Basic Information
Accession number
GCA_000011865.1
Release date
2005-01-06
Organism
Campylobacter jejuni RM1221
Species name
Campylobacter jejuni

Assembly level
Complete Genome
Assembly name
ASM1186v1
Assembly submitter
The Institute for Genomic Research
Assembly Type
haploid
Genome size
1.8 Mb
GC percent
30.5
Contig count
1

Collection date
-
Sample location
-
Host
-
Isolation source
-
Isolate type
-
Strain
RM1221
Isolate
-
ARG List
ORF_ID Pass_Bitscore Best_Hit_Bitscore Best_Hit_ARO Best_Identities ARO Model_type SNPs_in_Best_Hit_ARO Other_SNPs Drug class Resistance mechanism AMR gene family Description
CP000025.1_335 # 309148 # 309909 500.0 507.294 OXA-605 100.0 ARO:3005826 protein homolog model carbapenem; cephalosporin; penam antibiotic inactivation OXA beta-lactamase OXA-605 is a OXA beta-lactamase.
CP000025.1_402 # 368811 # 370289 960.0 989.564 cmeC 99.19 ARO:3000785 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; cephalosporin; fusidane antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CmeC is the outer membrane channel protein of the CmeABC multidrug efflux complex.
CP000025.1_404 # 373404 # 374507 710.0 719.539 cmeA 96.46 ARO:3000783 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; cephalosporin; fusidane antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CmeA is the membrane fusion protein of the CmeABC multidrug efflux complex.
CP000025.1_405 # 374601 # 375233 400.0 425.246 cmeR 99.05 ARO:3000526 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; cephalosporin; fusidane antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CmeR is a repressor for the CmeABC multidrug efflux pump, binding to the cmeABC promoter region.
VF List
Query_id %Identity E-value Related genes VF ID Virulence factor VFcategory VFcategoryID Characteristics Description Strain
CP000025.1_41 98.827 0.0 fliK VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliK) flagellar hook-length control protein FliK [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_42 100.0 0.0 flgD VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgD) flagellar basal-body rod modification protein FlgD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_43 100.0 0.0 flgE VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgE) flagellar hook protein FlgE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_58 99.286 0.0 fliY VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliY) flagellar motor switch protein FliY [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_59 100.0 0.0 fliM VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliM) flagellar motor switch protein FliM [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_60 100.0 1.35E-171 fliA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliA) flagellar biosynthesis sigma factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_62 100.0 0.0 flhG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhG) ATP-binding protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_63 99.38 0.0 flhF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhF) flagellar biosynthesis regulator FlhF [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_75 100.0 1.04E-137 cdtC VF0115 CDT Exotoxin VFC0235 (cdtC) cytolethal distending toxin C [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_76 99.623 0.0 cdtB VF0115 CDT Exotoxin VFC0235 (cdtB) cytolethal distending toxin B [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_77 99.627 0.0 cdtA VF0115 CDT Exotoxin VFC0235 (cdtA) cytolethal distending toxin A [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_186 67.021 1.46E-93 clpP VF0074 ClpP Stress survival VFC0282 21.6 kDa protein belongs to a family of proteases highly conserved in prokaryotes and eukaryotes (clpP) ATP-dependent Clp protease proteolytic subunit [ClpP (VF0074) - Stress survival (VFC0282)] [Listeria monocytogenes EGD-e] Listeria monocytogenes
CP000025.1_189 99.783 0.0 fliI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliI) flagellum-specific ATP synthase FliI [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_297 98.047 0.0 eptC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (eptC) phosphoethanolamine transferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_322 100.0 4.99E-126 cheW VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheW) chemotaxis protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_323 99.74 0.0 cheA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheA) chemotaxis histidine kinase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_324 100.0 0.0 cheV VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheV) chemotaxis protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_354 99.821 0.0 fliF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliF) flagellar M-ring protein FliF [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_355 100.0 0.0 fliG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliG) flagellar motor switch protein G [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_356 98.551 0.0 fliH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliH) flagellar assembly protein H [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_371 100.0 0.0 flhB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhB) flagellar biosynthetic protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_372 99.595 0.0 motB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (motB) flagellar motor protein MotB [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_373 100.0 0.0 motA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (motA) flagellar motor protein MotA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_389 100.0 1.62E-70 fliN VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliN) flagellar motor switch protein FliN [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_408 100.0 5.1E-144 Cj0371 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (Cj0371) hypothetical protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_509 72.682 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
CP000025.1_615 98.98 3.75E-67 fliE VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliE) flagellar hook-basal body complex protein FliE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_616 98.78 1.29E-119 flgC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgC) flagellar basal body rod protein FlgC [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_617 97.902 2.9E-102 flgB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgB) flagellar basal body rod protein FlgB [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_636 100.0 1.6E-86 flaG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaG) a negative regulator of flagellar assembly [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_637 95.483 0.0 fliD VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliD) flagellar capping protein FliD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_638 100.0 1.07E-91 fliS VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliS) flagellar protein FliS [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_757 99.519 0.0 rpoN VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (rpoN) RNA polymerase factor sigma-54 [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_776 100.0 6.64E-173 flgH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgH) flagellar L-ring protein precursor FlgH [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_786 99.63 0.0 flgG2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgG2) flagellar basal-body rod protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_787 100.0 0.0 flgG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgG) flagellar basal-body rod protein FlgG [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_809 99.194 6.61E-175 flaC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaC) a secreted effector flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_853 100.0 2.21E-158 flgA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgA) flagellar basal body P-ring biosynthesis protein FlgA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_877 100.0 0.0 flgS VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgS) signal transduction histidine kinase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_900 100.0 4.54E-174 fliP VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliP) flagellar biosynthesis protein FliP [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_958 99.862 0.0 flhA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhA) flagellar biosynthesis protein FlhA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_959 100.0 5.44E-97 Cj0883c VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (Cj0883c) transcriptional regulator [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_962 97.333 0.0 flgL VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgL) flagellar hook-associated protein FlgL [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_988 99.344 0.0 ciaB VF0324 CiaB Invasion VFC0083 73-kDa protein secreted by the flagellin export apparatus; CiaB lacks an identifiable signal sequence, and an environmental stimulus is required to induce Cia protein secretion, but there is no evidence of a type III secretion system (ciaB) invasion antigen CiaB [CiaB (VF0324) - Invasion (VFC0083)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_995 98.842 0.0 pebA VF0327 PEB1 Adherence VFC0001 An aspartate/glutamate-binding protein of an ABC transporter, essential for microaerobic growth on dicarboxylic amino acids (pebA) bifunctional adhesin/ABC transporter aspartate/glutamate-binding protein [PEB1 (VF0327) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1059 97.312 0.0 jlpA VF0329 JlpA Adherence VFC0001 (jlpA) lipoprotein [JlpA (VF0329) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1156 99.538 0.0 flgR VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgR) sigma-54 associated transcriptional activator [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1157 100.0 4.2E-76 flgQ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgQ) required for flagellar motility [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1158 98.83 5.24E-124 flgP VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgP) required for flagellar motility [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1207 100.0 4.29E-92 fliW VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliW) flagellar assembly protein FliW [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1250 100.0 2.61E-92 cheY VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheY) chemotaxis regulatory protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1264 98.83 0.0 waaC VF0326 LOS Immune modulation VFC0258 (waaC) heptosyltransferase I [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1265 97.627 0.0 htrB VF0326 LOS Immune modulation VFC0258 (htrB) lipid A biosynthesis lauroyl acyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1266 86.019 0.0 Cj1135 VF0326 LOS Immune modulation VFC0258 (Cj1135) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1270 60.938 6.86E-106 Cj1145c VF0326 LOS Immune modulation VFC0258 (Cj1145c) hypothetical protein [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1271 92.193 0.0 waaV VF0326 LOS Immune modulation VFC0258 (waaV) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1272 92.652 0.0 waaF VF0326 LOS Immune modulation VFC0258 (waaF) heptosyltransferase II [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1274 96.774 1.02E-131 gmhA VF0326 LOS Immune modulation VFC0258 (gmhA) phosphoheptose isomerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1275 95.879 0.0 hldE VF0326 LOS Immune modulation VFC0258 (hldE) bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1276 98.423 0.0 hldD VF0326 LOS Immune modulation VFC0258 (hldD) ADP-glyceromanno-heptose 6-epimerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1277 95.376 1.28E-119 gmhB VF0326 LOS Immune modulation VFC0258 (gmhB) D-glycero-alpha-D-manno-heptose-1,7-bisphosphate 7-phosphatase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1303 99.213 2.37E-177 fliR VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliR) flagellar biosynthetic protein FliR [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1322 72.05 9.24E-89 luxS VF0406 AI-2 Biofilm VFC0271 AI-2 is produced and detected by a wide variety of bacteria and is presumed to facilitate interspecies communications. (luxS) S-ribosylhomocysteinase [AI-2 (VF0406) - Biofilm (VFC0271)] [Vibrio cholerae O1 biovar El Tor str. N16961] Vibrio cholerae
CP000025.1_1343 62.286 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
CP000025.1_1365 100.0 6.46E-73 ciaC VF0415 CiaC Invasion VFC0083 Exported via the flagellar T3SS (ciaC) Campylobacter invasion antigen C [CiaC (VF0415) - Invasion (VFC0083)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1382 72.374 0.0 porA VF0328 MOMP Adherence VFC0001 (porA) major outer membrane protein [MOMP (VF0328) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1402 98.293 0.0 Cj1279c VF0637 FlpA Adherence VFC0001 (Cj1279c) fibronectin domain-containing lipoprotein [FlpA (VF0637) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1467 98.802 0.0 pseB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseB) UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1468 96.011 0.0 pseC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseC) C4 aminotransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1486 97.414 2.08E-172 pseF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseF) acylneuraminate cytidylyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1487 99.635 0.0 pseG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseG) UDP-2,4-diacetamido-2,4,6-trideoxy-beta-L-altropyranose hydrolase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1488 88.535 1.48E-102 pseH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseH) N-acetyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1491 99.735 0.0 pseA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseA) pseudaminic acid biosynthesis PseA protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1492 97.076 0.0 pseI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseI) N-acetylneuraminic acid synthetase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1500 97.872 5.47E-172 ptmB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (ptmB) acylneuraminate cytidylyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1501 98.438 0.0 ptmA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (ptmA) flagellin modification protein A [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1502 87.692 0.0 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1504 82.642 0.0 maf4 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (maf4) motility accessory factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1505 96.975 0.0 pseE/maf5 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseE/maf5) motility accessory factor PseE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1506 92.845 0.0 flaB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaB) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1507 91.623 0.0 flaA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaA) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1576 98.876 3.91E-126 fliL VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliL) flagellar basal body protein FliL [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1581 97.97 0.0 kpsS VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsS) capsule polysaccharide modification protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1582 91.605 0.0 kpsC VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsC) capsule polysaccharide modification protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1589 86.239 1.47E-133 hddC VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (hddC) D-glycero-D-manno-heptose 1-phosphate guanosyltransferase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1590 97.512 1.96E-144 gmhA2 VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (gmhA2) phosphoheptose isomerase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1591 96.755 0.0 hddA VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (hddA) D-glycero-D-manno-heptose 7-phosphate kinase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1598 95.873 0.0 kpsF VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsF) D-arabinose 5-phosphate isomerase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1599 98.732 0.0 kpsD VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsD) capsule polysaccharide ABC transporter substrate-binding protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1600 98.118 0.0 kpsE VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsE) capsule polysaccharide ABC transporter permease [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1601 98.636 9.14E-163 kpsT VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsT) capsule polysaccharide ABC transporter ATP-binding protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1602 95.0 1.91E-172 kpsM VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsM) capsule polysaccharide ABC transporter permease [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1615 99.138 0.0 flgI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgI) flagellar P-ring protein precursor FlgI [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1616 97.345 2.28E-76 flgJ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgJ) flagellar rod assembly protein/muramidase FlgJ [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1617 98.462 1.06E-40 flgM VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgM) negative regulator of flagellin synthesis [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1619 99.013 0.0 flgK VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgK) flagellar hook-associated protein 1 FlgK [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1630 99.373 0.0 cadF VF0322 CadF Adherence VFC0001 (cadF) outer membrane fibronectin-binding protein [CadF (VF0322) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1717 99.873 0.0 pflA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pflA) paralysed flagellum protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1828 100.0 1.18E-57 fliQ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliQ) flagellar biosynthesis protein FliQ [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP000025.1_1876 84.138 0.0 flgE2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgE2) flagellar hook protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni