Basic Information
Accession number
GCA_000223925.2
Release date
2011-08-17
Organism
Pseudomonas aeruginosa 9BR
Species name
Pseudomonas aeruginosa

Assembly level
Contig
Assembly name
ASM22392v2
Assembly submitter
IBIS, Universite Laval
Assembly Type
haploid
Genome size
6.8 Mb
GC percent
66.0
Contig count
2

Collection date
-
Sample location
-
Host
-
Isolation source
-
Isolate type
-
Strain
9BR
Isolate
-
ARG List
ORF_ID Pass_Bitscore Best_Hit_Bitscore Best_Hit_ARO Best_Identities ARO Model_type SNPs_in_Best_Hit_ARO Other_SNPs Drug class Resistance mechanism AMR gene family Description
AFXI01000001.1_166 # 182256 # 183359 650.0 728.783 TriA 100.0 ARO:3003679 protein homolog model disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump TriA is a membrane protein that is fused to TriB and both are required for the triclosan efflux pump function of TriABC-OpmH in P. aeruginosa.
AFXI01000001.1_167 # 183356 # 184426 600.0 696.427 TriB 99.72 ARO:3003680 protein homolog model disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump TriB is a membrane protein that is fused to TriA and both are required for the triclosan efflux pump function of TriABC-OpmH in P. aeruginosa.
AFXI01000001.1_168 # 184423 # 187470 1900.0 2052.71 TriC 100.0 ARO:3003681 protein homolog model disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump TriC is a resistance nodulation cell division (RND) transporter that is a part of TriABC-OpmH, a triclosan-specific efflux protein.
AFXI01000001.1_434 # 470749 # 471900 650.0 768.074 MexA 100.0 ARO:3000377 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexA is the membrane fusion protein of the MexAB-OprM multidrug efflux complex.
AFXI01000001.1_435 # 471916 # 475056 1950.0 2120.12 MexB 99.9 ARO:3000378 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexB is the inner membrane multidrug exporter of the efflux complex MexAB-OprM.
AFXI01000001.1_436 # 475058 # 476515 850.0 961.444 OprM 99.79 ARO:3000379 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; aminoglycoside antibiotic; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OprM is an outer membrane factor protein found in Pseudomonas aeruginosa and Burkholderia vietnamiensis. It is part of the MexAB-OprM, MexVW-OprM, MexXY-OprM and the AmrAB-OprM complex.
AFXI01000001.1_762 # 815159 # 815797 400.0 439.499 Pseudomonas aeruginosa catB7 99.06 ARO:3002679 protein homolog model phenicol antibiotic antibiotic inactivation chloramphenicol acetyltransferase (CAT) catB7 is a chromosome-encoded variant of the cat gene found in Pseudomonas aeruginosa.
AFXI01000001.1_809 # 852706 # 853527 50.0 147.902 vanW gene in vanG cluster 31.82 ARO:3002965 protein homolog model glycopeptide antibiotic antibiotic target alteration vanW; glycopeptide resistance gene cluster Also known as vanWG, is a vanW variant found in the vanG gene cluster.
AFXI01000001.1_964 # 1025345 # 1025530 100.0 122.865 rsmA 100.0 ARO:3005069 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump rsmA is a gene that regulates virulence of Pseudomonas aeruginosa. However, its negative effect on MexEF-OprN overexpression has been noted to confer resistance to various antibiotics. It's Escherichia coli homolog is csrA.
AFXI01000001.1_1238 # 1295325 # 1295732 200.0 273.478 FosA 100.0 ARO:3000149 protein homolog model phosphonic acid antibiotic antibiotic inactivation fosfomycin thiol transferase An enzyme that confers resistance to fosfomycin in Serratia marcescens by breaking the epoxide ring of the molecule. It depends on the cofactors Manganese (II) and Potassium and uses Glutathione (GSH) as the nucleophilic molecule. In Pseudomonas aeruginosa, FosA catalyzes the conjugation of glutathione to carbon-1 of fosfomycin, rendering it ineffective as an antibacterial drug.
AFXI01000001.1_1473 # 1545954 # 1547387 900.0 942.954 PmpM 100.0 ARO:3004077 protein homolog model fluoroquinolone antibiotic; aminoglycoside antibiotic; disinfecting agents and antiseptics antibiotic efflux multidrug and toxic compound extrusion (MATE) transporter PmpM is a multidrug efflux pump belonging to the MATE family of Pseudomonas aeruginosa. PmpM is an H+ drug antiporter and is the first reported case of an H+ coupled efflux pump in the MATE family. PmpM confers resistance to fluoroquinolones, fradiomycin, benzalkonium chloride, chlorhexidine gluconate, ethidium bromide, tetraphenylphosphonium chloride (TPPCl), and rhodamine 6G.
AFXI01000001.1_1557 # 1646265 # 1647422 650.0 734.561 mexM 98.44 ARO:3003704 protein homolog model phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump mexM is the membrane fusion protein of the MexMN-OprM multidrug efflux complex.
AFXI01000001.1_1558 # 1647419 # 1650529 1900.0 2059.26 mexN 99.71 ARO:3003705 protein homolog model phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexN is the inner membrane transporter of the MexMN-OprM multidrug efflux complex.
AFXI01000001.1_1930 # 2034218 # 2035504 800.0 859.751 ParS 99.77 ARO:3005067 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; aminoglycoside antibiotic; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic efflux; reduced permeability to antibiotic resistance-nodulation-cell division (RND) antibiotic efflux pump; Outer Membrane Porin (Opr) ParS is the sensor component of the two-component ParRS system. Alongside its counterpart ParR, it confers resistance to polycationic antibiotics though regulation of efflux pumps and porins.
AFXI01000001.1_1931 # 2035505 # 2036212 400.0 472.626 ParR 100.0 ARO:3005068 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; aminoglycoside antibiotic; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic efflux; reduced permeability to antibiotic resistance-nodulation-cell division (RND) antibiotic efflux pump; Outer Membrane Porin (Opr) ParR is a component of the two-component sensor ParRS. Alongside its counterpart ParS, it confers resistance to polycationic antibiotics through the regulation of efflux components and porins.
AFXI01000001.1_2160 # 2290921 # 2294058 1800.0 1920.98 mexY 93.59 ARO:3003033 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexY is the RND-type membrane protein of the efflux complex MexXY-OprM.
AFXI01000001.1_2473 # 2630535 # 2631005 200.0 314.694 Pseudomonas aeruginosa soxR 100.0 ARO:3004107 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump SoxR is a redox-sensitive transcriptional activator that induces expression of a small regulon that includes the RND efflux pump-encoding operon mexGHI-opmD. SoxR was shown to be activated by pyocyanin.
AFXI01000001.1_2699 # 2933236 # 2934480 750.0 832.402 MexE 99.52 ARO:3000803 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexE is the membrane fusion protein of the MexEF-OprN multidrug efflux complex.
AFXI01000001.1_2700 # 2934502 # 2937690 2110.0 2147.09 MexF 100.0 ARO:3000804 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexF is the multidrug inner membrane transporter of the MexEF-OprN complex. mexF corresponds to 2 loci in Pseudomonas aeruginosa PAO1 (gene name: mexF/mexB) and 4 loci in Pseudomonas aeruginosa LESB58 (gene name: mexD/mexB).
AFXI01000001.1_2701 # 2937687 # 2939105 800.0 920.998 OprN 100.0 ARO:3000805 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OprN is the outer membrane channel component of the MexEF-OprN multidrug efflux complex.
AFXI01000001.1_2740 # 2973253 # 2974083 450.0 567.385 SPM-1 100.0 ARO:3003793 protein homolog model carbapenem antibiotic inactivation SPM beta-lactamase Plasmid-mediated SPM metallo-beta-lactamase conferring resistance to carbapenem. Originally isolated from Pseudomonas aeruginosa. Responsible for carbapenem-resistant Pseudomonas aeruginosa (CRPA) outbreaks in Brazil.
AFXI01000001.1_2779 # 3015061 # 3016557 850.0 1004.2 OpmB 100.0 ARO:3004072 protein homolog model macrolide antibiotic; monobactam; tetracycline antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OpmB is an outer membrane efflux protein in Pseudomonas aeruginosa that shows functional cooperation with MuxABC, to form the efflux pump system MuxABC-OpmB.
AFXI01000001.1_2780 # 3016554 # 3019664 1900.0 2076.6 MuxC 99.9 ARO:3004075 protein homolog model macrolide antibiotic; monobactam; tetracycline antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MuxC is one of the two necessary RND components of the MuxABC-OpmB efflux pumps system in Pseudomonas aeruginosa.
AFXI01000001.1_2781 # 3019661 # 3022792 1900.0 2073.52 MuxB 100.0 ARO:3004074 protein homolog model macrolide antibiotic; monobactam; tetracycline antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MuxB is one of the two necessary RND components in the Pseudomonas aeruginosa efflux pump system MuxABC-OpmB.
AFXI01000001.1_2782 # 3022789 # 3024069 800.0 845.114 MuxA 99.53 ARO:3004073 protein homolog model macrolide antibiotic; monobactam; tetracycline antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MuxA is a membrane fusion protein component of the efflux pump system MuxABC-OpmB in Pseudomonas aeruginosa.
AFXI01000001.1_2919 # 3165154 # 3166329 700.0 728.013 cmx 100.0 ARO:3002703 protein homolog model phenicol antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump cmx is a plasmid or transposon-encoded chloramphenicol exporter that is found in Corynebacterium striatum and Pseudomonas aeruginosa.
AFXI01000001.1_2920 # 3166441 # 3167340 500.0 544.273 sul1 99.28 ARO:3000410 protein homolog model sulfonamide antibiotic antibiotic target replacement sulfonamide resistant sul Sul1 is a sulfonamide resistant dihydropteroate synthase of Gram-negative bacteria. It is linked to other resistance genes of class 1 integrons.
AFXI01000001.1_2925 # 3172344 # 3173087 450.0 506.523 rmtD 100.0 ARO:3002667 protein homolog model aminoglycoside antibiotic antibiotic target alteration 16S rRNA methyltransferase (G1405) RmtD is a 16S rRNA methyltransferase found in Pseudomonas aeruginosa which methylates G1405 of the 16S rRNA. It confers high level resistance to many aminoglycosides.
AFXI01000001.1_2928 # 3175317 # 3176537 500.0 546.584 sul1 100.0 ARO:3000410 protein homolog model sulfonamide antibiotic antibiotic target replacement sulfonamide resistant sul Sul1 is a sulfonamide resistant dihydropteroate synthase of Gram-negative bacteria. It is linked to other resistance genes of class 1 integrons.
AFXI01000001.1_2930 # 3178076 # 3178873 450.0 523.857 aadA7 98.87 ARO:3002607 protein homolog model aminoglycoside antibiotic antibiotic inactivation ANT(3'') aadA7 is an integron-encoded aminoglycoside nucleotidyltransferase gene in V. fluvialis, P. aeruginosa, E. coli, V. cholerae and S. enterica.
AFXI01000001.1_2931 # 3178935 # 3179735 500.0 544.658 OXA-56 100.0 ARO:3001795 protein homolog model carbapenem; cephalosporin; penam antibiotic inactivation OXA beta-lactamase OXA-56 is a beta-lactamase found in Pseudomonas aeruginosa.
AFXI01000001.1_3542 # 3806256 # 3806927 400.0 453.366 cprR 100.0 ARO:3005063 protein homolog model peptide antibiotic antibiotic target alteration; antibiotic efflux pmr phosphoethanolamine transferase cprR is one part of a two-component regulatory system. It with its counterpart cprS induce the Arn operon to confer resistance to peptide antibiotics.
AFXI01000001.1_3543 # 3806924 # 3808219 800.0 871.307 cprS 100.0 ARO:3005064 protein homolog model peptide antibiotic antibiotic target alteration; antibiotic efflux pmr phosphoethanolamine transferase cprS is part of a two-component regulatory system that, with its counterpart cprR, induces the Arn operon in the presence of cationic peptides to confer resistance.
AFXI01000001.1_3667 # 3950014 # 3950691 400.0 441.039 Pseudomonas aeruginosa CpxR 100.0 ARO:3004054 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; aminoglycoside antibiotic; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CpxR is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR.
AFXI01000001.1_3971 # 4273895 # 4275370 850.0 947.192 opmE 99.39 ARO:3003700 protein homolog model macrolide antibiotic; carbapenem; tetracycline antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump opmE is an outer membrane factor protein that is part of the multidrug efflux pump MexPQ-OpmE.
AFXI01000001.1_3972 # 4275367 # 4278528 1900.0 2075.06 mexQ 99.43 ARO:3003699 protein homolog model macrolide antibiotic; carbapenem; tetracycline antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexQ is the inner membrane transporter of the multidrug efflux pump MexPQ-OpmE.
AFXI01000001.1_3973 # 4278525 # 4279682 650.0 756.133 mexP 99.74 ARO:3003698 protein homolog model macrolide antibiotic; carbapenem; tetracycline antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexP is the membrane fusion protein of the MexPQ-OpmE multidrug efflux complex.
AFXI01000001.1_4004 # 4317900 # 4319888 1200.0 1345.49 arnA 99.7 ARO:3002985 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase arnA modifies lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. arnA is found in E. coli and P. aeruginosa.
AFXI01000001.1_4006 # 4320769 # 4322418 400.0 445.277 ArnT 43.66 ARO:3005053 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase ArnT is involved in Cell Wall Biosynthesis, specifically 4-amino-4-deoxy-L-arabinose (Ara4N). It confers resistance to peptide antibiotics.
AFXI01000001.1_4127 # 4451880 # 4454957 1900.0 2062.73 MexK 100.0 ARO:3003693 protein homolog model macrolide antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexK is the inner membrane resistance-nodulation-cell division (RND) transporter in the MexJK multidrug efflux protein.
AFXI01000001.1_4128 # 4454962 # 4456065 690.0 723.391 MexJ 99.73 ARO:3003692 protein homolog model macrolide antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexJ is the membrane fusion protein of the MexJK multidrug efflux protein.
AFXI01000001.1_4129 # 4456161 # 4456799 400.0 428.713 MexL 100.0 ARO:3003710 protein homolog model macrolide antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexL is a specific repressor of mexJK transcription and autoregulates its own expression.
AFXI01000001.1_4275 # 4614691 # 4615029 200.0 223.787 YajC 100.0 ARO:3005040 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; oxazolidinone antibiotic; glycopeptide antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump YajC interacts with the AcrAB-TolC efflux pump in a way that in uncharacterized but is shown to grant increased fitness in the presence of linezolid, rifampicin, and vancomycin.
AFXI01000001.1_4664 # 5006067 # 5007260 750.0 806.979 PDC-5 100.0 ARO:3002502 protein homolog model monobactam; carbapenem; cephalosporin; cephamycin; penam antibiotic inactivation PDC beta-lactamase PDC-5 is a extended-spectrum beta-lactamase found in Pseudomonas aeruginosa.
AFXI01000001.1_4673 # 5019616 # 5020422 500.0 528.094 APH(3')-IIb 99.25 ARO:3002645 protein homolog model aminoglycoside antibiotic antibiotic inactivation APH(3') APH(3')-IIb is a chromosomal-encoded aminoglycoside phosphotransferase in P. aeruginosa.
AFXI01000001.1_4690 # 5037127 # 5038335 500.0 755.747 bcr-1 100.0 ARO:3003801 protein homolog model bicyclomycin-like antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Transmembrane protein which expels bicyclomycin from the cell, leading to bicyclomycin resistance. Identified in Pseudomonas aeruginosa strains responsible for outbreaks in Brazil, often appearing with blaSPM-1, another bicyclomycin resistance gene.
AFXI01000001.1_4759 # 5117901 # 5118347 260.0 291.197 MexG 100.0 ARO:3000806 protein homolog model fluoroquinolone antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexG is a membrane protein required for MexGHI-OpmD efflux activity.
AFXI01000001.1_4760 # 5118355 # 5119467 650.0 730.709 MexH 100.0 ARO:3000807 protein homolog model fluoroquinolone antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexH is the membrane fusion protein of the efflux complex MexGHI-OpmD.
AFXI01000001.1_4761 # 5119480 # 5122569 1900.0 2057.72 MexI 99.9 ARO:3000808 protein homolog model fluoroquinolone antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexI is the inner membrane transporter of the efflux complex MexGHI-OpmD.
AFXI01000001.1_4762 # 5122566 # 5124029 920.0 948.732 OpmD 99.79 ARO:3000809 protein homolog model fluoroquinolone antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OpmD is the outer membrane channel protein of the efflux complex MexGHI-OpmD.
AFXI01000001.1_4930 # 5315635 # 5316765 650.0 743.036 MexV 99.2 ARO:3003030 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; tetracycline antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexV is the membrane fusion protein of the MexVW-OprM multidrug efflux complex.
AFXI01000001.1_4931 # 5316816 # 5319872 1900.0 2047.32 MexW 99.8 ARO:3003031 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; tetracycline antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexW is the RND-type membrane protein of the efflux complex MexVW-OprM.
AFXI01000001.1_5272 # 5668102 # 5669541 850.0 932.169 OprJ 99.16 ARO:3000802 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; cephalosporin; penam; tetracycline antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OprJ is the outer membrane channel component of the MexCD-OprJ multidrug efflux complex.
AFXI01000001.1_5273 # 5669547 # 5672678 1800.0 1977.6 MexD 95.43 ARO:3000801 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; cephalosporin; penam; tetracycline antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexD is the multidrug inner membrane transporter of the MexCD-OprJ complex.
AFXI01000001.1_5274 # 5672706 # 5673770 600.0 690.263 MexC 100.0 ARO:3000800 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; cephalosporin; penam; tetracycline antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexC is the membrane fusion protein of the MexCD-OprJ multidrug efflux complex.
AFXI01000001.1_5457 # 5881714 # 5883144 900.0 939.873 basS 99.79 ARO:3003583 protein homolog model peptide antibiotic antibiotic target alteration; antibiotic efflux pmr phosphoethanolamine transferase Histidine protein kinase sensor Lipid A modification gene; part of a two-component system involved in polymyxin resistance that senses high extracellular Fe(2+).
AFXI01000001.1_5658 # 6099579 # 6101027 850.0 941.028 OpmH 97.1 ARO:3003682 protein homolog model disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OpmH is an outer membrane efflux protein required for triclosan-specific efflux pump function.
AFXI01000001.1_5676 # 6121580 # 6121912 170.0 206.068 Pseudomonas aeruginosa emrE 99.09 ARO:3004038 protein homolog model aminoglycoside antibiotic antibiotic efflux small multidrug resistance (SMR) antibiotic efflux pump EmrE is a small multidrug transporter that functions as a homodimer and that couples the efflux of small polyaromatic cations from the cell with the import of protons down an electrochemical gradient. Confers resistance to tetraphenylphosphonium, methyl viologen, gentamicin, kanamycin, and neomycin.
AFXI01000001.1_6218 # 6731100 # 6731888 500.0 538.11 OXA-494 100.0 ARO:3005727 protein homolog model carbapenem; cephalosporin; penam antibiotic inactivation OXA beta-lactamase OXA-494 is a OXA beta-lactamase.
AFXI01000001.1_3630 # 3911856 # 3914627 1500.0 1851.64 Pseudomonas aeruginosa gyrA conferring resistance to fluoroquinolones 99.89 ARO:3003684 protein variant model T83I fluoroquinolone antibiotic antibiotic target alteration fluoroquinolone resistant gyrA Point mutation of Pseudomonas aeruginosa gyrA resulted in the lowered affinity between fluoroquinolones and gyrA. Thus, conferring resistance.
AFXI01000001.1_5456 # 5881025 # 5881690 375.0 428.713 basR 99.55 ARO:3003582 protein variant model L71R peptide antibiotic antibiotic target alteration; antibiotic efflux pmr phosphoethanolamine transferase Response regulator for Lipid A modification genes; two-component system involved in polymyxin resistance that senses high extracellular Fe(2+).
AFXI01000001.1_433 # 470031 # 470474 270.0 297.745 MexR 100.0 ARO:3000506 protein overexpression model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic target alteration; antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexR is the repressor of the MexRAB-OprM operon. Mutant forms of mexR result in up-regulation of efflux pump system MexAB-OprM.
AFXI01000001.1_2689 # 2922247 # 2923266 660.0 689.493 MexS 100.0 ARO:3000813 protein overexpression model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexS is a suppressor of MexT, which is an activator of the multidrug pump MexEF-OprN. Mutations in MexS lead to multidrug resistance.
AFXI01000001.1_2690 # 2923487 # 2924401 500.0 530.406 MexT 98.88 ARO:3000814 protein overexpression model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexT is a LysR-type transcriptional activator that positively regulates the expression of MexEF-OprN, OprD, and MexS.
AFXI01000001.1_4025 # 4342390 # 4343028 375.0 436.032 nalD 100.0 ARO:3000819 protein overexpression model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump NalD is a repressor of MexAB-OprM. Mutations lead to multidrug resistance and MexAB-OprM overexpression.
AFXI01000001.1_4171 # 4502201 # 4502842 400.0 427.557 nalC 99.06 ARO:3000818 protein overexpression model S209R, G71E macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump NalC is a repressor of PA3720-PA3719, which are positive regulators of MexAB-OprM. Thus, nalC mutants confer multidrug resistance.
AFXI01000001.1_5275 # 5674030 # 5674593 310.0 384.03 Type B NfxB 100.0 ARO:3004060 protein overexpression model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; cephalosporin; penam; tetracycline antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump Type B NfxB mutants are more resistant to tetracycline and chloramphenicol, as well as ofloxacin, erythromycin, and the new zwitterionic cephems, than was PAO1, and they are four to eight times more susceptible to carbenicillin, sulbenicillin, imipenem, panipenem, biapenem, moxalactam, aztreonam, gentamicin, and kanamycin than PAO1. The mutation at the 46th amino acid position is sufficient for overproduction of OprJ and the multidrug resistance. nfxB corresponds to 2 loci in Pseudomonas aeruginosa PAO1 (gene name: esrC/nfxB) and 2 loci in Pseudomonas aeruginosa LESB58 (gene name: nfxB).
VF List
Query_id %Identity E-value Related genes VF ID Virulence factor VFcategory VFcategoryID Characteristics Description Strain
AFXI01000001.1_54 99.125 0.0 exoT VF0853 TTSS secreted effectors Effector delivery system VFC0086 (exoT) type III secretion system effector ExoT, ADP ribosyltransferase activity and GTPase-activating protein activity [TTSS secreted effectors (VF0853) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_62 99.836 0.0 phzH VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzH) phenazine-modifying enzyme [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_80 100.0 0.0 tagQ VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (tagQ) type VI secretiona ssociated protein TagQ, outer membrane lipoprotein [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_81 100.0 0.0 tagR VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (tagR) type VI secretion associated protein TagR, positively regulates PpkA [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_82 99.749 0.0 tagS VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (tagS) type VI secretion associated protein TagS, forming a stable inner membrane complex with TagT [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_83 100.0 3.91E-168 tagT VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (tagT) type VI secretion associated protein TagT, ATP-binding component of ABC transporter [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_84 99.709 0.0 ppkA VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (ppkA) serine/threonine protein kinase PpkA [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_85 99.587 2.45E-176 pppA VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (pppA) Pseudomonas protein phosphatase PppA [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_86 99.115 1.85E-162 tagF/pppB VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (tagF/pppB) Pseudomonas protein phosphatase PppB [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_87 99.365 0.0 icmF1/tssM1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (icmF1/tssM1) type VI secretion system protein IcmF1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_88 99.777 0.0 dotU1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (dotU1) type VI secretion system protein DotU [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_89 100.0 0.0 hsiJ1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiJ1) type VI secretion system hcp secretion island protein HsiJ1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_90 100.0 9.67E-112 lip1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (lip1) lipoprotein [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_91 98.608 0.0 fha1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (fha1) type VI secretion system forkhead-associated protein Fha1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_92 98.547 0.0 hsiA1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiA1) type VI secretion system hcp secretion island protein HsiA1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_93 100.0 4.29E-125 hsiB1/vipA/tssB VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiB1/vipA/tssB) type VI secretion system tubule-forming protein VipA [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_94 99.799 0.0 hsiC1/vipB/tssC VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiC1/vipB/tssC) type VI secretion system tubule-forming protein VipB [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_95 100.0 2.12E-120 hcp1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hcp1) type VI secretion system substrate Hcp1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_96 100.0 0.0 hsiE1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiE1) type VI secretion system hcp secretion island protein HsiE1, interacting with HsiB1 to form a novel subcomplex of the T6SS [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_97 100.0 2.56E-121 hsiF1/tssE VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiF1/tssE) type VI secretion system hcp secretion island protein HsiF1, a gp25-like protein, but not exhibit lysozyme activity [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_98 99.677 0.0 hsiG1/tssF VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiG1/tssF) type VI secretion system hcp secretion island protein HsiG1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_99 100.0 0.0 hsiH1/tssG VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiH1/tssG) type VI secretion system hcp secretion island protein HsiH1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_100 99.667 0.0 clpV1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (clpV1) type VI secretion system AAA+ family ATPase [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_101 99.844 0.0 vgrG1a VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (vgrG1a) type VI secretion system substrate VgrG1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_103 99.302 0.0 tse6 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse6) NAD(P)(+) glycohydrolase toxin Tse6 [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_105 98.516 0.0 vgrG1b VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (vgrG1b) type VI secretion system substrate VgrG1b [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_186 66.242 9.28E-71 cheW VF0430 Flagella Motility VFC0204 (cheW) chemotaxis protein CheW [Flagella (VF0430) - Motility (VFC0204)] [Burkholderia pseudomallei K96243] Burkholderia pseudomallei
AFXI01000001.1_267 99.902 0.0 vgrG2b VF0915 HSI-2 T6SS secreted effectors Effector delivery system VFC0086 (vgrG2b) Type VI secretion system spike protein VgrG2b; metallopeptidase effector VgrG2b [HSI-2 T6SS secreted effectors (VF0915) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_268 100.0 1.69E-130 hcpA VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (hcpA) Hcp family type VI secretion system effector [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_404 100.0 0.0 pilT VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilT) twitching motility protein PilT [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_405 100.0 0.0 pilU VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilU) twitching motility protein PilU [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_417 100.0 2.88E-98 pilG VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilG) twitching motility protein PilG [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_418 100.0 4.33E-87 pilH VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilH) twitching motility protein PilH [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_419 100.0 6.64E-130 pilI VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilI) twitching motility protein PilI [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_420 100.0 0.0 pilJ VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilJ) twitching motility protein PilJ [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_421 100.0 0.0 pilK VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilK) methyltransferase PilK [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_422 99.757 0.0 chpA VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (chpA) still frameshift probable component of chemotactic signal transduction system [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_423 99.708 0.0 chpB VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (chpB) probable methylesterase [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_424 97.619 5.58E-115 chpC VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (chpC) probable chemotaxis protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_425 100.0 0.0 chpD VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (chpD) probable transcriptional regulator [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_426 99.507 3.49E-141 chpE VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (chpE) probable chemotaxis protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_435 71.344 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AFXI01000001.1_663 63.801 7.18E-99 rpe VF0543 Capsule Immune modulation VFC0258 Group 4 capsule; high molecular weight (HMW) O-antigen capsule (rpe) ribulose-phosphate 3-epimerase [Capsule (VF0543) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AFXI01000001.1_707 100.0 4.07E-160 vfr VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (vfr) cAMP-regulatory protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_823 100.0 4.9E-143 algU VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algU) alginate biosynthesis protein AlgZ/FimS [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_824 100.0 3.9E-141 mucA VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucA) alkaline metalloproteinase precursor [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_825 100.0 0.0 mucB VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucB) anti-sigma factor MucA, inhibitor of alg gene expression [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_826 100.0 1.12E-104 mucC VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucC) negative regulator for alginate biosynthesis MucB [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_827 99.789 0.0 mucD VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucD) serine protease MucD precursor [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_902 99.589 0.0 plcH VF0092 PLC Exotoxin VFC0235 (plcH) hemolytic phospholipase C precursor [PLC (VF0092) - Exotoxin (VFC0235)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_964 73.333 4.53E-30 csrA VF0261 CsrA Regulation VFC0301 Belongs to a highly conserved family of global regulators that typically control stationary phase traits post-transcriptionally (csrA) carbon storage regulator CsrA [CsrA (VF0261) - Regulation (VFC0301)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXI01000001.1_1034 60.545 0.0 iroN VF0563 Sal Nutritional/Metabolic factor VFC0272 Salmochelin is a glycosylated Ent that requires the iroA locus for production and transport (iroN) salmochelin receptor IroN [Sal (VF0563) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AFXI01000001.1_1069 63.525 7.28E-113 CBU_1566 VF0696 T4SS secreted effectors Effector delivery system VFC0086 (CBU_1566) Coxiella Dot/Icm type IVB secretion system translocated effector [T4SS secreted effectors (VF0696) - Effector delivery system (VFC0086)] [Coxiella burnetii RSA 493] Coxiella burnetii
AFXI01000001.1_1184 100.0 7.62E-99 flgB VF0273 Flagella Motility VFC0204 (flgB) flagellar basal body rod protein FlgB [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1185 100.0 3.05E-107 flgC VF0273 Flagella Motility VFC0204 (flgC) flagellar basal-body rod protein FlgC [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1186 100.0 3.49E-172 flgD VF0273 Flagella Motility VFC0204 (flgD) flagellar basal-body rod modification protein FlgD [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1187 100.0 0.0 flgE VF0273 Flagella Motility VFC0204 (flgE) flagellar hook protein FlgE [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1188 99.598 0.0 flgF VF0273 Flagella Motility VFC0204 (flgF) flagellar basal-body rod protein FlgF [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1189 100.0 0.0 flgG VF0273 Flagella Motility VFC0204 (flgG) flagellar basal-body rod protein FlgG [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1190 100.0 7.18E-172 flgH VF0273 Flagella Motility VFC0204 (flgH) flagellar L-ring protein precursor FlgH [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1191 100.0 0.0 flgI VF0273 Flagella Motility VFC0204 (flgI) flagellar P-ring protein precursor FlgI [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1192 99.25 0.0 flgJ VF0273 Flagella Motility VFC0204 (flgJ) flagellar rod assembly protein/muramidase FlgJ [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1193 98.975 0.0 flgK VF0273 Flagella Motility VFC0204 (flgK) flagellar hook-associated protein 1 FlgK [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1194 99.772 0.0 flgL VF0273 Flagella Motility VFC0204 (flgL) flagellar hook-associated protein 3 FlgL [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1199 100.0 0.0 fliC VF0273 Flagella Motility VFC0204 (fliC) B-type flagellin [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1200 99.187 6.66E-84 fleI/flaG VF0273 Flagella Motility VFC0204 (fleI/flaG) flagellar protein FlaG [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1201 99.789 0.0 fliD VF0273 Flagella Motility VFC0204 (fliD) flagellar capping protein FliD [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1202 100.0 8.05E-89 fliS VF0273 Flagella Motility VFC0204 (fliS) flagellar protein FliS [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1203 100.0 6.91E-68 fleP/fliT VF0273 Flagella Motility VFC0204 (fleP/fliT) flagellar protein FliT [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1204 100.0 8.08E-175 fleQ VF0273 Flagella Motility VFC0204 (fleQ) transcriptional regulator FleQ [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1205 99.751 0.0 fleS VF0273 Flagella Motility VFC0204 (fleS) two-component sensor [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1206 100.0 0.0 fleR VF0273 Flagella Motility VFC0204 (fleR) two-component response regulator [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1207 100.0 7.9E-76 fliE VF0273 Flagella Motility VFC0204 (fliE) flagellar hook-basal body complex protein FliE [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1208 99.833 0.0 fliF VF0273 Flagella Motility VFC0204 (fliF) flagellar M-ring protein FliF [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1209 100.0 0.0 fliG VF0273 Flagella Motility VFC0204 (fliG) flagellar motor switch protein G [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1210 99.254 0.0 fliH VF0273 Flagella Motility VFC0204 (fliH) flagellar assembly protein H [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1211 100.0 0.0 fliI VF0273 Flagella Motility VFC0204 (fliI) flagellum-specific ATP synthase FliI [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1212 100.0 3.11E-103 fliJ VF0273 Flagella Motility VFC0204 (fliJ) flagellar protein FliJ [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1239 99.692 0.0 rhlC VF0089 Rhamnolipid Immune modulation VFC0258 Nonenzyme glycolipid (rhlC) rhamnosyltransferase 2 [Rhamnolipid (VF0089) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1258 99.373 0.0 toxA VF0086 ExoA Exotoxin VFC0235 Secreted by type II secretion pathway; transported to the endoplasmic reticulum (ER) via a coat protein COPI-dependent retrograde pathway dependent on a KDEL motif (toxA) exotoxin A precursor [ExoA (VF0086) - Exotoxin (VFC0235)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1266 68.803 2.2E-110 bfmR VF0463 BfmRS Regulation VFC0301 Two-component system: BfmS sensor kinase acts as a BfmR phosphatase to negatively regulate BfmR activity in certain conditions (bfmR) biofilm-controlling response regulator [BfmRS (VF0463) - Regulation (VFC0301)] [Acinetobacter baumannii ACICU] Acinetobacter baumannii
AFXI01000001.1_1360 100.0 0.0 aprA VF0090 Alkaline protease Exoenzyme VFC0251 Secreted by type I secretion pathway (aprA) alkaline metalloproteinase precursor [Alkaline protease (VF0090) - Exoenzyme (VFC0251)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1552 100.0 0.0 lasR VF0093 Quorum sensing Biofilm VFC0271 Consists of two separate but interrelated systems, las and rhl. The autoinducer signal molecules produced by P.aeruginosa are N-(3-oxododencanoyl) homeserine lactone(3O-C12-HSL) and N-butyryl homoserine lactone(C4-HSL); a novel, additional autoinducer has recently been demonstrated to be involved in quorum sensing. It is 2-heptyl-3-hydroxy-4-quinolone, an additional link between the Las and Rhl circuits (lasR) transcriptional regulator LasR [Quorum sensing (VF0093) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1554 100.0 1.49E-152 lasI VF0093 Quorum sensing Biofilm VFC0271 Consists of two separate but interrelated systems, las and rhl. The autoinducer signal molecules produced by P.aeruginosa are N-(3-oxododencanoyl) homeserine lactone(3O-C12-HSL) and N-butyryl homoserine lactone(C4-HSL); a novel, additional autoinducer has recently been demonstrated to be involved in quorum sensing. It is 2-heptyl-3-hydroxy-4-quinolone, an additional link between the Las and Rhl circuits (lasI) autoinducer synthesis protein LasI [Quorum sensing (VF0093) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1563 99.063 0.0 fliK VF0273 Flagella Motility VFC0204 (fliK) flagellar hook-length control protein FliK [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1564 100.0 2.92E-125 fliL VF0273 Flagella Motility VFC0204 (fliL) flagellar basal body protein FliL [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1565 100.0 0.0 fliM VF0273 Flagella Motility VFC0204 (fliM) flagellar motor switch protein FliM [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1566 100.0 1.09E-111 fliN VF0273 Flagella Motility VFC0204 (fliN) flagellar motor switch protein FliN [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1567 100.0 3.57E-103 fliO VF0273 Flagella Motility VFC0204 (fliO) flagellar protein FliO [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1568 100.0 0.0 fliP VF0273 Flagella Motility VFC0204 (fliP) flagellar biosynthetic protein FliP [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1569 100.0 1.48E-57 fliQ VF0273 Flagella Motility VFC0204 (fliQ) flagellar biosynthetic protein FliQ [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1570 99.225 1.08E-179 fliR VF0273 Flagella Motility VFC0204 (fliR) flagellar biosynthetic protein FliR [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1571 100.0 0.0 flhB VF0273 Flagella Motility VFC0204 (flhB) flagellar biosynthetic protein FlhB [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1574 100.0 0.0 flhA VF0273 Flagella Motility VFC0204 (flhA) flagellar biosynthesis protein FlhA [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1575 99.068 0.0 flhF VF0273 Flagella Motility VFC0204 (flhF) flagellar biosynthesis protein FlhF [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1576 100.0 0.0 fleN VF0273 Flagella Motility VFC0204 (fleN) flagellar synthesis regulator FleN [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1577 100.0 3.38E-177 fliA VF0273 Flagella Motility VFC0204 (fliA) flagellar biosynthesis sigma factor FliA [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1578 100.0 5.08E-90 cheY VF0273 Flagella Motility VFC0204 (cheY) chemotaxis protein CheY [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1579 100.0 0.0 cheZ VF0273 Flagella Motility VFC0204 (cheZ) protein phosphatase CheZ [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1580 99.469 0.0 PA1458 VF0273 Flagella Motility VFC0204 (PA1458) two-component sensor [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1581 99.728 0.0 PA1459 VF0273 Flagella Motility VFC0204 (PA1459) chemotaxis-specific methylesterase [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1582 100.0 9.14E-176 motC VF0273 Flagella Motility VFC0204 (motC) flagellar motor protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1583 100.0 0.0 motD VF0273 Flagella Motility VFC0204 (motD) flagellar motor protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1586 100.0 2.34E-115 PA1464 VF0273 Flagella Motility VFC0204 (PA1464) purine-binding chemotaxis protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1634 99.762 0.0 vgrG VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (vgrG) type VI secretion system tip protein VgrG [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1635 100.0 1.69E-130 hcpA VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (hcpA) Hcp family type VI secretion system effector [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1784 100.0 0.0 tssA VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssA) type VI secretion system protein TssA [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1785 99.405 1.22E-118 tssB VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssB) type VI secretion system contractile sheath small subunit [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1786 100.0 0.0 tssC VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssC) type VI secretion system contractile sheath large subunit [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1787 100.0 3.01E-97 tssE VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssE) type VI secretion system baseplate subunit TssE [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1788 100.0 0.0 tssF VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssF) type VI secretion system baseplate subunit TssF [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1789 99.104 0.0 tssG VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssG) type VI secretion system baseplate subunit TssG [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1790 99.429 0.0 tssH VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssH) type VI secretion system ATPase TssH [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1791 99.602 0.0 PA1663 VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (PA1663) transcriptional regulator [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1792 100.0 2.58E-30 PA1664 VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (PA1664) hypothetical protein [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1793 99.496 0.0 PA1665 VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (PA1665) hypothetical protein [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1794 99.405 4.51E-118 tssJ VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssJ) type VI secretion system lipoprotein TssJ [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1795 99.774 0.0 tssK VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssK) type VI secretion system baseplate subunit TssK [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1796 100.0 0.0 icmH/tssL VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (icmH/tssL) type IVB secretion system protein IcmH/DotU [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1797 99.66 0.0 tssM VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssM) type VI secretion system membrane subunit TssM [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1798 100.0 7.49E-176 stp1 VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (stp1) serine/threonine phosphoprotein phosphatase Stp1 [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1799 99.696 0.0 stk1 VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (stk1) serine-threonine kinase Stk1 [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1819 99.713 0.0 pscU VF0083 TTSS Effector delivery system VFC0086 (pscU) type III secretion system protein PscU [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1820 99.618 0.0 pscT VF0083 TTSS Effector delivery system VFC0086 (pscT) type III secretion system protein PscT [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1821 100.0 1.14E-57 pscS VF0083 TTSS Effector delivery system VFC0086 (pscS) type III secretion system protein PscS [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1822 100.0 5.21E-158 pscR VF0083 TTSS Effector delivery system VFC0086 (pscR) type III secretion system protein PscR [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1823 99.029 0.0 pscQ VF0083 TTSS Effector delivery system VFC0086 (pscQ) type III secretion system protein PscQ [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1824 98.485 3.95E-89 pscP VF0083 TTSS Effector delivery system VFC0086 (pscP) type III secretion system protein PscP [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1825 99.367 1.86E-103 pscO VF0083 TTSS Effector delivery system VFC0086 (pscO) type III secretion system protein PscO [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1826 99.318 0.0 pscN VF0083 TTSS Effector delivery system VFC0086 (pscN) type III secretion system ATPase PscN [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1827 100.0 0.0 popN VF0083 TTSS Effector delivery system VFC0086 (popN) type III secretion system outer membrane protein PopN [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1828 100.0 1.02E-63 pcr1 VF0083 TTSS Effector delivery system VFC0086 (pcr1) type III secretion system protein Pcr1 [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1829 99.187 6.22E-85 pcr2 VF0083 TTSS Effector delivery system VFC0086 (pcr2) type III secretion system protein Pcr2 [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1830 100.0 6.7E-84 pcr3 VF0083 TTSS Effector delivery system VFC0086 (pcr3) type III secretion system protein Pcr3 [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1831 99.083 2.06E-69 pcr4 VF0083 TTSS Effector delivery system VFC0086 (pcr4) type III secretion system protein Pcr4 [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1832 100.0 0.0 pcrD VF0083 TTSS Effector delivery system VFC0086 (pcrD) type III secretion system protein PcrD [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1833 100.0 6.66E-103 pcrR VF0083 TTSS Effector delivery system VFC0086 (pcrR) type III secretion system regulatory protein PcrR [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1834 100.0 3.09E-65 pcrG VF0083 TTSS Effector delivery system VFC0086 (pcrG) type III secretion system cytoplasmic regulator PcrG [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1835 99.66 0.0 pcrV VF0083 TTSS Effector delivery system VFC0086 (pcrV) type III secretion system hydrophilic translocator, needle tip protein PcrV [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1836 98.81 7.95E-119 pcrH VF0083 TTSS Effector delivery system VFC0086 (pcrH) type III secretion system regulatory protein PcrH [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1837 99.744 0.0 popB VF0083 TTSS Effector delivery system VFC0086 (popB) type III secretion system hydrophobic translocator, pore protein PopB [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1838 100.0 0.0 popD VF0083 TTSS Effector delivery system VFC0086 (popD) type III secretion system hydrophobic translocator, pore protein PopD [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1839 99.31 2.2E-102 exsC VF0083 TTSS Effector delivery system VFC0086 (exsC) type III secretion system regulatory protein ExsC [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1840 100.0 4.88E-54 exsE VF0083 TTSS Effector delivery system VFC0086 (exsE) type III secretion system regulatory protein ExsE [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1841 100.0 8.06E-97 exsB VF0083 TTSS Effector delivery system VFC0086 (exsB) type III secretion system pilotin ExsB [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1842 100.0 0.0 exsA VF0083 TTSS Effector delivery system VFC0086 (exsA) type III secretion system regulatory protein ExsA [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1843 100.0 0.0 exsD VF0083 TTSS Effector delivery system VFC0086 (exsD) type III secretion system regulatory protein ExsD [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1844 99.286 1.56E-92 pscB VF0083 TTSS Effector delivery system VFC0086 (pscB) type III secretion system protein PscB [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1845 99.833 0.0 pscC VF0083 TTSS Effector delivery system VFC0086 (pscC) type III secretion system secretin PscC [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1846 99.769 0.0 pscD VF0083 TTSS Effector delivery system VFC0086 (pscD) type III secretion system basal body protein PscD [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1847 97.015 1.96E-40 pscE VF0083 TTSS Effector delivery system VFC0086 (pscE) type III secretion system cochaperone PscE for PscG [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1848 100.0 3.43E-58 pscF VF0083 TTSS Effector delivery system VFC0086 (pscF) type III secretion system needle filament protein PscF [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1849 100.0 3.12E-80 pscG VF0083 TTSS Effector delivery system VFC0086 (pscG) type III secretion system chaperone PscG for PscF [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1850 97.902 1.28E-96 pscH VF0083 TTSS Effector delivery system VFC0086 (pscH) type III secretion system protein PscH [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1851 99.107 9.39E-78 pscI VF0083 TTSS Effector delivery system VFC0086 (pscI) type III secretion system inner rod protein PscI [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1852 99.59 3.84E-178 pscJ VF0083 TTSS Effector delivery system VFC0086 (pscJ) type III secretion system inner MS ring protein [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1853 98.558 8.74E-146 pscK VF0083 TTSS Effector delivery system VFC0086 (pscK) type III secretion system protein PscK [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1854 100.0 1.85E-151 pscL VF0083 TTSS Effector delivery system VFC0086 (pscL) type III secretion systemt protein PscL [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1933 62.827 8.71E-91 clpP VF0074 ClpP Stress survival VFC0282 21.6 kDa protein belongs to a family of proteases highly conserved in prokaryotes and eukaryotes (clpP) ATP-dependent Clp protease proteolytic subunit [ClpP (VF0074) - Stress survival (VFC0282)] [Listeria monocytogenes EGD-e] Listeria monocytogenes
AFXI01000001.1_1954 100.0 0.0 fimL VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (fimL) hypothetical protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_1978 100.0 3.28E-114 tse1 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse1) type VI secretion system effector Tse1, peptidoglycanhydrolase [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2004 62.421 0.0 xcpQ VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpQ) general secretion pathway protein D [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2007 99.522 0.0 lasA VF0088 LasA Effector delivery system VFC0086 Secreted by type II secretion pathway (lasA) LasA protease precursor [LasA (VF0088) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2039 99.383 4.4E-122 phzA2 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzA2) phenazine biosynthesis protein PhzA [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2040 100.0 3.64E-123 phzB2 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzB2) phenazine biosynthesis protein PhzB [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2041 100.0 0.0 phzC1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzC1) phenazine biosynthesis protein PhzC [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2042 100.0 6.37E-155 phzD1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzD1) phenazine biosynthesis protein PhzD, isochorismatase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2043 100.0 0.0 phzE1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzE1) phenazine biosynthesis protein PhzE [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2044 100.0 0.0 phzF1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzF1) phenazine biosynthesis protein PhzF, isomerase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2045 100.0 2.79E-159 phzG2 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzG2) pyridoxamine 5'-phosphate oxidase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2091 100.0 0.0 fapF VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapF) outer membrane secretin FapF [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2092 98.4 1.41E-178 fapE VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapE) chaprone FapE [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2093 99.558 1.13E-167 fapD VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapD) periplasmic accessory protein FapD [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2094 100.0 0.0 fapC VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapC) major amyloid subunit FapC [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2095 100.0 9.44E-132 fapB VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapB) minor amyloid subunit FapB [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2096 100.0 1.79E-111 fapA VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapA) periplasmic accessory protein FapA [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2334 99.471 0.0 exoY VF0853 TTSS secreted effectors Effector delivery system VFC0086 (exoY) type III secretion system effector ExoY, adenylate cyclase [TTSS secreted effectors (VF0853) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2454 99.695 0.0 pvcA VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvcA) paerucumarin biosynthesis protein PvcA [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2455 99.313 0.0 pvcB VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvcB) paerucumarin biosynthesis protein PvcB [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2456 99.2 0.0 pvcC VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvcC) paerucumarin biosynthesis protein PvcC [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2457 99.07 1.82E-157 pvcD VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvcD) paerucumarin biosynthesis protein PvcD [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2458 99.679 0.0 ptxR VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (ptxR) transcriptional regulator PtxR [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2554 65.242 5.41E-161 PA2359 VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (PA2359) transcriptional regulator [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2559 99.723 0.0 PA2359 VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (PA2359) transcriptional regulator [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2560 99.454 0.0 tssA VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssA) type VI secretion system protein TssA [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2561 99.449 0.0 tssM VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssM) type VI secretion system membrane subunit [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2562 98.81 1.46E-180 icmH/tssL VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (icmH/tssL) DotU/TssL family secretion system protein [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2563 99.774 0.0 tssK VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssK) type VI secretion system baseplate subunit TssK [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2564 99.367 4.05E-116 PA2364 VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (PA2364) hypothetical protein [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2565 99.448 4.73E-129 tssB VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssB) type VI secretion system contractile sheath small subunit [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2566 100.0 0.0 tssC VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssC) type VI secretion system contractile sheath large subunit [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2567 100.0 1.26E-122 hcp/tssD VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (hcp/tssD) Hcp family type VI secretion system effector [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2568 99.291 6.49E-97 tssE VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssE) type VI secretion system baseplate subunit TssE [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2569 99.497 0.0 tssF VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssF) type VI secretion system baseplate subunit TssF [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2570 100.0 0.0 tssG VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssG) type VI secretion system baseplate subunit TssG [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2571 99.764 0.0 tssH VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssH) type VI secretion system ATPase TssH [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2574 96.108 0.0 tssI VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssI) type VI secretion system tip protein VgrG [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2584 100.0 0.0 PA2383 VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (PA2383) transcriptional regulator [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2585 99.065 8.55E-74 PA2384 VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (PA2384) hypothetical protein [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2586 99.738 0.0 pvdQ VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdQ) 3-oxo-C12-homoserine lactone acylase PvdQ [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2587 99.323 0.0 pvdA VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdA) L-ornithine N5-oxygenase PvdA [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2588 100.0 4.19E-115 fpvI VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (fpvI) RNA polymerase sigma factor [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2589 99.396 0.0 fpvR VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (fpvR) protein FpvR [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2593 88.381 0.0 pvdP VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdP) tyrosinase required for pyoverdine maturation [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2594 87.751 0.0 pvdM VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdM) dipeptidase precursor [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2595 90.632 0.0 pvdN VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdN) pyoverdine biosynthesis protein PvdN [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2596 96.831 0.0 pvdO VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdO) pyoverdine biosynthesis protein PvdO [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2597 95.985 0.0 pvdF VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdF) pyoverdine synthetase F [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2612 100.0 4.21E-52 mbtH-like VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (mbtH-like) MbtH-like protein from the pyoverdine cluster [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2613 100.0 0.0 pvdH VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdH) diaminobutyrate-2-oxoglutarate aminotransferase PvdH [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2624 99.563 0.0 pvdL VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdL) peptide synthase PvdL [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2625 99.606 0.0 pvdG VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdG) pyoverdine biosynthesis protein PvdG [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2626 99.465 7.57E-140 pvdS VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdS) extracytoplasmic-function sigma-70 factor [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2627 98.71 1.31E-108 pvdY VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdY) hypothetical protein [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_2700 67.395 0.0 adeG VF0504 AdeFGH efflux pump Biofilm VFC0271 Belongs to resistance-nodulation-cell division (RND)-type efflux system; RND efflux systems, composed of an inner membrane protein (RND pump) linked by a periplasmic adaptor protein (PAP) to an outer membrane factor (OMF), can extrude a wide range of substrates often unrelated in structure; To date, three Acinetobacter drug efflux (Ade) RND systems, AdeABC, AdeFGH, and AdeIJK, have been characterized in A. baumannii (adeG) cation/multidrug efflux pump [AdeFGH efflux pump (VF0504) - Biofilm (VFC0271)] [Acinetobacter baumannii ACICU] Acinetobacter baumannii
AFXI01000001.1_2739 68.675 8.12E-36 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXI01000001.1_2742 75.776 1.68E-79 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXI01000001.1_2923 76.129 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXI01000001.1_3054 99.696 0.0 tse5/rhsP1 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse5/rhsP1) Toxin protein Tse5 [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3055 74.234 0.0 vgrG1b VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (vgrG1b) type VI secretion system substrate VgrG1b [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3058 63.725 0.0 fepA VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fepA) outer membrane receptor FepA [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AFXI01000001.1_3071 100.0 1.34E-116 tse2 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse2) type VI secretion system effector Tse2 [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3191 100.0 5.36E-134 tse4 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse4) Toxin protein Tse4 [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3426 100.0 1.8E-85 pilZ VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilZ) type 4 fimbrial biogenesis protein PilZ [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3432 65.753 1.64E-28 acpXL VF0367 LPS Immune modulation VFC0258 Brucella possesses a non-classical LPS as compared with the so-called classical LPS from enterobacteria such as Escherichia coli. B. abortus lipid A possesses a diaminoglucose backbone (rather than glucosamine), and acyl groups are longer (C28 rather than C12 and C16) and are only linked to the core by amide bounds (rather than ester and amide bonds).; In contrast to enterobacterial LPSs, Brucella LPS is several-hundred-times less active and toxic than E. coli LPS.; this is an evolutionary adaptation to an intracellular lifestyle, low endotoxic activity is shared by other intracellular pathogens such as Bartonella and Legionella. (acpXL) acyl carrier protein [LPS (VF0367) - Immune modulation (VFC0258)] [Brucella melitensis bv. 1 str. 16M] Brucella melitensis
AFXI01000001.1_3433 64.228 2.73E-106 flmH VF0473 Polar flagella Motility VFC0204 Types of bacterial movement: swimming, swarming, gliding, twitching and sliding. Only swimming and swarming are correlated with the presence of flagella. Swimming is an individual endeavour, while swarming is the movement of a group of bacteria; constitutively expressed for motility in liquid environments (flmH) short chain dehydrogenase/reductase family oxidoreductase [Polar flagella (VF0473) - Motility (VFC0204)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AFXI01000001.1_3560 99.425 3.54E-122 xcpZ VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpZ) general secretion pathway protein M [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3561 100.0 0.0 xcpY VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpY) general secretion pathway protein L [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3562 99.7 0.0 xcpX VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpX) general secretion pathway protein K [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3563 99.578 2.04E-172 xcpW VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpW) general secretion pathway protein J [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3564 100.0 2.16E-90 xcpV VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpV) general secretion pathway protein I [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3565 100.0 4.28E-121 xcpU VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpU) general secretion pathway protein H [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3566 99.296 6.6E-102 xcpT VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpT) general secretion pathway protein G [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3567 100.0 0.0 xcpS VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpS) general secretion pathway protein F [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3568 100.0 0.0 xcpR VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpR) general secretion pathway protein E [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3569 99.541 3.11E-158 xcpP VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpP) secretion protein XcpP [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3570 99.848 0.0 xcpQ VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpQ) general secretion pathway protein D [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3580 99.782 0.0 fimV VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (fimV) a polar peptidoglycan-binding protein involved in type IV pilus assembly [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3606 99.85 0.0 wbpM VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpM) nucleotide sugar epimerase/dehydratase WbpM [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3608 100.0 0.0 wbpL VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpL) glycosyltransferase WbpL [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3609 100.0 0.0 wbpK VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpK) NAD-dependent epimerase/dehydratase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3610 100.0 0.0 wbpJ VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpJ) glycosyl transferase WbpJ [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3611 100.0 0.0 wbpI VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpI) UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronate 2-epimeras [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3612 100.0 0.0 wbpH VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpH) glycosyltransferase WbpH [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3613 100.0 0.0 wbpG VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpG) LPS biosynthesis protein WbpG [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3614 100.0 0.0 hisF2 VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (hisF2) imidazole glycerol phosphate synthase subunit HisF [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3615 100.0 0.0 wzx VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wzx) O-antigen translocase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3616 100.0 0.0 wzy VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wzy) B-band O-antigen polymerase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3617 99.721 0.0 wbpE VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpE) UDP-2-acetamido-2-deoxy-3-oxo-D-glucuronate aminotransferase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3618 100.0 7.94E-143 wbpD VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpD) UDP-2-acetamido-3-amino-2, 3-dideoxy-D-glucuronate N-acetyltransferase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3619 99.682 0.0 PA3157 VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (PA3157) acetyltransferase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3620 100.0 0.0 wbpB VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpB) UDP-N-acetyl-2-amino-2-deoxy-D-glucuronate oxidase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3621 100.0 0.0 wbpA VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpA) UDP-N-acetyl-d-glucosamine 6-dehydrogenase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3622 99.713 0.0 wzz VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wzz) O-antigen chain length regulator [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3815 100.0 0.0 PA3348 VF0273 Flagella Motility VFC0204 (PA3348) chemotaxis protein methyltransferase [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3816 100.0 0.0 PA3349 VF0273 Flagella Motility VFC0204 (PA3349) chemotaxis protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3817 99.569 2.28E-170 flgA VF0273 Flagella Motility VFC0204 (flgA) flagellar basal body P-ring biosynthesis protein FlgA [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3818 100.0 2.75E-75 flgM VF0273 Flagella Motility VFC0204 (flgM) negative regulator of flagellin synthesis [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3819 99.359 3.75E-107 flgN VF0273 Flagella Motility VFC0204 (flgN) flagella synthesis protein FlgN [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3947 99.502 8.53E-151 rhlI VF0093 Quorum sensing Biofilm VFC0271 Consists of two separate but interrelated systems, las and rhl. The autoinducer signal molecules produced by P.aeruginosa are N-(3-oxododencanoyl) homeserine lactone(3O-C12-HSL) and N-butyryl homoserine lactone(C4-HSL); a novel, additional autoinducer has recently been demonstrated to be involved in quorum sensing. It is 2-heptyl-3-hydroxy-4-quinolone, an additional link between the Las and Rhl circuits (rhlI) autoinducer synthesis protein RhlL [Quorum sensing (VF0093) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3948 100.0 0.0 rhlR VF0093 Quorum sensing Biofilm VFC0271 Consists of two separate but interrelated systems, las and rhl. The autoinducer signal molecules produced by P.aeruginosa are N-(3-oxododencanoyl) homeserine lactone(3O-C12-HSL) and N-butyryl homoserine lactone(C4-HSL); a novel, additional autoinducer has recently been demonstrated to be involved in quorum sensing. It is 2-heptyl-3-hydroxy-4-quinolone, an additional link between the Las and Rhl circuits (rhlR) transcriptional regulator RhlR [Quorum sensing (VF0093) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3949 100.0 0.0 rhlB VF0089 Rhamnolipid Immune modulation VFC0258 Nonenzyme glycolipid (rhlB) rhamnosyltransferase chain B [Rhamnolipid (VF0089) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3950 99.661 0.0 rhlA VF0089 Rhamnolipid Immune modulation VFC0258 Nonenzyme glycolipid (rhlA) rhamnosyltransferase chain A [Rhamnolipid (VF0089) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3955 100.0 0.0 tse3 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse3) type VI secretion system effector Tse3, glycoside hydrolase [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3976 100.0 0.0 motY VF0273 Flagella Motility VFC0204 (motY) probable outer membrane protein precursor [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3990 100.0 0.0 algD VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algD) GDP-mannose 6-dehydrogenase AlgD [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3991 99.797 0.0 alg8 VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (alg8) alginate-c5-mannuronan-epimerase AlgG [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3992 100.0 0.0 alg44 VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (alg44) alginate biosynthesis protein Alg8 [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3993 99.789 0.0 algK VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algK) alginate biosynthesis protein Alg44 [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3994 99.592 0.0 algE VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algE) alginate biosynthetic protein AlgK precursor [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3995 100.0 0.0 algG VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algG) outer membrane protein AlgE [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3996 99.789 0.0 algX VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algX) alginate biosynthesis protein AlgX [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3997 100.0 0.0 algL VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algL) poly(beta-d-mannuronate) lyase precursor AlgL [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3998 99.423 0.0 algI VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algI) alginate o-acetyltransferase AlgI [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_3999 100.0 0.0 algJ VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algJ) alginate o-acetyltransferase AlgJ [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4000 99.537 9.82E-159 algF VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algF) alginate o-acetyltransferase AlgF [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4001 100.0 0.0 algA VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algA) phosphomannose isomerase / guanosine 5'-diphospho-D-mannose pyrophosphorylase [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4073 100.0 0.0 rpoS VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (rpoS) RNA polymerase sigma factor RpoS [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4087 66.784 3.34E-145 kdsA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (kdsA) 2-dehydro-3-deoxyphosphooctonate aldolase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AFXI01000001.1_4100 100.0 0.0 mucP VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucP) metalloprotease protease [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4174 99.598 0.0 lasB VF0087 LasB Effector delivery system VFC0086 Secreted by type II secretion pathway (lasB) elastase LasB [LasB (VF0087) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4258 99.603 0.0 pilF VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilF) type 4 fimbrial biogenesis protein PilF [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4344 100.0 0.0 exoS VF0853 TTSS secreted effectors Effector delivery system VFC0086 (exoS) type III secretion system effector ExoS, ADP ribosyltransferase activity and GTPase-activating protein activity [TTSS secreted effectors (VF0853) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4345 100.0 8.95E-83 spcS VF0083 TTSS Effector delivery system VFC0086 (spcS) chaperone for exoS [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4585 98.876 3.49E-60 mucE VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucE) small envelope protein MucE [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4712 61.328 1.16E-111 fepC VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepC) ferrienterobactin ABC transporter ATPase [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AFXI01000001.1_4763 99.701 0.0 phzM VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzM) phenazine-specific methyltransferase PhzM (adenosylmethionine dependent methyltransferase) [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4764 100.0 3.57E-122 phzA1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzA1) phenazine biosynthesis protein PhzA [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4765 100.0 2.65E-123 phzB1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzB1) phenazine biosynthesis protein PhzB [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4766 100.0 0.0 phzC1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzC1) phenazine biosynthesis protein PhzC [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4767 100.0 6.37E-155 phzD1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzD1) phenazine biosynthesis protein PhzD, isochorismatase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4768 100.0 0.0 phzE1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzE1) phenazine biosynthesis protein PhzE [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4769 100.0 0.0 phzF1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzF1) phenazine biosynthesis protein PhzF, isomerase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4770 99.533 1.28E-158 phzG1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzG1) phenazine biosynthesis protein PhzG, pyridoxamine 5'-phosphate oxidase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4771 99.005 0.0 phzS VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzS) flavin dependent hydroxylase PhzS [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4772 99.275 0.0 PA4218 VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (PA4218) transporter [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4773 100.0 0.0 PA4219 VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (PA4219) hypothetical protein [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4774 100.0 3.21E-56 PA4220 VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (PA4220) hypothetical protein [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4775 100.0 0.0 fptA VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (fptA) Fe(III)-pyochelin receptor precursor [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4776 100.0 0.0 pchI VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchI) ABC transporter ATP-binding protein [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4777 99.474 0.0 pchH VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchH) ABC transporter ATP-binding protein [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4778 99.427 0.0 pchG VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchG) pyochelin biosynthetic protein PchG [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4779 99.281 0.0 pchF VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchF) pyochelin synthetase PchF [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4780 99.583 0.0 pchE VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchE) dihydroaeruginoic acid synthetase PchE [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4781 100.0 0.0 pchR VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchR) transcriptional regulator PchR [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4782 99.269 0.0 pchD VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchD) pyochelin biosynthesis protein PchD [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4783 99.602 5.52E-177 pchC VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchC) pyochelin biosynthetic protein PchC [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4784 99.01 1.92E-70 pchB VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchB) salicylate biosynthesis protein PchB [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4785 100.0 0.0 pchA VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchA) salicylate biosynthesis isochorismate synthase PchA [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_4790 69.102 0.0 katA VF0454 KatA Stress survival VFC0282 (katA) catalase [KatA (VF0454) - Stress survival (VFC0282)] [Neisseria meningitidis MC58] Neisseria meningitidis
AFXI01000001.1_4819 80.101 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AFXI01000001.1_4831 80.101 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AFXI01000001.1_4922 66.492 3.06E-99 sodB VF0169 SodB Stress survival VFC0282 (sodB) superoxide dismutase [SodB (VF0169) - Stress survival (VFC0282)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXI01000001.1_4942 76.908 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXI01000001.1_5003 100.0 0.0 algW VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algW) AlgW protein [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5020 100.0 0.0 rpoN VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (rpoN) RNA polymerase factor sigma-54 [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5075 60.971 0.0 ibeC VF0237 Ibes Invasion VFC0083 IbeA is unique to E. coli K1. The ibeB and ibeC are found to have K12 homologues p77211 and yijP respectively. (ibeC) phosphoethanolamine transferase CptA [Ibes (VF0237) - Invasion (VFC0083)] [Escherichia coli O45:K1:H7 str. S88] Escherichia coli (NMEC)
AFXI01000001.1_5083 99.293 0.0 pilB VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilB) type 4 fimbrial biogenesis protein PilB [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5085 98.966 0.0 xcpA/pilD VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (xcpA/pilD) type 4 prepilin peptidase PilD [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5219 99.811 0.0 pilS VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilS) two-component sensor PilS [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5220 100.0 0.0 pilR VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilR) two-component response regulator PilR [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5222 99.408 6.74E-120 fimT VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (fimT) type 4 fimbrial biogenesis protein FimT [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5223 100.0 1.77E-124 fimU VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (fimU) type 4 fimbrial biogenesis protein FimU [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5224 100.0 5.52E-139 pilV VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilV) type IV pilus biogenesis protein PilV [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5225 100.0 0.0 pilW VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilW) type IV fimbrial biogenesis protein PilW [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5226 99.487 2.2E-143 pilX VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilX) type 4 fimbrial biogenesis protein PilX [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5227 92.281 0.0 pilY1 VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilY1) type 4 fimbrial biogenesis protein PilY1 [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5228 100.0 1.69E-84 pilY2 VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilY2) type 4 fimbrial biogenesis protein PilY2 [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5229 99.291 1.27E-101 pilE VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilE) type 4 fimbrial biogenesis protein PilE [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5507 70.909 0.0 mgtB VF0106 MgtB Nutritional/Metabolic factor VFC0272 A magnesium transporter (mgtB) Mg2+ transport protein [MgtB (VF0106) - Nutritional/Metabolic factor (VFC0272)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AFXI01000001.1_5552 61.728 0.0 ureB VF0050 Urease Stress survival VFC0282 (ureB) urease beta subunit UreB, urea amidohydrolase [Urease (VF0050) - Stress survival (VFC0282)] [Helicobacter pylori 26695] Helicobacter pylori
AFXI01000001.1_5577 67.347 4.7E-102 ureG VF0050 Urease Stress survival VFC0282 (ureG) urease accessory protein (ureG) [Urease (VF0050) - Stress survival (VFC0282)] [Helicobacter pylori 26695] Helicobacter pylori
AFXI01000001.1_5637 100.0 0.0 motB VF0273 Flagella Motility VFC0204 (motB) flagellar motor protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5638 100.0 0.0 motA VF0273 Flagella Motility VFC0204 (motA) flagellar motor protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5643 100.0 0.0 fimX VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (fimX) protein FimX [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5674 100.0 0.0 waaA VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (waaA) lipopolysaccharide core biosynthesis protein WaaP [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5695 99.627 0.0 waaP VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (waaP) UDP-glucose:(heptosyl) LPS alpha 1,3-glucosyltransferase WaaG [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5696 99.464 0.0 waaG VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (waaG) B-band O-antigen polymerase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5697 99.437 0.0 waaC VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (waaC) 3-deoxy-D-manno-octulosonic-acid (KDO) transferase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5698 99.71 0.0 waaF VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (waaF) heptosyltransferase I [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5726 99.44 0.0 pilQ VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilQ) type 4 fimbrial biogenesis protein PilQ [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5727 100.0 3.78E-128 pilP VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilP) type IV pilus biogenesis protein PilP [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5728 100.0 2.96E-154 pilO VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilO) type IV pilus inner membrane platform protein PilO [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5729 100.0 7.38E-146 pilN VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilN) type IV pilus inner membrane platform protein PilN [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5730 100.0 0.0 pilM VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilM) type IV pilus inner membrane platform protein PilM [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5774 94.497 0.0 pldB/tle5b VF1350 HSI-3 T6SS secreted effectors Effector delivery system VFC0086 (pldB/tle5b) phospholipase D [HSI-3 T6SS secreted effectors (VF1350) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5862 62.284 1.25E-131 wbtL VF0542 LPS Immune modulation VFC0258 The structure of Francisella spp. lipid A is unique in that it is modified by various carbohydrates that greatly reduce TLR4 activation and allow for immune evasion (wbtL) glucose-1-phosphate thymidylyltransferase [LPS (VF0542) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AFXI01000001.1_5957 100.0 1.13E-117 algQ VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algQ) Alginate regulatory protein AlgQ [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5963 100.0 0.0 algR VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algR) alginate biosynthesis regulatory protein AlgR [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5964 100.0 0.0 algZ VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algZ) sigma factor AlgU [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_5969 100.0 1.69E-130 hcpA VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (hcpA) Hcp family type VI secretion system effector [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_6024 99.424 0.0 algC VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algC) phosphomannomutase AlgC [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_6034 100.0 0.0 crc VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (crc) catabolite repression control protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXI01000001.1_6187 100.0 0.0 algB VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algB) two-component response regulator AlgB [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa