Basic Information
Accession number
GCA_000025425.1
Release date
2010-01-29
Organism
Campylobacter jejuni subsp. jejuni IA3902
Species name
Campylobacter jejuni

Assembly level
Complete Genome
Assembly name
ASM2542v1
Assembly submitter
Iowa State University
Assembly Type
haploid
Genome size
1.7 Mb
GC percent
30.5
Contig count
2

Collection date
-
Sample location
-
Host
sheep
Isolation source
aborted placenta
Isolate type
-
Strain
-
Isolate
IA3902
ARG List
ORF_ID Pass_Bitscore Best_Hit_Bitscore Best_Hit_ARO Best_Identities ARO Model_type SNPs_in_Best_Hit_ARO Other_SNPs Drug class Resistance mechanism AMR gene family Description
CP001876.1_197 # 199588 # 201507 300.0 1305.04 tet(O) 98.9 ARO:3000190 protein homolog model tetracycline antibiotic antibiotic target protection tetracycline-resistant ribosomal protection protein Tet(O) is a ribosomal protection protein. It is associated with conjugative plasmids.
CP001876.1_285 # 277989 # 278762 500.0 515.768 OXA-193 100.0 ARO:3001478 protein homolog model carbapenem; cephalosporin; penam antibiotic inactivation OXA beta-lactamase OXA-193 is a beta-lactamase. Name originally from the historical Lahey list of beta-lactamases, some of which did not include sequence data.
CP001876.1_349 # 335787 # 337265 960.0 988.023 cmeC 99.19 ARO:3000785 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; cephalosporin; fusidane antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CmeC is the outer membrane channel protein of the CmeABC multidrug efflux complex.
CP001876.1_351 # 340380 # 341483 710.0 717.998 cmeA 96.19 ARO:3000783 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; cephalosporin; fusidane antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CmeA is the membrane fusion protein of the CmeABC multidrug efflux complex.
CP001876.1_352 # 341578 # 342210 400.0 429.483 cmeR 100.0 ARO:3000526 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; cephalosporin; fusidane antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CmeR is a repressor for the CmeABC multidrug efflux pump, binding to the cmeABC promoter region.
VF List
Query_id %Identity E-value Related genes VF ID Virulence factor VFcategory VFcategoryID Characteristics Description Strain
CP001876.1_42 99.497 0.0 fliK VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliK) flagellar hook-length control protein FliK [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_43 99.66 0.0 flgD VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgD) flagellar basal-body rod modification protein FlgD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_44 99.817 0.0 flgE VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgE) flagellar hook protein FlgE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_56 100.0 0.0 fliY VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliY) flagellar motor switch protein FliY [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_57 100.0 0.0 fliM VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliM) flagellar motor switch protein FliM [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_58 100.0 1.35E-171 fliA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliA) flagellar biosynthesis sigma factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_60 100.0 0.0 flhG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhG) ATP-binding protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_61 100.0 0.0 flhF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhF) flagellar biosynthesis regulator FlhF [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_73 100.0 1.04E-137 cdtC VF0115 CDT Exotoxin VFC0235 (cdtC) cytolethal distending toxin C [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_74 100.0 0.0 cdtB VF0115 CDT Exotoxin VFC0235 (cdtB) cytolethal distending toxin B [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_75 100.0 0.0 cdtA VF0115 CDT Exotoxin VFC0235 (cdtA) cytolethal distending toxin A [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_185 67.021 1.46E-93 clpP VF0074 ClpP Stress survival VFC0282 21.6 kDa protein belongs to a family of proteases highly conserved in prokaryotes and eukaryotes (clpP) ATP-dependent Clp protease proteolytic subunit [ClpP (VF0074) - Stress survival (VFC0282)] [Listeria monocytogenes EGD-e] Listeria monocytogenes
CP001876.1_188 100.0 0.0 fliI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliI) flagellum-specific ATP synthase FliI [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_244 99.219 0.0 eptC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (eptC) phosphoethanolamine transferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_270 100.0 4.99E-126 cheW VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheW) chemotaxis protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_271 99.87 0.0 cheA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheA) chemotaxis histidine kinase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_272 100.0 0.0 cheV VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheV) chemotaxis protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_304 100.0 0.0 fliF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliF) flagellar M-ring protein FliF [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_305 100.0 0.0 fliG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliG) flagellar motor switch protein G [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_306 100.0 0.0 fliH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliH) flagellar assembly protein H [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_321 99.448 0.0 flhB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhB) flagellar biosynthetic protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_322 100.0 0.0 motB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (motB) flagellar motor protein MotB [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_323 100.0 0.0 motA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (motA) flagellar motor protein MotA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_336 100.0 1.62E-70 fliN VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliN) flagellar motor switch protein FliN [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_355 100.0 5.1E-144 Cj0371 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (Cj0371) hypothetical protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_454 72.682 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
CP001876.1_506 98.98 3.75E-67 fliE VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliE) flagellar hook-basal body complex protein FliE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_507 99.39 1.64E-120 flgC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgC) flagellar basal body rod protein FlgC [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_508 97.902 2.9E-102 flgB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgB) flagellar basal body rod protein FlgB [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_527 100.0 1.6E-86 flaG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaG) a negative regulator of flagellar assembly [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_528 100.0 0.0 fliD VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliD) flagellar capping protein FliD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_529 100.0 1.07E-91 fliS VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliS) flagellar protein FliS [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_649 99.279 0.0 rpoN VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (rpoN) RNA polymerase factor sigma-54 [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_668 99.569 1.24E-172 flgH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgH) flagellar L-ring protein precursor FlgH [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_678 100.0 0.0 flgG2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgG2) flagellar basal-body rod protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_679 100.0 0.0 flgG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgG) flagellar basal-body rod protein FlgG [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_701 99.194 6.61E-175 flaC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaC) a secreted effector flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_742 100.0 2.21E-158 flgA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgA) flagellar basal body P-ring biosynthesis protein FlgA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_766 100.0 0.0 flgS VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgS) signal transduction histidine kinase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_791 100.0 4.54E-174 fliP VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliP) flagellar biosynthesis protein FliP [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_849 100.0 0.0 flhA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhA) flagellar biosynthesis protein FlhA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_850 100.0 5.44E-97 Cj0883c VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (Cj0883c) transcriptional regulator [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_853 99.6 0.0 flgL VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgL) flagellar hook-associated protein FlgL [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_879 99.836 0.0 ciaB VF0324 CiaB Invasion VFC0083 73-kDa protein secreted by the flagellin export apparatus; CiaB lacks an identifiable signal sequence, and an environmental stimulus is required to induce Cia protein secretion, but there is no evidence of a type III secretion system (ciaB) invasion antigen CiaB [CiaB (VF0324) - Invasion (VFC0083)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_886 100.0 0.0 pebA VF0327 PEB1 Adherence VFC0001 An aspartate/glutamate-binding protein of an ABC transporter, essential for microaerobic growth on dicarboxylic amino acids (pebA) bifunctional adhesin/ABC transporter aspartate/glutamate-binding protein [PEB1 (VF0327) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_944 99.731 0.0 jlpA VF0329 JlpA Adherence VFC0001 (jlpA) lipoprotein [JlpA (VF0329) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_983 99.769 0.0 flgR VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgR) sigma-54 associated transcriptional activator [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_984 100.0 4.2E-76 flgQ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgQ) required for flagellar motility [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_985 99.415 2.13E-124 flgP VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgP) required for flagellar motility [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1033 100.0 4.29E-92 fliW VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliW) flagellar assembly protein FliW [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1077 100.0 2.61E-92 cheY VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheY) chemotaxis regulatory protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1092 100.0 0.0 waaC VF0326 LOS Immune modulation VFC0258 (waaC) heptosyltransferase I [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1093 100.0 0.0 htrB VF0326 LOS Immune modulation VFC0258 (htrB) lipid A biosynthesis lauroyl acyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1094 100.0 0.0 Cj1135 VF0326 LOS Immune modulation VFC0258 (Cj1135) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1095 100.0 0.0 Cj1136 VF0326 LOS Immune modulation VFC0258 (Cj1136) glycosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1096 100.0 0.0 Cj1137c VF0326 LOS Immune modulation VFC0258 (Cj1137c) glycosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1097 100.0 0.0 Cj1138 VF0326 LOS Immune modulation VFC0258 (Cj1138) glycosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1098 100.0 0.0 wlaN VF0326 LOS Immune modulation VFC0258 (wlaN) beta-1,3 galactosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1099 100.0 0.0 cstIII VF0326 LOS Immune modulation VFC0258 (cstIII) alpha-2,3 sialyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1100 100.0 0.0 neuB1 VF0326 LOS Immune modulation VFC0258 (neuB1) sialic acid synthase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1101 100.0 0.0 neuC1 VF0326 LOS Immune modulation VFC0258 (neuC1) UDP-N-acetylglucosamine 2-epimerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1102 99.813 0.0 neuA1 VF0326 LOS Immune modulation VFC0258 (neuA1) bifunctional beta-1,4-N-acetylgalactosaminyltransferase/CMP-Neu5Ac synthase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1103 99.293 0.0 Cj1145c VF0326 LOS Immune modulation VFC0258 (Cj1145c) hypothetical protein [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1104 100.0 0.0 waaV VF0326 LOS Immune modulation VFC0258 (waaV) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1105 100.0 0.0 waaF VF0326 LOS Immune modulation VFC0258 (waaF) heptosyltransferase II [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1106 100.0 1.16E-136 gmhA VF0326 LOS Immune modulation VFC0258 (gmhA) phosphoheptose isomerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1107 99.349 0.0 hldE VF0326 LOS Immune modulation VFC0258 (hldE) bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1108 100.0 0.0 hldD VF0326 LOS Immune modulation VFC0258 (hldD) ADP-glyceromanno-heptose 6-epimerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1109 100.0 8.45E-134 gmhB VF0326 LOS Immune modulation VFC0258 (gmhB) D-glycero-alpha-D-manno-heptose-1,7-bisphosphate 7-phosphatase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1134 100.0 3.26E-179 fliR VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliR) flagellar biosynthetic protein FliR [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1153 72.05 2.65E-89 luxS VF0406 AI-2 Biofilm VFC0271 AI-2 is produced and detected by a wide variety of bacteria and is presumed to facilitate interspecies communications. (luxS) S-ribosylhomocysteinase [AI-2 (VF0406) - Biofilm (VFC0271)] [Vibrio cholerae O1 biovar El Tor str. N16961] Vibrio cholerae
CP001876.1_1174 62.286 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
CP001876.1_1195 100.0 6.46E-73 ciaC VF0415 CiaC Invasion VFC0083 Exported via the flagellar T3SS (ciaC) Campylobacter invasion antigen C [CiaC (VF0415) - Invasion (VFC0083)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1212 95.519 0.0 porA VF0328 MOMP Adherence VFC0001 (porA) major outer membrane protein [MOMP (VF0328) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1232 99.756 0.0 Cj1279c VF0637 FlpA Adherence VFC0001 (Cj1279c) fibronectin domain-containing lipoprotein [FlpA (VF0637) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1245 99.401 0.0 pseB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseB) UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1246 96.277 0.0 pseC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseC) C4 aminotransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1263 100.0 1.85E-175 pseF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseF) acylneuraminate cytidylyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1264 99.635 0.0 pseG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseG) UDP-2,4-diacetamido-2,4,6-trideoxy-beta-L-altropyranose hydrolase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1265 87.898 5.85E-102 pseH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseH) N-acetyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1268 98.942 0.0 pseA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseA) pseudaminic acid biosynthesis PseA protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1269 97.085 0.0 pseI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseI) N-acetylneuraminic acid synthetase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1270 79.664 0.0 maf4 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (maf4) motility accessory factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1281 96.17 5.93E-169 ptmB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (ptmB) acylneuraminate cytidylyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1282 94.922 0.0 ptmA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (ptmA) flagellin modification protein A [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1283 83.538 0.0 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1285 79.664 0.0 maf4 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (maf4) motility accessory factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1286 95.375 0.0 pseE/maf5 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseE/maf5) motility accessory factor PseE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1287 92.708 0.0 flaB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaB) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1288 92.535 0.0 flaA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaA) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1356 99.438 7.21E-127 fliL VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliL) flagellar basal body protein FliL [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1361 97.97 0.0 kpsS VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsS) capsule polysaccharide modification protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1362 96.662 0.0 kpsC VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsC) capsule polysaccharide modification protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1363 98.824 7.98E-123 cysC VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (cysC) adenylyl-sulfate kinase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1364 98.419 0.0 Cj1416c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1416c) sugar nucleotidyltransferase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1365 100.0 8.75E-149 Cj1417c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1417c) amidotransferase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1366 100.0 0.0 Cj1418c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1418c) hypothetical protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1367 100.0 0.0 Cj1419c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1419c) methyltransferase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1368 99.611 0.0 Cj1420c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1420c) methyltransferase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1385 96.825 0.0 kpsF VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsF) D-arabinose 5-phosphate isomerase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1386 99.094 0.0 kpsD VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsD) capsule polysaccharide ABC transporter substrate-binding protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1387 98.656 0.0 kpsE VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsE) capsule polysaccharide ABC transporter permease [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1388 99.091 8.55E-164 kpsT VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsT) capsule polysaccharide ABC transporter ATP-binding protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1389 95.0 6.25E-173 kpsM VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsM) capsule polysaccharide ABC transporter permease [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1403 99.713 0.0 flgI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgI) flagellar P-ring protein precursor FlgI [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1404 100.0 3.26E-78 flgJ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgJ) flagellar rod assembly protein/muramidase FlgJ [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1405 100.0 2.1E-41 flgM VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgM) negative regulator of flagellin synthesis [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1407 100.0 0.0 flgK VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgK) flagellar hook-associated protein 1 FlgK [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1418 100.0 0.0 cadF VF0322 CadF Adherence VFC0001 (cadF) outer membrane fibronectin-binding protein [CadF (VF0322) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1496 100.0 0.0 pflA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pflA) paralysed flagellum protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1604 100.0 1.18E-57 fliQ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliQ) flagellar biosynthesis protein FliQ [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001876.1_1650 78.677 0.0 flgE2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgE2) flagellar hook protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
CP001877.1_1 100.0 7.38E-167 virB8 VF0325 Type IV secretion system Effector delivery system VFC0086 C. jejuni pVir is a 37-kb plasmid harboring 54 predicted ORFs, contains genes for homologs of Com and Vir proteins, and shows great similarities to type IV secretion proteins found in cag PAI of H. pylori (virB8) Type IV secretion system protein VirB8 [Type IV secretion system (VF0325) - Effector delivery system (VFC0086)] [Campylobacter jejuni subsp. jejuni 81-176] Campylobacter jejuni
CP001877.1_2 100.0 0.0 virB9 VF0325 Type IV secretion system Effector delivery system VFC0086 C. jejuni pVir is a 37-kb plasmid harboring 54 predicted ORFs, contains genes for homologs of Com and Vir proteins, and shows great similarities to type IV secretion proteins found in cag PAI of H. pylori (virB9) Type IV secretion system protein VirB9 [Type IV secretion system (VF0325) - Effector delivery system (VFC0086)] [Campylobacter jejuni subsp. jejuni 81-176] Campylobacter jejuni
CP001877.1_3 99.471 0.0 virB10 VF0325 Type IV secretion system Effector delivery system VFC0086 C. jejuni pVir is a 37-kb plasmid harboring 54 predicted ORFs, contains genes for homologs of Com and Vir proteins, and shows great similarities to type IV secretion proteins found in cag PAI of H. pylori (virB10) Type IV secretion system protein VirB10 [Type IV secretion system (VF0325) - Effector delivery system (VFC0086)] [Campylobacter jejuni subsp. jejuni 81-176] Campylobacter jejuni
CP001877.1_7 97.17 0.0 virD4 VF0325 Type IV secretion system Effector delivery system VFC0086 C. jejuni pVir is a 37-kb plasmid harboring 54 predicted ORFs, contains genes for homologs of Com and Vir proteins, and shows great similarities to type IV secretion proteins found in cag PAI of H. pylori (virD4) Type IV secretion system protein VirD4 [Type IV secretion system (VF0325) - Effector delivery system (VFC0086)] [Campylobacter jejuni subsp. jejuni 81-176] Campylobacter jejuni
CP001877.1_51 99.878 0.0 virB4 VF0325 Type IV secretion system Effector delivery system VFC0086 C. jejuni pVir is a 37-kb plasmid harboring 54 predicted ORFs, contains genes for homologs of Com and Vir proteins, and shows great similarities to type IV secretion proteins found in cag PAI of H. pylori (virB4) Type IV secretion system protein VirB4 [Type IV secretion system (VF0325) - Effector delivery system (VFC0086)] [Campylobacter jejuni subsp. jejuni 81-176] Campylobacter jejuni