Basic Information
Accession number
GCA_000168175.1
Release date
2006-01-27
Organism
Campylobacter jejuni subsp. jejuni HB93-13
Species name
Campylobacter jejuni

Assembly level
Scaffold
Assembly name
ASM16817v1
Assembly submitter
TIGR
Assembly Type
haploid
Genome size
1.7 Mb
GC percent
30.5
Contig count
35

Collection date
-
Sample location
-
Host
-
Isolation source
-
Isolate type
-
Strain
HB93-13
Isolate
-
ARG List
ORF_ID Pass_Bitscore Best_Hit_Bitscore Best_Hit_ARO Best_Identities ARO Model_type SNPs_in_Best_Hit_ARO Other_SNPs Drug class Resistance mechanism AMR gene family Description
AANQ01000006.1_37 # 30841 # 32760 300.0 1300.8 tet(O) 98.59 ARO:3000190 protein homolog model tetracycline antibiotic antibiotic target protection tetracycline-resistant ribosomal protection protein Tet(O) is a ribosomal protection protein. It is associated with conjugative plasmids.
AANQ01000003.1_176 # 156147 # 156920 500.0 516.538 OXA-592 100.0 ARO:3005813 protein homolog model carbapenem; cephalosporin; penam antibiotic inactivation OXA beta-lactamase OXA-592 is a OXA beta-lactamase.
AANQ01000003.1_240 # 213945 # 215423 960.0 988.408 cmeC 99.19 ARO:3000785 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; cephalosporin; fusidane antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CmeC is the outer membrane channel protein of the CmeABC multidrug efflux complex.
AANQ01000003.1_242 # 218538 # 219641 710.0 717.613 cmeA 96.19 ARO:3000783 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; cephalosporin; fusidane antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CmeA is the membrane fusion protein of the CmeABC multidrug efflux complex.
AANQ01000003.1_243 # 219736 # 220368 400.0 427.943 cmeR 99.52 ARO:3000526 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; cephalosporin; fusidane antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CmeR is a repressor for the CmeABC multidrug efflux pump, binding to the cmeABC promoter region.
VF List
Query_id %Identity E-value Related genes VF ID Virulence factor VFcategory VFcategoryID Characteristics Description Strain
AANQ01000005.1_1 97.222 0.0 fliK VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliK) flagellar hook-length control protein FliK [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000005.1_2 100.0 0.0 flgD VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgD) flagellar basal-body rod modification protein FlgD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000005.1_3 99.633 0.0 flgE VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgE) flagellar hook protein FlgE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000005.1_16 99.643 0.0 fliY VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliY) flagellar motor switch protein FliY [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000005.1_17 100.0 0.0 fliM VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliM) flagellar motor switch protein FliM [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000005.1_18 100.0 1.35E-171 fliA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliA) flagellar biosynthesis sigma factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000005.1_20 99.653 0.0 flhG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhG) ATP-binding protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000005.1_21 99.587 0.0 flhF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhF) flagellar biosynthesis regulator FlhF [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000005.1_33 99.471 6.38E-137 cdtC VF0115 CDT Exotoxin VFC0235 (cdtC) cytolethal distending toxin C [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000005.1_34 100.0 0.0 cdtB VF0115 CDT Exotoxin VFC0235 (cdtB) cytolethal distending toxin B [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000005.1_35 99.627 0.0 cdtA VF0115 CDT Exotoxin VFC0235 (cdtA) cytolethal distending toxin A [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000004.1_4 84.35 0.0 flgE2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgE2) flagellar hook protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000004.1_41 63.636 6.76E-18 ggt VF0553 GGT Nutritional/Metabolic factor VFC0272 (ggt) gamma-glutamyltranspeptidase [GGT (VF0553) - Nutritional/Metabolic factor (VFC0272)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AANQ01000004.1_54 97.692 3.63E-80 fliK VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliK) flagellar hook-length control protein FliK [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_80 67.021 1.46E-93 clpP VF0074 ClpP Stress survival VFC0282 21.6 kDa protein belongs to a family of proteases highly conserved in prokaryotes and eukaryotes (clpP) ATP-dependent Clp protease proteolytic subunit [ClpP (VF0074) - Stress survival (VFC0282)] [Listeria monocytogenes EGD-e] Listeria monocytogenes
AANQ01000003.1_83 99.783 0.0 fliI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliI) flagellum-specific ATP synthase FliI [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_134 98.242 0.0 eptC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (eptC) phosphoethanolamine transferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_160 100.0 4.99E-126 cheW VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheW) chemotaxis protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_161 98.96 0.0 cheA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheA) chemotaxis histidine kinase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_162 99.686 0.0 cheV VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheV) chemotaxis protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_195 99.821 0.0 fliF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliF) flagellar M-ring protein FliF [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_196 100.0 0.0 fliG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliG) flagellar motor switch protein G [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_197 98.188 0.0 fliH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliH) flagellar assembly protein H [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_212 99.724 0.0 flhB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhB) flagellar biosynthetic protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_213 99.595 0.0 motB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (motB) flagellar motor protein MotB [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_214 98.45 0.0 motA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (motA) flagellar motor protein MotA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_227 100.0 1.62E-70 fliN VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliN) flagellar motor switch protein FliN [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_246 100.0 5.1E-144 Cj0371 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (Cj0371) hypothetical protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000003.1_338 72.682 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AANQ01000002.1_22 98.98 3.75E-67 fliE VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliE) flagellar hook-basal body complex protein FliE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_23 98.78 2.14E-119 flgC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgC) flagellar basal body rod protein FlgC [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_24 99.301 8.57E-104 flgB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgB) flagellar basal body rod protein FlgB [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_43 100.0 1.6E-86 flaG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaG) a negative regulator of flagellar assembly [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_44 94.401 0.0 fliD VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliD) flagellar capping protein FliD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_45 99.219 3.66E-91 fliS VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliS) flagellar protein FliS [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_163 99.038 0.0 rpoN VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (rpoN) RNA polymerase factor sigma-54 [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_177 99.138 3.13E-171 flgH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgH) flagellar L-ring protein precursor FlgH [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_187 99.63 0.0 flgG2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgG2) flagellar basal-body rod protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_188 100.0 0.0 flgG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgG) flagellar basal-body rod protein FlgG [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_210 98.387 9.41E-173 flaC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaC) a secreted effector flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_259 100.0 2.21E-158 flgA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgA) flagellar basal body P-ring biosynthesis protein FlgA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_283 100.0 0.0 flgS VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgS) signal transduction histidine kinase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_307 100.0 4.54E-174 fliP VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliP) flagellar biosynthesis protein FliP [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_361 99.862 0.0 flhA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhA) flagellar biosynthesis protein FlhA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_362 100.0 5.44E-97 Cj0883c VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (Cj0883c) transcriptional regulator [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000002.1_365 96.4 0.0 flgL VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgL) flagellar hook-associated protein FlgL [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_31 100.0 1.18E-57 fliQ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliQ) flagellar biosynthesis protein FliQ [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_141 99.239 0.0 pflA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pflA) paralysed flagellum protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_220 99.687 0.0 cadF VF0322 CadF Adherence VFC0001 (cadF) outer membrane fibronectin-binding protein [CadF (VF0322) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_231 99.013 0.0 flgK VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgK) flagellar hook-associated protein 1 FlgK [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_233 96.923 2.68E-40 flgM VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgM) negative regulator of flagellin synthesis [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_234 95.575 1.04E-74 flgJ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgJ) flagellar rod assembly protein/muramidase FlgJ [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_235 99.138 0.0 flgI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgI) flagellar P-ring protein precursor FlgI [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_265 91.923 2.38E-167 kpsM VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsM) capsule polysaccharide ABC transporter permease [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_266 99.091 2.56E-163 kpsT VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsT) capsule polysaccharide ABC transporter ATP-binding protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_267 99.194 0.0 kpsE VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsE) capsule polysaccharide ABC transporter permease [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_268 98.007 0.0 kpsD VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsD) capsule polysaccharide ABC transporter substrate-binding protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_269 97.46 0.0 kpsF VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsF) D-arabinose 5-phosphate isomerase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_274 65.865 2.62E-105 Cj1435c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1435c) phosphatase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_276 63.158 3.47E-10 Cj1422c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1422c) sugar transferase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_278 98.054 0.0 Cj1420c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1420c) methyltransferase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_279 98.419 0.0 Cj1419c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1419c) methyltransferase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_280 98.203 0.0 Cj1418c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1418c) hypothetical protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_281 97.0 9.94E-145 Cj1417c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1417c) amidotransferase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_282 98.024 0.0 Cj1416c VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (Cj1416c) sugar nucleotidyltransferase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_283 97.647 1.14E-121 cysC VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (cysC) adenylyl-sulfate kinase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_284 91.134 0.0 kpsC VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsC) capsule polysaccharide modification protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_285 96.193 0.0 kpsS VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsS) capsule polysaccharide modification protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_290 99.438 7.21E-127 fliL VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliL) flagellar basal body protein FliL [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_356 78.609 0.0 flaA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaA) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_357 78.957 0.0 flaB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaB) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_358 62.179 0.0 pseE/maf5 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseE/maf5) motility accessory factor PseE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_359 63.077 0.0 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_361 97.376 0.0 pseI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseI) N-acetylneuraminic acid synthetase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_362 100.0 0.0 pseA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseA) pseudaminic acid biosynthesis PseA protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_365 87.898 7.61E-102 pseH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseH) N-acetyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_366 100.0 0.0 pseG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseG) UDP-2,4-diacetamido-2,4,6-trideoxy-beta-L-altropyranose hydrolase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_367 100.0 1.85E-175 pseF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseF) acylneuraminate cytidylyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_384 100.0 0.0 pseC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseC) C4 aminotransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_385 98.503 0.0 pseB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseB) UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_398 99.024 0.0 Cj1279c VF0637 FlpA Adherence VFC0001 (Cj1279c) fibronectin domain-containing lipoprotein [FlpA (VF0637) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_418 90.118 0.0 porA VF0328 MOMP Adherence VFC0001 (porA) major outer membrane protein [MOMP (VF0328) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_435 97.17 7.5E-71 ciaC VF0415 CiaC Invasion VFC0083 Exported via the flagellar T3SS (ciaC) Campylobacter invasion antigen C [CiaC (VF0415) - Invasion (VFC0083)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_456 62.702 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AANQ01000001.1_477 72.05 1.16E-88 luxS VF0406 AI-2 Biofilm VFC0271 AI-2 is produced and detected by a wide variety of bacteria and is presumed to facilitate interspecies communications. (luxS) S-ribosylhomocysteinase [AI-2 (VF0406) - Biofilm (VFC0271)] [Vibrio cholerae O1 biovar El Tor str. N16961] Vibrio cholerae
AANQ01000001.1_496 99.606 8.95E-178 fliR VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliR) flagellar biosynthetic protein FliR [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_521 96.774 5.28E-127 gmhB VF0326 LOS Immune modulation VFC0258 (gmhB) D-glycero-alpha-D-manno-heptose-1,7-bisphosphate 7-phosphatase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_522 99.369 0.0 hldD VF0326 LOS Immune modulation VFC0258 (hldD) ADP-glyceromanno-heptose 6-epimerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_523 96.746 0.0 hldE VF0326 LOS Immune modulation VFC0258 (hldE) bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_524 97.849 8.45E-134 gmhA VF0326 LOS Immune modulation VFC0258 (gmhA) phosphoheptose isomerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_525 95.611 0.0 waaF VF0326 LOS Immune modulation VFC0258 (waaF) heptosyltransferase II [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_526 89.591 7.37E-179 waaV VF0326 LOS Immune modulation VFC0258 (waaV) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_528 68.807 1.6E-105 neuA1 VF0326 LOS Immune modulation VFC0258 (neuA1) bifunctional beta-1,4-N-acetylgalactosaminyltransferase/CMP-Neu5Ac synthase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_529 69.624 0.0 neuC1 VF0326 LOS Immune modulation VFC0258 (neuC1) UDP-N-acetylglucosamine 2-epimerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_530 77.259 0.0 neuB1 VF0326 LOS Immune modulation VFC0258 (neuB1) sialic acid synthase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_534 76.923 0.0 Cj1136 VF0326 LOS Immune modulation VFC0258 (Cj1136) glycosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_535 76.25 9.46E-41 Cj1135 VF0326 LOS Immune modulation VFC0258 (Cj1135) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_536 88.942 0.0 Cj1135 VF0326 LOS Immune modulation VFC0258 (Cj1135) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_537 96.61 0.0 htrB VF0326 LOS Immune modulation VFC0258 (htrB) lipid A biosynthesis lauroyl acyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_538 98.538 0.0 waaC VF0326 LOS Immune modulation VFC0258 (waaC) heptosyltransferase I [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_553 100.0 2.61E-92 cheY VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheY) chemotaxis regulatory protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_596 100.0 4.29E-92 fliW VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliW) flagellar assembly protein FliW [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_644 100.0 1.51E-125 flgP VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgP) required for flagellar motility [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_645 100.0 4.2E-76 flgQ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgQ) required for flagellar motility [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_646 99.538 0.0 flgR VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgR) sigma-54 associated transcriptional activator [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_686 98.118 0.0 jlpA VF0329 JlpA Adherence VFC0001 (jlpA) lipoprotein [JlpA (VF0329) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_750 98.842 0.0 pebA VF0327 PEB1 Adherence VFC0001 An aspartate/glutamate-binding protein of an ABC transporter, essential for microaerobic growth on dicarboxylic amino acids (pebA) bifunctional adhesin/ABC transporter aspartate/glutamate-binding protein [PEB1 (VF0327) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AANQ01000001.1_758 99.344 0.0 ciaB VF0324 CiaB Invasion VFC0083 73-kDa protein secreted by the flagellin export apparatus; CiaB lacks an identifiable signal sequence, and an environmental stimulus is required to induce Cia protein secretion, but there is no evidence of a type III secretion system (ciaB) invasion antigen CiaB [CiaB (VF0324) - Invasion (VFC0083)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni