane protein encoded in the LEE (eae) intimin type gamma [Intimin (VF0202) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3696 99.359 1.08E-114 cesT VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (cesT) multieffector chaperone [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3697 61.023 0.0 tir VF1111 TTSS secreted effectors Effector delivery system VFC0086 (tir) translocated intimin receptor protein [TTSS secreted effectors (VF1111) - Effector delivery system (VFC0086)] [Escherichia coli O55:H7 str. CB9615] Escherichia coli (EPEC)
AP010960.1_3698 77.34 7.19E-117 map VF1110 TTSS secreted effectors Effector delivery system VFC0086 (map) Type III secretion system effector Map, Rho guanine exchange factor [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3699 94.167 1.47E-81 cesF VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (cesF) CesF, chaperone for EspF [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3700 69.935 2.15E-77 espH VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espH) Type III secretion system effector EspH, RhoGEF Inhibitor [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3701 95.738 0.0 sepQ/escQ VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (sepQ/escQ) Type III secetion system C ring protein EscQ [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3702 99.057 1.79E-72 escO VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (escO) positive regulator EscO [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3703 98.879 0.0 escN VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (escN) ATPase EscN [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3704 98.667 0.0 escV VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (escV) Type III secretion system major export apparatus protein [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3705 100.0 5.65E-82 cesL VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (cesL) chaperone for SepL [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3706 60.606 1.26E-28 sepZ/espZ VF1110 TTSS secreted effectors Effector delivery system VFC0086 (sepZ/espZ) Type III secretion system effector EspZ [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3707 98.4 3.66E-85 escI VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (escI) Type III secretion system inner rod component EscI [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3708 100.0 2.02E-136 escJ VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (escJ) Type III secretion system inner MS ring protein EscJ [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3709 99.338 2.73E-114 sepD VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (sepD) Type III secretion system secretion switch protein SepD [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3710 99.805 0.0 escC VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (escC) Type III secretion system secretin EscC [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3711 100.0 4.07E-113 cesD VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (cesD) chaperone for EspB and EspD [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3712 100.0 2.59E-99 glrA VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (glrA) type III secretion system LEE transcriptional regulator GrlA [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3713 99.187 5.72E-88 glrR VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (glrR) type III secretion system LEE GrlA-binding negative regulator GrlR [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3714 99.342 3.6E-108 etgA VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (etgA) T3SS-associated peptidoglycan lytic enzyme [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3715 100.0 0.0 escU VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (escU) Type III secretion system export apparatus switch protein EscU [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3716 100.0 0.0 escT VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (escT) Type III secretion system minor export apparatus protein EscT [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3717 100.0 7.69E-60 escS VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (escS) Type III secretion systemminor export apparatus protein EscS [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3718 100.0 3.58E-152 escR VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (escR) Type III secretion systemminor export apparatus protein EscR [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3719 99.078 4.6E-153 escL VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (escL) negative regulator EscL, stator protein [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3720 100.0 7.76E-149 escK VF0172 TTSS Effector delivery system VFC0086 Encoded on a 35-kb chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE) (escK) type III secretion system sorting platform component [TTSS (VF0172) - Effector delivery system (VFC0086)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3721 100.0 2.87E-71 cesAB VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (cesAB) chaperone for EspA and EspB [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3722 100.0 3.13E-46 escE VF0191 TTSS Effector delivery system VFC0086 Encoded on the pathogenicity island known as the locus of enterocyte effacement (LEE) (escE) chaperone for EscF [TTSS (VF0191) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_3723 100.0 3.34E-89 AAC38364 VF0189 Ler Regulation VFC0301 The first gene in the LEE1 operon; shows similarity with a family of histone-like proteins, such as H-NS (AAC38364) Orf1 [Ler (VF0189) - Regulation (VFC0301)] [Escherichia coli O127:H6 str. E2348/69] Escherichia coli (EPEC)
AP010960.1_3734 95.408 0.0 gspL VF0333 T2SS Effector delivery system VFC0086 T2SS encoded by genes of the general secretion pathway (gsp) is widely distributed in Gram-negative bacteria. The known E.coli T2SS, responsible for chitinase secretion, encoded by the yhe genes at 74.5 min of the MG1655 chromosome is absent in all four sequenced Shigella genomes; A novel set of gsp genes are located on the S. dysenteriae Sd197 and S. boydii Sb227 chromosomes. The Sb227 T2SS is likely to be inactive due to a frameshift in gspC and a nonsense mutation in gspD. Those genes show significant similarity to those from ETEC and Vibrio cholerae responsible for secreting the E.coli heat labile toxin (Ltx) and cholera toxin (Ctx), respectively. While Shiga toxin has an overall similar structure to Ctx and Ltx. (gspL) general secretion pathway protein L [T2SS (VF0333) - Effector delivery system (VFC0086)] [Shigella dysenteriae Sd197] Shigella dysenteriae
AP010960.1_3735 98.154 0.0 gspK VF0333 T2SS Effector delivery system VFC0086 T2SS encoded by genes of the general secretion pathway (gsp) is widely distributed in Gram-negative bacteria. The known E.coli T2SS, responsible for chitinase secretion, encoded by the yhe genes at 74.5 min of the MG1655 chromosome is absent in all four sequenced Shigella genomes; A novel set of gsp genes are located on the S. dysenteriae Sd197 and S. boydii Sb227 chromosomes. The Sb227 T2SS is likely to be inactive due to a frameshift in gspC and a nonsense mutation in gspD. Those genes show significant similarity to those from ETEC and Vibrio cholerae responsible for secreting the E.coli heat labile toxin (Ltx) and cholera toxin (Ctx), respectively. While Shiga toxin has an overall similar structure to Ctx and Ltx. (gspK) general secretion pathway protein K [T2SS (VF0333) - Effector delivery system (VFC0086)] [Shigella dysenteriae Sd197] Shigella dysenteriae
AP010960.1_3736 97.512 2.64E-145 gspJ VF0333 T2SS Effector delivery system VFC0086 T2SS encoded by genes of the general secretion pathway (gsp) is widely distributed in Gram-negative bacteria. The known E.coli T2SS, responsible for chitinase secretion, encoded by the yhe genes at 74.5 min of the MG1655 chromosome is absent in all four sequenced Shigella genomes; A novel set of gsp genes are located on the S. dysenteriae Sd197 and S. boydii Sb227 chromosomes. The Sb227 T2SS is likely to be inactive due to a frameshift in gspC and a nonsense mutation in gspD. Those genes show significant similarity to those from ETEC and Vibrio cholerae responsible for secreting the E.coli heat labile toxin (Ltx) and cholera toxin (Ctx), respectively. While Shiga toxin has an overall similar structure to Ctx and Ltx. (gspJ) general secretion pathway protein J [T2SS (VF0333) - Effector delivery system (VFC0086)] [Shigella dysenteriae Sd197] Shigella dysenteriae
AP010960.1_3737 94.309 2.76E-75 gspI VF0333 T2SS Effector delivery system VFC0086 T2SS encoded by genes of the general secretion pathway (gsp) is widely distributed in Gram-negative bacteria. The known E.coli T2SS, responsible for chitinase secretion, encoded by the yhe genes at 74.5 min of the MG1655 chromosome is absent in all four sequenced Shigella genomes; A novel set of gsp genes are located on the S. dysenteriae Sd197 and S. boydii Sb227 chromosomes. The Sb227 T2SS is likely to be inactive due to a frameshift in gspC and a nonsense mutation in gspD. Those genes show significant similarity to those from ETEC and Vibrio cholerae responsible for secreting the E.coli heat labile toxin (Ltx) and cholera toxin (Ctx), respectively. While Shiga toxin has an overall similar structure to Ctx and Ltx. (gspI) general secretion pathway protein I [T2SS (VF0333) - Effector delivery system (VFC0086)] [Shigella dysenteriae Sd197] Shigella dysenteriae
AP010960.1_3738 96.791 1.17E-133 gspH VF0333 T2SS Effector delivery system VFC0086 T2SS encoded by genes of the general secretion pathway (gsp) is widely distributed in Gram-negative bacteria. The known E.coli T2SS, responsible for chitinase secretion, encoded by the yhe genes at 74.5 min of the MG1655 chromosome is absent in all four sequenced Shigella genomes; A novel set of gsp genes are located on the S. dysenteriae Sd197 and S. boydii Sb227 chromosomes. The Sb227 T2SS is likely to be inactive due to a frameshift in gspC and a nonsense mutation in gspD. Those genes show significant similarity to those from ETEC and Vibrio cholerae responsible for secreting the E.coli heat labile toxin (Ltx) and cholera toxin (Ctx), respectively. While Shiga toxin has an overall similar structure to Ctx and Ltx. (gspH) general secretion pathway protein H [T2SS (VF0333) - Effector delivery system (VFC0086)] [Shigella dysenteriae Sd197] Shigella dysenteriae
AP010960.1_3739 98.675 1.14E-109 gspG VF0333 T2SS Effector delivery system VFC0086 T2SS encoded by genes of the general secretion pathway (gsp) is widely distributed in Gram-negative bacteria. The known E.coli T2SS, responsible for chitinase secretion, encoded by the yhe genes at 74.5 min of the MG1655 chromosome is absent in all four sequenced Shigella genomes; A novel set of gsp genes are located on the S. dysenteriae Sd197 and S. boydii Sb227 chromosomes. The Sb227 T2SS is likely to be inactive due to a frameshift in gspC and a nonsense mutation in gspD. Those genes show significant similarity to those from ETEC and Vibrio cholerae responsible for secreting the E.coli heat labile toxin (Ltx) and cholera toxin (Ctx), respectively. While Shiga toxin has an overall similar structure to Ctx and Ltx. (gspG) general secretion pathway protein G [T2SS (VF0333) - Effector delivery system (VFC0086)] [Shigella dysenteriae Sd197] Shigella dysenteriae
AP010960.1_3740 97.243 0.0 gspF VF0333 T2SS Effector delivery system VFC0086 T2SS encoded by genes of the general secretion pathway (gsp) is widely distributed in Gram-negative bacteria. The known E.coli T2SS, responsible for chitinase secretion, encoded by the yhe genes at 74.5 min of the MG1655 chromosome is absent in all four sequenced Shigella genomes; A novel set of gsp genes are located on the S. dysenteriae Sd197 and S. boydii Sb227 chromosomes. The Sb227 T2SS is likely to be inactive due to a frameshift in gspC and a nonsense mutation in gspD. Those genes show significant similarity to those from ETEC and Vibrio cholerae responsible for secreting the E.coli heat labile toxin (Ltx) and cholera toxin (Ctx), respectively. While Shiga toxin has an overall similar structure to Ctx and Ltx. (gspF) general secretion pathway protein F [T2SS (VF0333) - Effector delivery system (VFC0086)] [Shigella dysenteriae Sd197] Shigella dysenteriae
AP010960.1_3741 97.988 0.0 gspE VF0333 T2SS Effector delivery system VFC0086 T2SS encoded by genes of the general secretion pathway (gsp) is widely distributed in Gram-negative bacteria. The known E.coli T2SS, responsible for chitinase secretion, encoded by the yhe genes at 74.5 min of the MG1655 chromosome is absent in all four sequenced Shigella genomes; A novel set of gsp genes are located on the S. dysenteriae Sd197 and S. boydii Sb227 chromosomes. The Sb227 T2SS is likely to be inactive due to a frameshift in gspC and a nonsense mutation in gspD. Those genes show significant similarity to those from ETEC and Vibrio cholerae responsible for secreting the E.coli heat labile toxin (Ltx) and cholera toxin (Ctx), respectively. While Shiga toxin has an overall similar structure to Ctx and Ltx. (gspE) general secretion pathway protein E [T2SS (VF0333) - Effector delivery system (VFC0086)] [Shigella dysenteriae Sd197] Shigella dysenteriae
AP010960.1_3742 98.98 0.0 gspD VF0333 T2SS Effector delivery system VFC0086 T2SS encoded by genes of the general secretion pathway (gsp) is widely distributed in Gram-negative bacteria. The known E.coli T2SS, responsible for chitinase secretion, encoded by the yhe genes at 74.5 min of the MG1655 chromosome is absent in all four sequenced Shigella genomes; A novel set of gsp genes are located on the S. dysenteriae Sd197 and S. boydii Sb227 chromosomes. The Sb227 T2SS is likely to be inactive due to a frameshift in gspC and a nonsense mutation in gspD. Those genes show significant similarity to those from ETEC and Vibrio cholerae responsible for secreting the E.coli heat labile toxin (Ltx) and cholera toxin (Ctx), respectively. While Shiga toxin has an overall similar structure to Ctx and Ltx. (gspD) general secretion pathway protein D [T2SS (VF0333) - Effector delivery system (VFC0086)] [Shigella dysenteriae Sd197] Shigella dysenteriae
AP010960.1_3743 94.118 0.0 gspC VF0333 T2SS Effector delivery system VFC0086 T2SS encoded by genes of the general secretion pathway (gsp) is widely distributed in Gram-negative bacteria. The known E.coli T2SS, responsible for chitinase secretion, encoded by the yhe genes at 74.5 min of the MG1655 chromosome is absent in all four sequenced Shigella genomes; A novel set of gsp genes are located on the S. dysenteriae Sd197 and S. boydii Sb227 chromosomes. The Sb227 T2SS is likely to be inactive due to a frameshift in gspC and a nonsense mutation in gspD. Those genes show significant similarity to those from ETEC and Vibrio cholerae responsible for secreting the E.coli heat labile toxin (Ltx) and cholera toxin (Ctx), respectively. While Shiga toxin has an overall similar structure to Ctx and Ltx. (gspC) general secretion pathway protein C [T2SS (VF0333) - Effector delivery system (VFC0086)] [Shigella dysenteriae Sd197] Shigella dysenteriae
AP010960.1_3827 71.03 0.0 rfaE VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rfaE) ADP-heptose synthase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_3867 99.724 0.0 cfaD/cfaE VF0213 Adhesive fimbriae Adherence VFC0001 Adherence is mediated by proteinaceous surface structures that are referred to as colonization factors (CFs), colonization factor antigens (CFAs), coli surface antigens (CSAs), or putative colonization factors (PCFs); ETEC strains are host-specific. The CFs confer host specificity on the strain. In human-specific ETEC strains, 21 different CFs have been identified. Approximately 75% of human ETEC express either CFA/I, CFA/II or CFA/IV. Animal-specific ETEC strains produce a variety of CFs that are distinct from those produced by human-specific isolates, such as K88 and K99; ETEC strains typically possess multiple plasmids with a wide range of molecular masses. The genes encoding CFs generally are found on a plasmid that also encodes ST and/or LT (cfaD/cfaE) minor pilin and initiator [Adhesive fimbriae (VF0213) - Adherence (VFC0001)] [Escherichia coli E24377A] Escherichia coli (ETEC)
AP010960.1_3868 99.664 0.0 cfaC VF0213 Adhesive fimbriae Adherence VFC0001 Adherence is mediated by proteinaceous surface structures that are referred to as colonization factors (CFs), colonization factor antigens (CFAs), coli surface antigens (CSAs), or putative colonization factors (PCFs); ETEC strains are host-specific. The CFs confer host specificity on the strain. In human-specific ETEC strains, 21 different CFs have been identified. Approximately 75% of human ETEC express either CFA/I, CFA/II or CFA/IV. Animal-specific ETEC strains produce a variety of CFs that are distinct from those produced by human-specific isolates, such as K88 and K99; ETEC strains typically possess multiple plasmids with a wide range of molecular masses. The genes encoding CFs generally are found on a plasmid that also encodes ST and/or LT (cfaC) colonisation factor antigen c, usher [Adhesive fimbriae (VF0213) - Adherence (VFC0001)] [Escherichia coli E24377A] Escherichia coli (ETEC)
AP010960.1_3869 100.0 2.91E-119 cfaB VF0213 Adhesive fimbriae Adherence VFC0001 Adherence is mediated by proteinaceous surface structures that are referred to as colonization factors (CFs), colonization factor antigens (CFAs), coli surface antigens (CSAs), or putative colonization factors (PCFs); ETEC strains are host-specific. The CFs confer host specificity on the strain. In human-specific ETEC strains, 21 different CFs have been identified. Approximately 75% of human ETEC express either CFA/I, CFA/II or CFA/IV. Animal-specific ETEC strains produce a variety of CFs that are distinct from those produced by human-specific isolates, such as K88 and K99; ETEC strains typically possess multiple plasmids with a wide range of molecular masses. The genes encoding CFs generally are found on a plasmid that also encodes ST and/or LT (cfaB) colonization factor antigen 1 [Adhesive fimbriae (VF0213) - Adherence (VFC0001)] [Escherichia coli E24377A] Escherichia coli (ETEC)
AP010960.1_3870 99.58 1.39E-177 cfaA VF0213 Adhesive fimbriae Adherence VFC0001 Adherence is mediated by proteinaceous surface structures that are referred to as colonization factors (CFs), colonization factor antigens (CFAs), coli surface antigens (CSAs), or putative colonization factors (PCFs); ETEC strains are host-specific. The CFs confer host specificity on the strain. In human-specific ETEC strains, 21 different CFs have been identified. Approximately 75% of human ETEC express either CFA/I, CFA/II or CFA/IV. Animal-specific ETEC strains produce a variety of CFs that are distinct from those produced by human-specific isolates, such as K88 and K99; ETEC strains typically possess multiple plasmids with a wide range of molecular masses. The genes encoding CFs generally are found on a plasmid that also encodes ST and/or LT (cfaA) colonisation factor antigen a, chaperone [Adhesive fimbriae (VF0213) - Adherence (VFC0001)] [Escherichia coli E24377A] Escherichia coli (ETEC)
AP010960.1_4042 68.267 0.0 acrA VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrA) acriflavine resistance protein A [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_4043 78.094 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_4099 80.153 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AP010960.1_4120 66.832 1.28E-99 vfr VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (vfr) cAMP-regulatory protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AP010960.1_4148 63.964 5.49E-101 rpe VF0543 Capsule Immune modulation VFC0258 Group 4 capsule; high molecular weight (HMW) O-antigen capsule (rpe) ribulose-phosphate 3-epimerase [Capsule (VF0543) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AP010960.1_4243 68.68 0.0 rhs/PAAR VF0579 T6SS Effector delivery system VFC0086 (rhs/PAAR) Type VI secretion system protein, PAAR family [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_4282 71.022 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AP010960.1_4321 73.246 0.0 lpfC VF0105 Lpf Adherence VFC0001 Chaperone-usher assembly pathway (lpfC) long polar fimbrial usher protein LpfC [Lpf (VF0105) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_4322 69.912 5.6E-112 lpfB VF0105 Lpf Adherence VFC0001 Chaperone-usher assembly pathway (lpfB) long polar fimbrial chaperone protein LpfB [Lpf (VF0105) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_4323 73.41 3.76E-91 lpfA VF0105 Lpf Adherence VFC0001 Chaperone-usher assembly pathway (lpfA) long polar fimbria protein LpfA [Lpf (VF0105) - Adherence (VFC0001)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_4370 67.76 0.0 rhs/PAAR VF0579 T6SS Effector delivery system VFC0086 (rhs/PAAR) Type VI secretion system protein, PAAR family [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_4400 78.247 0.0 rfaD VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rfaD) ADP-L-glycero-D-mannoheptose-6-epimerase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_4401 63.218 4.84E-158 rfaF VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rfaF) ADP-heptose-LPS heptosyltransferase II [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_4569 66.369 3.89E-172 rffG VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rffG) dTDP-glucose 46-dehydratase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AP010960.1_4570 67.01 7.32E-144 wbtL VF0542 LPS Immune modulation VFC0258 The structure of Francisella spp. lipid A is unique in that it is modified by various carbohydrates that greatly reduce TLR4 activation and allow for immune evasion (wbtL) glucose-1-phosphate thymidylyltransferase [LPS (VF0542) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AP010960.1_4579 95.652 9.08E-18 aslA VF0238 AslA Invasion VFC0083 Homology to aslA of E. coli K12; based on its protein sequence, AslA is predicted to be a member of the arylsulfatase family of enzymes that contains highly conserved sulfatase motifs, but E. coli AslA failed to exhibit in vitro arylsulfatase activity (aslA) putative arylsulfatase [AslA (VF0238) - Invasion (VFC0083)] [Escherichia coli O18:K1:H7 str. RS218] Escherichia coli (NMEC)
AP010960.1_4720 68.551 0.0 rhs/PAAR VF0579 T6SS Effector delivery system VFC0086 (rhs/PAAR) Type VI secretion system protein, PAAR family [T6SS (VF0579) - Effector delivery system (VFC0086)] [Shigella sonnei Ss046] Shigella sonnei
AP010960.1_4741 98.787 0.0 ibeC VF0237 Ibes Invasion VFC0083 IbeA is unique to E. coli K1. The ibeB and ibeC are found to have K12 homologues p77211 and yijP respectively. (ibeC) phosphoethanolamine transferase CptA [Ibes (VF0237) - Invasion (VFC0083)] [Escherichia coli O45:K1:H7 str. S88] Escherichia coli (NMEC)
AP010960.1_4758 80.153 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AP010960.1_4791 62.295 0.0 icl VF0253 Isocitrate lyase Others VFC0346 (icl) Isocitrate lyase Icl (isocitrase) (isocitratase) [Isocitrate lyase (VF0253) - Others (VFC0346)] [Mycobacterium tuberculosis H37Rv] Mycobacterium tuberculosis
AP010960.1_4793 83.122 0.0 espL4 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espL4) Type III secretion system effector EspL4 [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_4825 80.328 1.46E-26 espX4 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espX4) Type III secretion system effector EspX4 [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_4826 87.755 0.0 espX4 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espX4) Type III secretion system effector EspX4 [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_4885 99.259 6.12E-101 nleG6-3 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleG6-3) DUF1076 domain-containing protein [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_4886 99.716 0.0 espW VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espW) Type III secretion system effector EspW [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_4887 99.074 3.23E-162 nleG8-2 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleG8-2) DUF1076 domain-containing protein [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_4888 98.98 9.3E-146 espM2 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espM2) Type III secretion system effector EspM2, Rho guanine exchange factor [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_4910 92.308 5.18E-155 espX5 VF1111 TTSS secreted effectors Effector delivery system VFC0086 (espX5) Type III secretion system effector EspX5 [TTSS secreted effectors (VF1111) - Effector delivery system (VFC0086)] [Escherichia coli O55:H7 str. CB9615] Escherichia coli (EPEC)
AP010960.1_4911 93.605 7.2E-114 espX5 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (espX5) Type III secretion system effector EspX5 [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_4953 85.915 0.0 pmrB VF1355 PmrAB Regulation VFC0301 (pmrB) sensory kinase PmrB [PmrAB (VF1355) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_4954 90.991 1.08E-150 pmrA VF1355 PmrAB Regulation VFC0301 (pmrA) response regulator PmrA [PmrAB (VF1355) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AP010960.1_4975 99.907 0.0 lifA/efa1 VF0204 Efa-1/LifA Effector delivery system VFC0086 (lifA/efa1) lymphostatin Efa1/LifA [Efa-1/LifA (VF0204) - Effector delivery system (VFC0086)] [Escherichia coli O103:H2 str. 12009] Escherichia coli (EHEC)
AP010960.1_4977 100.0 5.18E-169 nleE VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleE) Type III secretion system effector NleE [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_4978 98.784 0.0 nleB1 VF1110 TTSS secreted effectors Effector delivery system VFC0086 (nleB1) Type III secretion system effector nleB1 [TTSS secreted effectors (VF1110) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010960.1_4979 100.0 4.22E-106 espL2 VF1111 TTSS secreted effectors Effector delivery system VFC0086 (espL2) Type III secretion system secreted effector EspL2, cysteine protease [TTSS secreted effectors (VF1111) - Effector delivery system (VFC0086)] [Escherichia coli O55:H7 str. CB9615] Escherichia coli (EPEC)
AP010960.1_4980 99.723 0.0 espL2 VF1111 TTSS secreted effectors Effector delivery system VFC0086 (espL2) Type III secretion system secreted effector EspL2, cysteine protease [TTSS secreted effectors (VF1111) - Effector delivery system (VFC0086)] [Escherichia coli O55:H7 str. CB9615] Escherichia coli (EPEC)
AP010960.1_5043 75.568 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AP010960.1_5137 99.0 4.04E-151 fimB VF0221 Type 1 fimbriae Adherence VFC0001 Mannose-sensitive (MSHA) fimbriae, the ability to hemagglutinate erythrocytes was blocked by the presence of mannose; the genes responsible for type I fimbriae are found in almost all subgroups of E.coli, not just in UPEC strains, but the fimbriae function as a virulence factor in the pathogenesis of E.coli UTI; Expression of type I fimbriae undergoes phase variation controlled at the transcriptional level by invertible element. The sigma70 promoter for FimA is located within this 314bp invertible DNA element flanked on both ends by inverted DNA repeats of 9bp in length. Leucine-responsive protein (LRP), integration host factor (IHF), and the histone-like protein (H-NS) affect the switching of the invertible element by binding to DNA sequences around and within the invertible element region, thus assisting or blocking the switching actions of the FimB and FimE recombinases (fimB) Type 1 fimbriae Regulatory protein fimB [Type 1 fimbriae (VF0221) - Adherence (VFC0001)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_5138 100.0 7.59E-149 fimE VF0221 Type 1 fimbriae Adherence VFC0001 Mannose-sensitive (MSHA) fimbriae, the ability to hemagglutinate erythrocytes was blocked by the presence of mannose; the genes responsible for type I fimbriae are found in almost all subgroups of E.coli, not just in UPEC strains, but the fimbriae function as a virulence factor in the pathogenesis of E.coli UTI; Expression of type I fimbriae undergoes phase variation controlled at the transcriptional level by invertible element. The sigma70 promoter for FimA is located within this 314bp invertible DNA element flanked on both ends by inverted DNA repeats of 9bp in length. Leucine-responsive protein (LRP), integration host factor (IHF), and the histone-like protein (H-NS) affect the switching of the invertible element by binding to DNA sequences around and within the invertible element region, thus assisting or blocking the switching actions of the FimB and FimE recombinases (fimE) Type 1 fimbriae Regulatory protein fimE [Type 1 fimbriae (VF0221) - Adherence (VFC0001)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_5139 90.11 8.06E-104 fimA VF0221 Type 1 fimbriae Adherence VFC0001 Mannose-sensitive (MSHA) fimbriae, the ability to hemagglutinate erythrocytes was blocked by the presence of mannose; the genes responsible for type I fimbriae are found in almost all subgroups of E.coli, not just in UPEC strains, but the fimbriae function as a virulence factor in the pathogenesis of E.coli UTI; Expression of type I fimbriae undergoes phase variation controlled at the transcriptional level by invertible element. The sigma70 promoter for FimA is located within this 314bp invertible DNA element flanked on both ends by inverted DNA repeats of 9bp in length. Leucine-responsive protein (LRP), integration host factor (IHF), and the histone-like protein (H-NS) affect the switching of the invertible element by binding to DNA sequences around and within the invertible element region, thus assisting or blocking the switching actions of the FimB and FimE recombinases (fimA) Type-1 fimbrial protein, A chain precursor [Type 1 fimbriae (VF0221) - Adherence (VFC0001)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_5140 97.297 3.03E-108 fimI VF0221 Type 1 fimbriae Adherence VFC0001 Mannose-sensitive (MSHA) fimbriae, the ability to hemagglutinate erythrocytes was blocked by the presence of mannose; the genes responsible for type I fimbriae are found in almost all subgroups of E.coli, not just in UPEC strains, but the fimbriae function as a virulence factor in the pathogenesis of E.coli UTI; Expression of type I fimbriae undergoes phase variation controlled at the transcriptional level by invertible element. The sigma70 promoter for FimA is located within this 314bp invertible DNA element flanked on both ends by inverted DNA repeats of 9bp in length. Leucine-responsive protein (LRP), integration host factor (IHF), and the histone-like protein (H-NS) affect the switching of the invertible element by binding to DNA sequences around and within the invertible element region, thus assisting or blocking the switching actions of the FimB and FimE recombinases (fimI) Fimbrin-like protein fimI precursor [Type 1 fimbriae (VF0221) - Adherence (VFC0001)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_5141 98.755 3.24E-179 fimC VF0221 Type 1 fimbriae Adherence VFC0001 Mannose-sensitive (MSHA) fimbriae, the ability to hemagglutinate erythrocytes was blocked by the presence of mannose; the genes responsible for type I fimbriae are found in almost all subgroups of E.coli, not just in UPEC strains, but the fimbriae function as a virulence factor in the pathogenesis of E.coli UTI; Expression of type I fimbriae undergoes phase variation controlled at the transcriptional level by invertible element. The sigma70 promoter for FimA is located within this 314bp invertible DNA element flanked on both ends by inverted DNA repeats of 9bp in length. Leucine-responsive protein (LRP), integration host factor (IHF), and the histone-like protein (H-NS) affect the switching of the invertible element by binding to DNA sequences around and within the invertible element region, thus assisting or blocking the switching actions of the FimB and FimE recombinases (fimC) Chaperone protein fimC precursor [Type 1 fimbriae (VF0221) - Adherence (VFC0001)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_5142 99.169 0.0 fimD VF0221 Type 1 fimbriae Adherence VFC0001 Mannose-sensitive (MSHA) fimbriae, the ability to hemagglutinate erythrocytes was blocked by the presence of mannose; the genes responsible for type I fimbriae are found in almost all subgroups of E.coli, not just in UPEC strains, but the fimbriae function as a virulence factor in the pathogenesis of E.coli UTI; Expression of type I fimbriae undergoes phase variation controlled at the transcriptional level by invertible element. The sigma70 promoter for FimA is located within this 314bp invertible DNA element flanked on both ends by inverted DNA repeats of 9bp in length. Leucine-responsive protein (LRP), integration host factor (IHF), and the histone-like protein (H-NS) affect the switching of the invertible element by binding to DNA sequences around and within the invertible element region, thus assisting or blocking the switching actions of the FimB and FimE recombinases (fimD) Outer membrane usher protein fimD precursor [Type 1 fimbriae (VF0221) - Adherence (VFC0001)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_5145 98.295 8.39E-129 fimF VF0221 Type 1 fimbriae Adherence VFC0001 Mannose-sensitive (MSHA) fimbriae, the ability to hemagglutinate erythrocytes was blocked by the presence of mannose; the genes responsible for type I fimbriae are found in almost all subgroups of E.coli, not just in UPEC strains, but the fimbriae function as a virulence factor in the pathogenesis of E.coli UTI; Expression of type I fimbriae undergoes phase variation controlled at the transcriptional level by invertible element. The sigma70 promoter for FimA is located within this 314bp invertible DNA element flanked on both ends by inverted DNA repeats of 9bp in length. Leucine-responsive protein (LRP), integration host factor (IHF), and the histone-like protein (H-NS) affect the switching of the invertible element by binding to DNA sequences around and within the invertible element region, thus assisting or blocking the switching actions of the FimB and FimE recombinases (fimF) FimF protein precursor [Type 1 fimbriae (VF0221) - Adherence (VFC0001)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_5146 97.605 1.41E-118 fimG VF0221 Type 1 fimbriae Adherence VFC0001 Mannose-sensitive (MSHA) fimbriae, the ability to hemagglutinate erythrocytes was blocked by the presence of mannose; the genes responsible for type I fimbriae are found in almost all subgroups of E.coli, not just in UPEC strains, but the fimbriae function as a virulence factor in the pathogenesis of E.coli UTI; Expression of type I fimbriae undergoes phase variation controlled at the transcriptional level by invertible element. The sigma70 promoter for FimA is located within this 314bp invertible DNA element flanked on both ends by inverted DNA repeats of 9bp in length. Leucine-responsive protein (LRP), integration host factor (IHF), and the histone-like protein (H-NS) affect the switching of the invertible element by binding to DNA sequences around and within the invertible element region, thus assisting or blocking the switching actions of the FimB and FimE recombinases (fimG) FimG protein precursor [Type 1 fimbriae (VF0221) - Adherence (VFC0001)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_5147 99.0 0.0 fimH VF0221 Type 1 fimbriae Adherence VFC0001 Mannose-sensitive (MSHA) fimbriae, the ability to hemagglutinate erythrocytes was blocked by the presence of mannose; the genes responsible for type I fimbriae are found in almost all subgroups of E.coli, not just in UPEC strains, but the fimbriae function as a virulence factor in the pathogenesis of E.coli UTI; Expression of type I fimbriae undergoes phase variation controlled at the transcriptional level by invertible element. The sigma70 promoter for FimA is located within this 314bp invertible DNA element flanked on both ends by inverted DNA repeats of 9bp in length. Leucine-responsive protein (LRP), integration host factor (IHF), and the histone-like protein (H-NS) affect the switching of the invertible element by binding to DNA sequences around and within the invertible element region, thus assisting or blocking the switching actions of the FimB and FimE recombinases (fimH) FimH protein precursor [Type 1 fimbriae (VF0221) - Adherence (VFC0001)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AP010960.1_5189 69.41 0.0 cheD VF0394 Flagella Motility VFC0204 (cheD) methyl-accepting chemotaxis protein CheD [Flagella (VF0394) - Motility (VFC0204)] [Yersinia enterocolitica subsp. enterocolitica 8081] Yersinia enterocolitica
AP010963.1_1 100.0 1.48E-129 hlyC VF0207 Hemolysin Exotoxin VFC0235 Best-characterized RTX protein secreted by a type I secretion system: the structural gene encoding the hemolysin (hlyA) is part of an operon that also encodes a dedicated export system (HlyB and HlyD comprising a type I secretion system) and a toxin modifying enzyme (HlyC). The HlyC protein is responsible for acylation of HlyA, resulting in toxin activation; The hly operon is found on a plasmid of EHEC O157:H7, while the hly operon is often located adjacent to the P fimbrial genes on the same pathogenicity island on the chromosome of UPEC strains (hlyC) Hemolysin C [Hemolysin (VF0207) - Exotoxin (VFC0235)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010963.1_2 99.198 0.0 hlyA VF0207 Hemolysin Exotoxin VFC0235 Best-characterized RTX protein secreted by a type I secretion system: the structural gene encoding the hemolysin (hlyA) is part of an operon that also encodes a dedicated export system (HlyB and HlyD comprising a type I secretion system) and a toxin modifying enzyme (HlyC). The HlyC protein is responsible for acylation of HlyA, resulting in toxin activation; The hly operon is found on a plasmid of EHEC O157:H7, while the hly operon is often located adjacent to the P fimbrial genes on the same pathogenicity island on the chromosome of UPEC strains (hlyA) Hemolysin A [Hemolysin (VF0207) - Exotoxin (VFC0235)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010963.1_3 99.575 0.0 hlyB VF0207 Hemolysin Exotoxin VFC0235 Best-characterized RTX protein secreted by a type I secretion system: the structural gene encoding the hemolysin (hlyA) is part of an operon that also encodes a dedicated export system (HlyB and HlyD comprising a type I secretion system) and a toxin modifying enzyme (HlyC). The HlyC protein is responsible for acylation of HlyA, resulting in toxin activation; The hly operon is found on a plasmid of EHEC O157:H7, while the hly operon is often located adjacent to the P fimbrial genes on the same pathogenicity island on the chromosome of UPEC strains (hlyB) Hemolysin B [Hemolysin (VF0207) - Exotoxin (VFC0235)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010963.1_4 99.791 0.0 hlyD VF0207 Hemolysin Exotoxin VFC0235 Best-characterized RTX protein secreted by a type I secretion system: the structural gene encoding the hemolysin (hlyA) is part of an operon that also encodes a dedicated export system (HlyB and HlyD comprising a type I secretion system) and a toxin modifying enzyme (HlyC). The HlyC protein is responsible for acylation of HlyA, resulting in toxin activation; The hly operon is found on a plasmid of EHEC O157:H7, while the hly operon is often located adjacent to the P fimbrial genes on the same pathogenicity island on the chromosome of UPEC strains (hlyD) Hemolysin D [Hemolysin (VF0207) - Exotoxin (VFC0235)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010963.1_18 70.482 0.0 espP VF0208 EspP Effector delivery system VFC0086 Encoded within the pO157 plasmid (espP) autotransporter, serine protease [EspP (VF0208) - Effector delivery system (VFC0086)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AP010963.1_21 61.644 2.96E-127 katA VF0168 KatAB Stress survival VFC0282 (katA) catalase/(hydro)peroxidase [KatAB (VF0168) - Stress survival (VFC0282)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AP010963.1_73 81.818 0.0 ibeC VF0237 Ibes Invasion VFC0083 IbeA is unique to E. coli K1. The ibeB and ibeC are found to have K12 homologues p77211 and yijP respectively. (ibeC) phosphoethanolamine transferase CptA [Ibes (VF0237) - Invasion (VFC0083)] [Escherichia coli O45:K1:H7 str. S88] Escherichia coli (NMEC)