Basic Information
Accession number
GCA_000223945.2
Release date
2011-08-17
Organism
Pseudomonas aeruginosa 19BR
Species name
Pseudomonas aeruginosa

Assembly level
Complete Genome
Assembly name
ASM22394v2
Assembly submitter
IBIS, Universite Laval
Assembly Type
haploid
Genome size
6.7 Mb
GC percent
66.0
Contig count
1

Collection date
-
Sample location
-
Host
-
Isolation source
-
Isolate type
-
Strain
19BR
Isolate
-
ARG List
ORF_ID Pass_Bitscore Best_Hit_Bitscore Best_Hit_ARO Best_Identities ARO Model_type SNPs_in_Best_Hit_ARO Other_SNPs Drug class Resistance mechanism AMR gene family Description
AFXJ01000001.1_166 # 182238 # 183341 650.0 728.783 TriA 100.0 ARO:3003679 protein homolog model disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump TriA is a membrane protein that is fused to TriB and both are required for the triclosan efflux pump function of TriABC-OpmH in P. aeruginosa.
AFXJ01000001.1_167 # 183338 # 184408 600.0 696.427 TriB 99.72 ARO:3003680 protein homolog model disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump TriB is a membrane protein that is fused to TriA and both are required for the triclosan efflux pump function of TriABC-OpmH in P. aeruginosa.
AFXJ01000001.1_168 # 184405 # 187452 1900.0 2052.71 TriC 100.0 ARO:3003681 protein homolog model disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump TriC is a resistance nodulation cell division (RND) transporter that is a part of TriABC-OpmH, a triclosan-specific efflux protein.
AFXJ01000001.1_434 # 470739 # 471890 650.0 768.074 MexA 100.0 ARO:3000377 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexA is the membrane fusion protein of the MexAB-OprM multidrug efflux complex.
AFXJ01000001.1_435 # 471906 # 475046 1950.0 2120.12 MexB 99.9 ARO:3000378 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexB is the inner membrane multidrug exporter of the efflux complex MexAB-OprM.
AFXJ01000001.1_436 # 475048 # 476505 850.0 961.444 OprM 99.79 ARO:3000379 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; aminoglycoside antibiotic; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OprM is an outer membrane factor protein found in Pseudomonas aeruginosa and Burkholderia vietnamiensis. It is part of the MexAB-OprM, MexVW-OprM, MexXY-OprM and the AmrAB-OprM complex.
AFXJ01000001.1_723 # 784376 # 785014 400.0 439.499 Pseudomonas aeruginosa catB7 99.06 ARO:3002679 protein homolog model phenicol antibiotic antibiotic inactivation chloramphenicol acetyltransferase (CAT) catB7 is a chromosome-encoded variant of the cat gene found in Pseudomonas aeruginosa.
AFXJ01000001.1_770 # 821923 # 822744 50.0 147.902 vanW gene in vanG cluster 31.82 ARO:3002965 protein homolog model glycopeptide antibiotic antibiotic target alteration vanW; glycopeptide resistance gene cluster Also known as vanWG, is a vanW variant found in the vanG gene cluster.
AFXJ01000001.1_925 # 994562 # 994747 100.0 122.865 rsmA 100.0 ARO:3005069 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump rsmA is a gene that regulates virulence of Pseudomonas aeruginosa. However, its negative effect on MexEF-OprN overexpression has been noted to confer resistance to various antibiotics. It's Escherichia coli homolog is csrA.
AFXJ01000001.1_1155 # 1225207 # 1225614 200.0 273.478 FosA 100.0 ARO:3000149 protein homolog model phosphonic acid antibiotic antibiotic inactivation fosfomycin thiol transferase An enzyme that confers resistance to fosfomycin in Serratia marcescens by breaking the epoxide ring of the molecule. It depends on the cofactors Manganese (II) and Potassium and uses Glutathione (GSH) as the nucleophilic molecule. In Pseudomonas aeruginosa, FosA catalyzes the conjugation of glutathione to carbon-1 of fosfomycin, rendering it ineffective as an antibacterial drug.
AFXJ01000001.1_1391 # 1475836 # 1477269 900.0 942.954 PmpM 100.0 ARO:3004077 protein homolog model fluoroquinolone antibiotic; aminoglycoside antibiotic; disinfecting agents and antiseptics antibiotic efflux multidrug and toxic compound extrusion (MATE) transporter PmpM is a multidrug efflux pump belonging to the MATE family of Pseudomonas aeruginosa. PmpM is an H+ drug antiporter and is the first reported case of an H+ coupled efflux pump in the MATE family. PmpM confers resistance to fluoroquinolones, fradiomycin, benzalkonium chloride, chlorhexidine gluconate, ethidium bromide, tetraphenylphosphonium chloride (TPPCl), and rhodamine 6G.
AFXJ01000001.1_1475 # 1576147 # 1577304 650.0 734.561 mexM 98.44 ARO:3003704 protein homolog model phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump mexM is the membrane fusion protein of the MexMN-OprM multidrug efflux complex.
AFXJ01000001.1_1476 # 1577301 # 1580411 1900.0 2059.26 mexN 99.71 ARO:3003705 protein homolog model phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexN is the inner membrane transporter of the MexMN-OprM multidrug efflux complex.
AFXJ01000001.1_1847 # 1964137 # 1965423 800.0 859.751 ParS 99.77 ARO:3005067 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; aminoglycoside antibiotic; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic efflux; reduced permeability to antibiotic resistance-nodulation-cell division (RND) antibiotic efflux pump; Outer Membrane Porin (Opr) ParS is the sensor component of the two-component ParRS system. Alongside its counterpart ParR, it confers resistance to polycationic antibiotics though regulation of efflux pumps and porins.
AFXJ01000001.1_1848 # 1965424 # 1966131 400.0 472.626 ParR 100.0 ARO:3005068 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; aminoglycoside antibiotic; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic efflux; reduced permeability to antibiotic resistance-nodulation-cell division (RND) antibiotic efflux pump; Outer Membrane Porin (Opr) ParR is a component of the two-component sensor ParRS. Alongside its counterpart ParS, it confers resistance to polycationic antibiotics through the regulation of efflux components and porins.
AFXJ01000001.1_2078 # 2222963 # 2226100 1800.0 1920.98 mexY 93.59 ARO:3003033 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexY is the RND-type membrane protein of the efflux complex MexXY-OprM.
AFXJ01000001.1_2393 # 2566119 # 2566589 200.0 314.694 Pseudomonas aeruginosa soxR 100.0 ARO:3004107 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump SoxR is a redox-sensitive transcriptional activator that induces expression of a small regulon that includes the RND efflux pump-encoding operon mexGHI-opmD. SoxR was shown to be activated by pyocyanin.
AFXJ01000001.1_2618 # 2868892 # 2870136 750.0 832.402 MexE 99.52 ARO:3000803 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexE is the membrane fusion protein of the MexEF-OprN multidrug efflux complex.
AFXJ01000001.1_2619 # 2870158 # 2873346 2110.0 2147.09 MexF 100.0 ARO:3000804 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexF is the multidrug inner membrane transporter of the MexEF-OprN complex. mexF corresponds to 2 loci in Pseudomonas aeruginosa PAO1 (gene name: mexF/mexB) and 4 loci in Pseudomonas aeruginosa LESB58 (gene name: mexD/mexB).
AFXJ01000001.1_2620 # 2873343 # 2874761 800.0 920.998 OprN 100.0 ARO:3000805 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OprN is the outer membrane channel component of the MexEF-OprN multidrug efflux complex.
AFXJ01000001.1_2659 # 2908908 # 2909738 450.0 567.385 SPM-1 100.0 ARO:3003793 protein homolog model carbapenem antibiotic inactivation SPM beta-lactamase Plasmid-mediated SPM metallo-beta-lactamase conferring resistance to carbapenem. Originally isolated from Pseudomonas aeruginosa. Responsible for carbapenem-resistant Pseudomonas aeruginosa (CRPA) outbreaks in Brazil.
AFXJ01000001.1_2698 # 2950716 # 2952212 850.0 1004.2 OpmB 100.0 ARO:3004072 protein homolog model macrolide antibiotic; monobactam; tetracycline antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OpmB is an outer membrane efflux protein in Pseudomonas aeruginosa that shows functional cooperation with MuxABC, to form the efflux pump system MuxABC-OpmB.
AFXJ01000001.1_2699 # 2952209 # 2955319 1900.0 2076.6 MuxC 99.9 ARO:3004075 protein homolog model macrolide antibiotic; monobactam; tetracycline antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MuxC is one of the two necessary RND components of the MuxABC-OpmB efflux pumps system in Pseudomonas aeruginosa.
AFXJ01000001.1_2700 # 2955316 # 2958447 1900.0 2073.52 MuxB 100.0 ARO:3004074 protein homolog model macrolide antibiotic; monobactam; tetracycline antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MuxB is one of the two necessary RND components in the Pseudomonas aeruginosa efflux pump system MuxABC-OpmB.
AFXJ01000001.1_2701 # 2958444 # 2959724 800.0 845.114 MuxA 99.53 ARO:3004073 protein homolog model macrolide antibiotic; monobactam; tetracycline antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MuxA is a membrane fusion protein component of the efflux pump system MuxABC-OpmB in Pseudomonas aeruginosa.
AFXJ01000001.1_2897 # 3149740 # 3150915 700.0 728.013 cmx 100.0 ARO:3002703 protein homolog model phenicol antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump cmx is a plasmid or transposon-encoded chloramphenicol exporter that is found in Corynebacterium striatum and Pseudomonas aeruginosa.
AFXJ01000001.1_2899 # 3152050 # 3152889 500.0 553.132 sul1 100.0 ARO:3000410 protein homolog model sulfonamide antibiotic antibiotic target replacement sulfonamide resistant sul Sul1 is a sulfonamide resistant dihydropteroate synthase of Gram-negative bacteria. It is linked to other resistance genes of class 1 integrons.
AFXJ01000001.1_2904 # 3157893 # 3158636 450.0 506.523 rmtD 100.0 ARO:3002667 protein homolog model aminoglycoside antibiotic antibiotic target alteration 16S rRNA methyltransferase (G1405) RmtD is a 16S rRNA methyltransferase found in Pseudomonas aeruginosa which methylates G1405 of the 16S rRNA. It confers high level resistance to many aminoglycosides.
AFXJ01000001.1_2907 # 3160866 # 3161747 500.0 542.732 sul1 100.0 ARO:3000410 protein homolog model sulfonamide antibiotic antibiotic target replacement sulfonamide resistant sul Sul1 is a sulfonamide resistant dihydropteroate synthase of Gram-negative bacteria. It is linked to other resistance genes of class 1 integrons.
AFXJ01000001.1_2919 # 3170939 # 3171739 500.0 544.658 OXA-56 100.0 ARO:3001795 protein homolog model carbapenem; cephalosporin; penam antibiotic inactivation OXA beta-lactamase OXA-56 is a beta-lactamase found in Pseudomonas aeruginosa.
AFXJ01000001.1_2920 # 3171801 # 3172598 450.0 523.857 aadA7 98.87 ARO:3002607 protein homolog model aminoglycoside antibiotic antibiotic inactivation ANT(3'') aadA7 is an integron-encoded aminoglycoside nucleotidyltransferase gene in V. fluvialis, P. aeruginosa, E. coli, V. cholerae and S. enterica.
AFXJ01000001.1_3519 # 3791815 # 3792486 400.0 453.366 cprR 100.0 ARO:3005063 protein homolog model peptide antibiotic antibiotic target alteration; antibiotic efflux pmr phosphoethanolamine transferase cprR is one part of a two-component regulatory system. It with its counterpart cprS induce the Arn operon to confer resistance to peptide antibiotics.
AFXJ01000001.1_3520 # 3792483 # 3793778 800.0 871.307 cprS 100.0 ARO:3005064 protein homolog model peptide antibiotic antibiotic target alteration; antibiotic efflux pmr phosphoethanolamine transferase cprS is part of a two-component regulatory system that, with its counterpart cprR, induces the Arn operon in the presence of cationic peptides to confer resistance.
AFXJ01000001.1_3644 # 3935573 # 3936250 400.0 441.039 Pseudomonas aeruginosa CpxR 100.0 ARO:3004054 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; aminoglycoside antibiotic; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CpxR is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR.
AFXJ01000001.1_3949 # 4259428 # 4260903 850.0 947.192 opmE 99.39 ARO:3003700 protein homolog model macrolide antibiotic; carbapenem; tetracycline antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump opmE is an outer membrane factor protein that is part of the multidrug efflux pump MexPQ-OpmE.
AFXJ01000001.1_3950 # 4260900 # 4264061 1900.0 2075.06 mexQ 99.43 ARO:3003699 protein homolog model macrolide antibiotic; carbapenem; tetracycline antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexQ is the inner membrane transporter of the multidrug efflux pump MexPQ-OpmE.
AFXJ01000001.1_3951 # 4264058 # 4265215 650.0 756.133 mexP 99.74 ARO:3003698 protein homolog model macrolide antibiotic; carbapenem; tetracycline antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexP is the membrane fusion protein of the MexPQ-OpmE multidrug efflux complex.
AFXJ01000001.1_3982 # 4303433 # 4305421 1200.0 1345.49 arnA 99.7 ARO:3002985 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase arnA modifies lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. arnA is found in E. coli and P. aeruginosa.
AFXJ01000001.1_3984 # 4306302 # 4307951 400.0 445.277 ArnT 43.66 ARO:3005053 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase ArnT is involved in Cell Wall Biosynthesis, specifically 4-amino-4-deoxy-L-arabinose (Ara4N). It confers resistance to peptide antibiotics.
AFXJ01000001.1_4105 # 4437413 # 4440490 1900.0 2062.73 MexK 100.0 ARO:3003693 protein homolog model macrolide antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexK is the inner membrane resistance-nodulation-cell division (RND) transporter in the MexJK multidrug efflux protein.
AFXJ01000001.1_4106 # 4440495 # 4441598 690.0 723.391 MexJ 99.73 ARO:3003692 protein homolog model macrolide antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexJ is the membrane fusion protein of the MexJK multidrug efflux protein.
AFXJ01000001.1_4107 # 4441694 # 4442332 400.0 428.713 MexL 100.0 ARO:3003710 protein homolog model macrolide antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexL is a specific repressor of mexJK transcription and autoregulates its own expression.
AFXJ01000001.1_4253 # 4600224 # 4600562 200.0 223.787 YajC 100.0 ARO:3005040 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; oxazolidinone antibiotic; glycopeptide antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump YajC interacts with the AcrAB-TolC efflux pump in a way that in uncharacterized but is shown to grant increased fitness in the presence of linezolid, rifampicin, and vancomycin.
AFXJ01000001.1_4596 # 4947419 # 4948612 750.0 806.979 PDC-5 100.0 ARO:3002502 protein homolog model monobactam; carbapenem; cephalosporin; cephamycin; penam antibiotic inactivation PDC beta-lactamase PDC-5 is a extended-spectrum beta-lactamase found in Pseudomonas aeruginosa.
AFXJ01000001.1_4605 # 4960968 # 4961774 500.0 528.094 APH(3')-IIb 99.25 ARO:3002645 protein homolog model aminoglycoside antibiotic antibiotic inactivation APH(3') APH(3')-IIb is a chromosomal-encoded aminoglycoside phosphotransferase in P. aeruginosa.
AFXJ01000001.1_4622 # 4978479 # 4979687 500.0 755.747 bcr-1 100.0 ARO:3003801 protein homolog model bicyclomycin-like antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Transmembrane protein which expels bicyclomycin from the cell, leading to bicyclomycin resistance. Identified in Pseudomonas aeruginosa strains responsible for outbreaks in Brazil, often appearing with blaSPM-1, another bicyclomycin resistance gene.
AFXJ01000001.1_4691 # 5059254 # 5059700 260.0 291.197 MexG 100.0 ARO:3000806 protein homolog model fluoroquinolone antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexG is a membrane protein required for MexGHI-OpmD efflux activity.
AFXJ01000001.1_4692 # 5059708 # 5060820 650.0 730.709 MexH 100.0 ARO:3000807 protein homolog model fluoroquinolone antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexH is the membrane fusion protein of the efflux complex MexGHI-OpmD.
AFXJ01000001.1_4693 # 5060833 # 5063922 1900.0 2057.72 MexI 99.9 ARO:3000808 protein homolog model fluoroquinolone antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexI is the inner membrane transporter of the efflux complex MexGHI-OpmD.
AFXJ01000001.1_4694 # 5063919 # 5065382 920.0 948.732 OpmD 99.79 ARO:3000809 protein homolog model fluoroquinolone antibiotic; tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OpmD is the outer membrane channel protein of the efflux complex MexGHI-OpmD.
AFXJ01000001.1_4862 # 5256924 # 5258054 650.0 743.036 MexV 99.2 ARO:3003030 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; tetracycline antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexV is the membrane fusion protein of the MexVW-OprM multidrug efflux complex.
AFXJ01000001.1_4863 # 5258105 # 5261161 1900.0 2047.32 MexW 99.8 ARO:3003031 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; tetracycline antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexW is the RND-type membrane protein of the efflux complex MexVW-OprM.
AFXJ01000001.1_5203 # 5609392 # 5610831 850.0 932.169 OprJ 99.16 ARO:3000802 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; cephalosporin; penam; tetracycline antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OprJ is the outer membrane channel component of the MexCD-OprJ multidrug efflux complex.
AFXJ01000001.1_5204 # 5610837 # 5613968 1800.0 1977.6 MexD 95.43 ARO:3000801 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; cephalosporin; penam; tetracycline antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexD is the multidrug inner membrane transporter of the MexCD-OprJ complex.
AFXJ01000001.1_5205 # 5613996 # 5615060 600.0 690.263 MexC 100.0 ARO:3000800 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; cephalosporin; penam; tetracycline antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexC is the membrane fusion protein of the MexCD-OprJ multidrug efflux complex.
AFXJ01000001.1_5391 # 5823012 # 5824445 900.0 946.806 basS 100.0 ARO:3003583 protein homolog model peptide antibiotic antibiotic target alteration; antibiotic efflux pmr phosphoethanolamine transferase Histidine protein kinase sensor Lipid A modification gene; part of a two-component system involved in polymyxin resistance that senses high extracellular Fe(2+).
AFXJ01000001.1_5593 # 6040879 # 6042327 850.0 941.028 OpmH 97.1 ARO:3003682 protein homolog model disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump OpmH is an outer membrane efflux protein required for triclosan-specific efflux pump function.
AFXJ01000001.1_5610 # 6062881 # 6063213 170.0 206.068 Pseudomonas aeruginosa emrE 99.09 ARO:3004038 protein homolog model aminoglycoside antibiotic antibiotic efflux small multidrug resistance (SMR) antibiotic efflux pump EmrE is a small multidrug transporter that functions as a homodimer and that couples the efflux of small polyaromatic cations from the cell with the import of protons down an electrochemical gradient. Confers resistance to tetraphenylphosphonium, methyl viologen, gentamicin, kanamycin, and neomycin.
AFXJ01000001.1_6153 # 6672561 # 6673349 500.0 538.11 OXA-494 100.0 ARO:3005727 protein homolog model carbapenem; cephalosporin; penam antibiotic inactivation OXA beta-lactamase OXA-494 is a OXA beta-lactamase.
AFXJ01000001.1_3607 # 3897415 # 3900186 1500.0 1850.1 Pseudomonas aeruginosa gyrA conferring resistance to fluoroquinolones 99.78 ARO:3003684 protein variant model T83I, D87N fluoroquinolone antibiotic antibiotic target alteration fluoroquinolone resistant gyrA Point mutation of Pseudomonas aeruginosa gyrA resulted in the lowered affinity between fluoroquinolones and gyrA. Thus, conferring resistance.
AFXJ01000001.1_5390 # 5822323 # 5822988 375.0 428.713 basR 99.55 ARO:3003582 protein variant model L71R peptide antibiotic antibiotic target alteration; antibiotic efflux pmr phosphoethanolamine transferase Response regulator for Lipid A modification genes; two-component system involved in polymyxin resistance that senses high extracellular Fe(2+).
AFXJ01000001.1_433 # 470021 # 470464 270.0 297.745 MexR 100.0 ARO:3000506 protein overexpression model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic target alteration; antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexR is the repressor of the MexRAB-OprM operon. Mutant forms of mexR result in up-regulation of efflux pump system MexAB-OprM.
AFXJ01000001.1_2608 # 2857903 # 2858922 660.0 689.493 MexS 100.0 ARO:3000813 protein overexpression model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexS is a suppressor of MexT, which is an activator of the multidrug pump MexEF-OprN. Mutations in MexS lead to multidrug resistance.
AFXJ01000001.1_2609 # 2859143 # 2860057 500.0 530.406 MexT 98.88 ARO:3000814 protein overexpression model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MexT is a LysR-type transcriptional activator that positively regulates the expression of MexEF-OprN, OprD, and MexS.
AFXJ01000001.1_4003 # 4327923 # 4328561 375.0 436.032 nalD 100.0 ARO:3000819 protein overexpression model macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump NalD is a repressor of MexAB-OprM. Mutations lead to multidrug resistance and MexAB-OprM overexpression.
AFXJ01000001.1_4149 # 4487734 # 4488375 400.0 427.557 nalC 99.06 ARO:3000818 protein overexpression model S209R, G71E macrolide antibiotic; fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; cephamycin; penam; tetracycline antibiotic; peptide antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; sulfonamide antibiotic; phenicol antibiotic; penem antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump NalC is a repressor of PA3720-PA3719, which are positive regulators of MexAB-OprM. Thus, nalC mutants confer multidrug resistance.
AFXJ01000001.1_5206 # 5615320 # 5615883 310.0 384.03 Type B NfxB 100.0 ARO:3004060 protein overexpression model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; cephalosporin; penam; tetracycline antibiotic; aminocoumarin antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump Type B NfxB mutants are more resistant to tetracycline and chloramphenicol, as well as ofloxacin, erythromycin, and the new zwitterionic cephems, than was PAO1, and they are four to eight times more susceptible to carbenicillin, sulbenicillin, imipenem, panipenem, biapenem, moxalactam, aztreonam, gentamicin, and kanamycin than PAO1. The mutation at the 46th amino acid position is sufficient for overproduction of OprJ and the multidrug resistance. nfxB corresponds to 2 loci in Pseudomonas aeruginosa PAO1 (gene name: esrC/nfxB) and 2 loci in Pseudomonas aeruginosa LESB58 (gene name: nfxB).
VF List
Query_id %Identity E-value Related genes VF ID Virulence factor VFcategory VFcategoryID Characteristics Description Strain
AFXJ01000001.1_54 99.125 0.0 exoT VF0853 TTSS secreted effectors Effector delivery system VFC0086 (exoT) type III secretion system effector ExoT, ADP ribosyltransferase activity and GTPase-activating protein activity [TTSS secreted effectors (VF0853) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_62 99.836 0.0 phzH VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzH) phenazine-modifying enzyme [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_80 100.0 0.0 tagQ VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (tagQ) type VI secretiona ssociated protein TagQ, outer membrane lipoprotein [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_81 100.0 0.0 tagR VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (tagR) type VI secretion associated protein TagR, positively regulates PpkA [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_82 99.749 0.0 tagS VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (tagS) type VI secretion associated protein TagS, forming a stable inner membrane complex with TagT [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_83 100.0 3.91E-168 tagT VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (tagT) type VI secretion associated protein TagT, ATP-binding component of ABC transporter [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_84 99.709 0.0 ppkA VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (ppkA) serine/threonine protein kinase PpkA [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_85 99.587 2.45E-176 pppA VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (pppA) Pseudomonas protein phosphatase PppA [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_86 99.115 1.85E-162 tagF/pppB VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (tagF/pppB) Pseudomonas protein phosphatase PppB [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_87 99.365 0.0 icmF1/tssM1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (icmF1/tssM1) type VI secretion system protein IcmF1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_88 99.777 0.0 dotU1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (dotU1) type VI secretion system protein DotU [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_89 100.0 0.0 hsiJ1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiJ1) type VI secretion system hcp secretion island protein HsiJ1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_90 100.0 9.67E-112 lip1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (lip1) lipoprotein [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_91 99.799 0.0 fha1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (fha1) type VI secretion system forkhead-associated protein Fha1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_92 98.547 0.0 hsiA1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiA1) type VI secretion system hcp secretion island protein HsiA1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_93 100.0 4.29E-125 hsiB1/vipA/tssB VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiB1/vipA/tssB) type VI secretion system tubule-forming protein VipA [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_94 99.799 0.0 hsiC1/vipB/tssC VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiC1/vipB/tssC) type VI secretion system tubule-forming protein VipB [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_95 100.0 2.12E-120 hcp1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hcp1) type VI secretion system substrate Hcp1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_96 100.0 0.0 hsiE1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiE1) type VI secretion system hcp secretion island protein HsiE1, interacting with HsiB1 to form a novel subcomplex of the T6SS [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_97 100.0 2.56E-121 hsiF1/tssE VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiF1/tssE) type VI secretion system hcp secretion island protein HsiF1, a gp25-like protein, but not exhibit lysozyme activity [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_98 99.677 0.0 hsiG1/tssF VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiG1/tssF) type VI secretion system hcp secretion island protein HsiG1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_99 100.0 0.0 hsiH1/tssG VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (hsiH1/tssG) type VI secretion system hcp secretion island protein HsiH1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_100 99.667 0.0 clpV1 VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (clpV1) type VI secretion system AAA+ family ATPase [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_101 99.844 0.0 vgrG1a VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (vgrG1a) type VI secretion system substrate VgrG1 [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_103 99.302 0.0 tse6 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse6) NAD(P)(+) glycohydrolase toxin Tse6 [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_105 98.516 0.0 vgrG1b VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (vgrG1b) type VI secretion system substrate VgrG1b [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_186 66.242 9.28E-71 cheW VF0430 Flagella Motility VFC0204 (cheW) chemotaxis protein CheW [Flagella (VF0430) - Motility (VFC0204)] [Burkholderia pseudomallei K96243] Burkholderia pseudomallei
AFXJ01000001.1_267 100.0 0.0 vgrG2b VF0915 HSI-2 T6SS secreted effectors Effector delivery system VFC0086 (vgrG2b) Type VI secretion system spike protein VgrG2b; metallopeptidase effector VgrG2b [HSI-2 T6SS secreted effectors (VF0915) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_268 100.0 1.69E-130 hcpA VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (hcpA) Hcp family type VI secretion system effector [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_404 100.0 0.0 pilT VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilT) twitching motility protein PilT [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_405 100.0 0.0 pilU VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilU) twitching motility protein PilU [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_417 100.0 2.88E-98 pilG VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilG) twitching motility protein PilG [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_418 100.0 4.33E-87 pilH VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilH) twitching motility protein PilH [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_419 100.0 6.64E-130 pilI VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilI) twitching motility protein PilI [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_420 100.0 0.0 pilJ VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilJ) twitching motility protein PilJ [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_421 100.0 0.0 pilK VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilK) methyltransferase PilK [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_422 99.757 0.0 chpA VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (chpA) still frameshift probable component of chemotactic signal transduction system [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_423 99.708 0.0 chpB VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (chpB) probable methylesterase [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_424 97.619 5.58E-115 chpC VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (chpC) probable chemotaxis protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_425 100.0 0.0 chpD VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (chpD) probable transcriptional regulator [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_426 99.507 3.49E-141 chpE VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (chpE) probable chemotaxis protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_435 71.344 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AFXJ01000001.1_624 63.801 7.18E-99 rpe VF0543 Capsule Immune modulation VFC0258 Group 4 capsule; high molecular weight (HMW) O-antigen capsule (rpe) ribulose-phosphate 3-epimerase [Capsule (VF0543) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AFXJ01000001.1_668 100.0 4.07E-160 vfr VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (vfr) cAMP-regulatory protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_784 100.0 4.9E-143 algU VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algU) alginate biosynthesis protein AlgZ/FimS [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_785 100.0 3.9E-141 mucA VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucA) alkaline metalloproteinase precursor [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_786 100.0 0.0 mucB VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucB) anti-sigma factor MucA, inhibitor of alg gene expression [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_787 100.0 1.12E-104 mucC VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucC) negative regulator for alginate biosynthesis MucB [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_788 99.789 0.0 mucD VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucD) serine protease MucD precursor [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_863 99.589 0.0 plcH VF0092 PLC Exotoxin VFC0235 (plcH) hemolytic phospholipase C precursor [PLC (VF0092) - Exotoxin (VFC0235)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_925 73.333 4.53E-30 csrA VF0261 CsrA Regulation VFC0301 Belongs to a highly conserved family of global regulators that typically control stationary phase traits post-transcriptionally (csrA) carbon storage regulator CsrA [CsrA (VF0261) - Regulation (VFC0301)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXJ01000001.1_951 60.545 0.0 iroN VF0563 Sal Nutritional/Metabolic factor VFC0272 Salmochelin is a glycosylated Ent that requires the iroA locus for production and transport (iroN) salmochelin receptor IroN [Sal (VF0563) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AFXJ01000001.1_986 63.525 7.28E-113 CBU_1566 VF0696 T4SS secreted effectors Effector delivery system VFC0086 (CBU_1566) Coxiella Dot/Icm type IVB secretion system translocated effector [T4SS secreted effectors (VF0696) - Effector delivery system (VFC0086)] [Coxiella burnetii RSA 493] Coxiella burnetii
AFXJ01000001.1_1101 100.0 7.62E-99 flgB VF0273 Flagella Motility VFC0204 (flgB) flagellar basal body rod protein FlgB [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1102 100.0 3.05E-107 flgC VF0273 Flagella Motility VFC0204 (flgC) flagellar basal-body rod protein FlgC [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1103 100.0 3.49E-172 flgD VF0273 Flagella Motility VFC0204 (flgD) flagellar basal-body rod modification protein FlgD [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1104 100.0 0.0 flgE VF0273 Flagella Motility VFC0204 (flgE) flagellar hook protein FlgE [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1105 99.598 0.0 flgF VF0273 Flagella Motility VFC0204 (flgF) flagellar basal-body rod protein FlgF [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1106 100.0 0.0 flgG VF0273 Flagella Motility VFC0204 (flgG) flagellar basal-body rod protein FlgG [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1107 100.0 7.18E-172 flgH VF0273 Flagella Motility VFC0204 (flgH) flagellar L-ring protein precursor FlgH [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1108 100.0 0.0 flgI VF0273 Flagella Motility VFC0204 (flgI) flagellar P-ring protein precursor FlgI [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1109 99.25 0.0 flgJ VF0273 Flagella Motility VFC0204 (flgJ) flagellar rod assembly protein/muramidase FlgJ [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1110 98.975 0.0 flgK VF0273 Flagella Motility VFC0204 (flgK) flagellar hook-associated protein 1 FlgK [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1111 99.772 0.0 flgL VF0273 Flagella Motility VFC0204 (flgL) flagellar hook-associated protein 3 FlgL [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1116 100.0 0.0 fliC VF0273 Flagella Motility VFC0204 (fliC) B-type flagellin [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1117 99.187 6.66E-84 fleI/flaG VF0273 Flagella Motility VFC0204 (fleI/flaG) flagellar protein FlaG [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1118 99.789 0.0 fliD VF0273 Flagella Motility VFC0204 (fliD) flagellar capping protein FliD [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1119 100.0 8.05E-89 fliS VF0273 Flagella Motility VFC0204 (fliS) flagellar protein FliS [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1120 100.0 6.91E-68 fleP/fliT VF0273 Flagella Motility VFC0204 (fleP/fliT) flagellar protein FliT [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1121 100.0 0.0 fleQ VF0273 Flagella Motility VFC0204 (fleQ) transcriptional regulator FleQ [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1122 99.751 0.0 fleS VF0273 Flagella Motility VFC0204 (fleS) two-component sensor [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1123 100.0 0.0 fleR VF0273 Flagella Motility VFC0204 (fleR) two-component response regulator [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1124 100.0 7.9E-76 fliE VF0273 Flagella Motility VFC0204 (fliE) flagellar hook-basal body complex protein FliE [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1125 99.833 0.0 fliF VF0273 Flagella Motility VFC0204 (fliF) flagellar M-ring protein FliF [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1126 100.0 0.0 fliG VF0273 Flagella Motility VFC0204 (fliG) flagellar motor switch protein G [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1127 99.254 0.0 fliH VF0273 Flagella Motility VFC0204 (fliH) flagellar assembly protein H [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1128 100.0 0.0 fliI VF0273 Flagella Motility VFC0204 (fliI) flagellum-specific ATP synthase FliI [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1129 100.0 3.11E-103 fliJ VF0273 Flagella Motility VFC0204 (fliJ) flagellar protein FliJ [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1156 99.692 0.0 rhlC VF0089 Rhamnolipid Immune modulation VFC0258 Nonenzyme glycolipid (rhlC) rhamnosyltransferase 2 [Rhamnolipid (VF0089) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1175 99.373 0.0 toxA VF0086 ExoA Exotoxin VFC0235 Secreted by type II secretion pathway; transported to the endoplasmic reticulum (ER) via a coat protein COPI-dependent retrograde pathway dependent on a KDEL motif (toxA) exotoxin A precursor [ExoA (VF0086) - Exotoxin (VFC0235)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1183 68.803 2.2E-110 bfmR VF0463 BfmRS Regulation VFC0301 Two-component system: BfmS sensor kinase acts as a BfmR phosphatase to negatively regulate BfmR activity in certain conditions (bfmR) biofilm-controlling response regulator [BfmRS (VF0463) - Regulation (VFC0301)] [Acinetobacter baumannii ACICU] Acinetobacter baumannii
AFXJ01000001.1_1277 100.0 0.0 aprA VF0090 Alkaline protease Exoenzyme VFC0251 Secreted by type I secretion pathway (aprA) alkaline metalloproteinase precursor [Alkaline protease (VF0090) - Exoenzyme (VFC0251)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1470 100.0 0.0 lasR VF0093 Quorum sensing Biofilm VFC0271 Consists of two separate but interrelated systems, las and rhl. The autoinducer signal molecules produced by P.aeruginosa are N-(3-oxododencanoyl) homeserine lactone(3O-C12-HSL) and N-butyryl homoserine lactone(C4-HSL); a novel, additional autoinducer has recently been demonstrated to be involved in quorum sensing. It is 2-heptyl-3-hydroxy-4-quinolone, an additional link between the Las and Rhl circuits (lasR) transcriptional regulator LasR [Quorum sensing (VF0093) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1472 100.0 1.49E-152 lasI VF0093 Quorum sensing Biofilm VFC0271 Consists of two separate but interrelated systems, las and rhl. The autoinducer signal molecules produced by P.aeruginosa are N-(3-oxododencanoyl) homeserine lactone(3O-C12-HSL) and N-butyryl homoserine lactone(C4-HSL); a novel, additional autoinducer has recently been demonstrated to be involved in quorum sensing. It is 2-heptyl-3-hydroxy-4-quinolone, an additional link between the Las and Rhl circuits (lasI) autoinducer synthesis protein LasI [Quorum sensing (VF0093) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1481 99.063 0.0 fliK VF0273 Flagella Motility VFC0204 (fliK) flagellar hook-length control protein FliK [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1482 100.0 2.92E-125 fliL VF0273 Flagella Motility VFC0204 (fliL) flagellar basal body protein FliL [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1483 100.0 0.0 fliM VF0273 Flagella Motility VFC0204 (fliM) flagellar motor switch protein FliM [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1484 100.0 1.09E-111 fliN VF0273 Flagella Motility VFC0204 (fliN) flagellar motor switch protein FliN [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1485 100.0 3.57E-103 fliO VF0273 Flagella Motility VFC0204 (fliO) flagellar protein FliO [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1486 100.0 0.0 fliP VF0273 Flagella Motility VFC0204 (fliP) flagellar biosynthetic protein FliP [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1487 100.0 1.48E-57 fliQ VF0273 Flagella Motility VFC0204 (fliQ) flagellar biosynthetic protein FliQ [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1488 99.225 1.08E-179 fliR VF0273 Flagella Motility VFC0204 (fliR) flagellar biosynthetic protein FliR [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1489 100.0 0.0 flhB VF0273 Flagella Motility VFC0204 (flhB) flagellar biosynthetic protein FlhB [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1492 100.0 0.0 flhA VF0273 Flagella Motility VFC0204 (flhA) flagellar biosynthesis protein FlhA [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1493 99.068 0.0 flhF VF0273 Flagella Motility VFC0204 (flhF) flagellar biosynthesis protein FlhF [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1494 100.0 0.0 fleN VF0273 Flagella Motility VFC0204 (fleN) flagellar synthesis regulator FleN [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1495 100.0 3.38E-177 fliA VF0273 Flagella Motility VFC0204 (fliA) flagellar biosynthesis sigma factor FliA [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1496 100.0 5.08E-90 cheY VF0273 Flagella Motility VFC0204 (cheY) chemotaxis protein CheY [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1497 100.0 0.0 cheZ VF0273 Flagella Motility VFC0204 (cheZ) protein phosphatase CheZ [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1498 99.469 0.0 PA1458 VF0273 Flagella Motility VFC0204 (PA1458) two-component sensor [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1499 99.728 0.0 PA1459 VF0273 Flagella Motility VFC0204 (PA1459) chemotaxis-specific methylesterase [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1500 100.0 9.14E-176 motC VF0273 Flagella Motility VFC0204 (motC) flagellar motor protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1501 100.0 0.0 motD VF0273 Flagella Motility VFC0204 (motD) flagellar motor protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1504 100.0 2.34E-115 PA1464 VF0273 Flagella Motility VFC0204 (PA1464) purine-binding chemotaxis protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1552 99.644 0.0 vgrG VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (vgrG) type VI secretion system tip protein VgrG [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1553 100.0 1.69E-130 hcpA VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (hcpA) Hcp family type VI secretion system effector [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1701 100.0 0.0 tssA VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssA) type VI secretion system protein TssA [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1702 99.405 1.22E-118 tssB VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssB) type VI secretion system contractile sheath small subunit [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1703 100.0 0.0 tssC VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssC) type VI secretion system contractile sheath large subunit [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1704 100.0 3.01E-97 tssE VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssE) type VI secretion system baseplate subunit TssE [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1705 100.0 0.0 tssF VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssF) type VI secretion system baseplate subunit TssF [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1706 99.104 0.0 tssG VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssG) type VI secretion system baseplate subunit TssG [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1707 99.429 0.0 tssH VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssH) type VI secretion system ATPase TssH [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1708 99.602 0.0 PA1663 VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (PA1663) transcriptional regulator [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1709 100.0 2.58E-30 PA1664 VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (PA1664) hypothetical protein [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1710 99.496 0.0 PA1665 VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (PA1665) hypothetical protein [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1711 99.405 4.51E-118 tssJ VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssJ) type VI secretion system lipoprotein TssJ [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1712 99.774 0.0 tssK VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssK) type VI secretion system baseplate subunit TssK [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1713 100.0 0.0 icmH/tssL VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (icmH/tssL) type IVB secretion system protein IcmH/DotU [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1714 99.66 0.0 tssM VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (tssM) type VI secretion system membrane subunit TssM [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1715 100.0 7.49E-176 stp1 VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (stp1) serine/threonine phosphoprotein phosphatase Stp1 [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1716 99.696 0.0 stk1 VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (stk1) serine-threonine kinase Stk1 [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1736 99.713 0.0 pscU VF0083 TTSS Effector delivery system VFC0086 (pscU) type III secretion system protein PscU [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1737 99.618 0.0 pscT VF0083 TTSS Effector delivery system VFC0086 (pscT) type III secretion system protein PscT [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1738 100.0 1.14E-57 pscS VF0083 TTSS Effector delivery system VFC0086 (pscS) type III secretion system protein PscS [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1739 100.0 5.21E-158 pscR VF0083 TTSS Effector delivery system VFC0086 (pscR) type III secretion system protein PscR [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1740 99.029 0.0 pscQ VF0083 TTSS Effector delivery system VFC0086 (pscQ) type III secretion system protein PscQ [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1741 98.485 3.95E-89 pscP VF0083 TTSS Effector delivery system VFC0086 (pscP) type III secretion system protein PscP [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1742 99.367 1.86E-103 pscO VF0083 TTSS Effector delivery system VFC0086 (pscO) type III secretion system protein PscO [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1743 99.318 0.0 pscN VF0083 TTSS Effector delivery system VFC0086 (pscN) type III secretion system ATPase PscN [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1744 100.0 0.0 popN VF0083 TTSS Effector delivery system VFC0086 (popN) type III secretion system outer membrane protein PopN [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1745 100.0 1.02E-63 pcr1 VF0083 TTSS Effector delivery system VFC0086 (pcr1) type III secretion system protein Pcr1 [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1746 99.187 6.22E-85 pcr2 VF0083 TTSS Effector delivery system VFC0086 (pcr2) type III secretion system protein Pcr2 [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1747 100.0 6.7E-84 pcr3 VF0083 TTSS Effector delivery system VFC0086 (pcr3) type III secretion system protein Pcr3 [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1748 99.083 2.06E-69 pcr4 VF0083 TTSS Effector delivery system VFC0086 (pcr4) type III secretion system protein Pcr4 [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1749 100.0 0.0 pcrD VF0083 TTSS Effector delivery system VFC0086 (pcrD) type III secretion system protein PcrD [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1750 100.0 6.66E-103 pcrR VF0083 TTSS Effector delivery system VFC0086 (pcrR) type III secretion system regulatory protein PcrR [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1751 100.0 3.09E-65 pcrG VF0083 TTSS Effector delivery system VFC0086 (pcrG) type III secretion system cytoplasmic regulator PcrG [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1752 99.66 0.0 pcrV VF0083 TTSS Effector delivery system VFC0086 (pcrV) type III secretion system hydrophilic translocator, needle tip protein PcrV [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1753 98.81 7.95E-119 pcrH VF0083 TTSS Effector delivery system VFC0086 (pcrH) type III secretion system regulatory protein PcrH [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1754 99.744 0.0 popB VF0083 TTSS Effector delivery system VFC0086 (popB) type III secretion system hydrophobic translocator, pore protein PopB [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1755 100.0 0.0 popD VF0083 TTSS Effector delivery system VFC0086 (popD) type III secretion system hydrophobic translocator, pore protein PopD [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1756 99.31 2.2E-102 exsC VF0083 TTSS Effector delivery system VFC0086 (exsC) type III secretion system regulatory protein ExsC [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1757 100.0 4.88E-54 exsE VF0083 TTSS Effector delivery system VFC0086 (exsE) type III secretion system regulatory protein ExsE [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1758 100.0 8.06E-97 exsB VF0083 TTSS Effector delivery system VFC0086 (exsB) type III secretion system pilotin ExsB [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1759 100.0 0.0 exsA VF0083 TTSS Effector delivery system VFC0086 (exsA) type III secretion system regulatory protein ExsA [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1760 100.0 0.0 exsD VF0083 TTSS Effector delivery system VFC0086 (exsD) type III secretion system regulatory protein ExsD [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1761 99.286 1.56E-92 pscB VF0083 TTSS Effector delivery system VFC0086 (pscB) type III secretion system protein PscB [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1762 99.833 0.0 pscC VF0083 TTSS Effector delivery system VFC0086 (pscC) type III secretion system secretin PscC [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1763 99.769 0.0 pscD VF0083 TTSS Effector delivery system VFC0086 (pscD) type III secretion system basal body protein PscD [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1764 97.015 1.96E-40 pscE VF0083 TTSS Effector delivery system VFC0086 (pscE) type III secretion system cochaperone PscE for PscG [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1765 100.0 3.43E-58 pscF VF0083 TTSS Effector delivery system VFC0086 (pscF) type III secretion system needle filament protein PscF [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1766 100.0 3.12E-80 pscG VF0083 TTSS Effector delivery system VFC0086 (pscG) type III secretion system chaperone PscG for PscF [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1767 97.902 1.28E-96 pscH VF0083 TTSS Effector delivery system VFC0086 (pscH) type III secretion system protein PscH [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1768 99.107 9.39E-78 pscI VF0083 TTSS Effector delivery system VFC0086 (pscI) type III secretion system inner rod protein PscI [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1769 99.59 3.84E-178 pscJ VF0083 TTSS Effector delivery system VFC0086 (pscJ) type III secretion system inner MS ring protein [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1770 98.558 8.74E-146 pscK VF0083 TTSS Effector delivery system VFC0086 (pscK) type III secretion system protein PscK [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1771 100.0 1.85E-151 pscL VF0083 TTSS Effector delivery system VFC0086 (pscL) type III secretion systemt protein PscL [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1850 62.827 8.71E-91 clpP VF0074 ClpP Stress survival VFC0282 21.6 kDa protein belongs to a family of proteases highly conserved in prokaryotes and eukaryotes (clpP) ATP-dependent Clp protease proteolytic subunit [ClpP (VF0074) - Stress survival (VFC0282)] [Listeria monocytogenes EGD-e] Listeria monocytogenes
AFXJ01000001.1_1871 100.0 0.0 fimL VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (fimL) hypothetical protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1895 100.0 3.28E-114 tse1 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse1) type VI secretion system effector Tse1, peptidoglycanhydrolase [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1921 62.421 0.0 xcpQ VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpQ) general secretion pathway protein D [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1924 99.522 0.0 lasA VF0088 LasA Effector delivery system VFC0086 Secreted by type II secretion pathway (lasA) LasA protease precursor [LasA (VF0088) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1957 99.383 4.4E-122 phzA2 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzA2) phenazine biosynthesis protein PhzA [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1958 100.0 3.64E-123 phzB2 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzB2) phenazine biosynthesis protein PhzB [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1959 100.0 0.0 phzC1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzC1) phenazine biosynthesis protein PhzC [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1960 99.474 3.63E-141 phzD1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzD1) phenazine biosynthesis protein PhzD, isochorismatase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1961 100.0 0.0 phzE1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzE1) phenazine biosynthesis protein PhzE [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1962 100.0 0.0 phzF1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzF1) phenazine biosynthesis protein PhzF, isomerase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_1963 99.533 1.28E-158 phzG1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzG1) phenazine biosynthesis protein PhzG, pyridoxamine 5'-phosphate oxidase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2009 100.0 0.0 fapF VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapF) outer membrane secretin FapF [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2010 98.4 1.41E-178 fapE VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapE) chaprone FapE [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2011 99.558 1.13E-167 fapD VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapD) periplasmic accessory protein FapD [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2012 100.0 0.0 fapC VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapC) major amyloid subunit FapC [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2013 100.0 9.44E-132 fapB VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapB) minor amyloid subunit FapB [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2014 100.0 1.79E-111 fapA VF1191 Fap Adherence VFC0001 The Fap system displays many similarities to the curli system, but the two are not evolutionary related (fapA) periplasmic accessory protein FapA [Fap (VF1191) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2252 99.471 0.0 exoY VF0853 TTSS secreted effectors Effector delivery system VFC0086 (exoY) type III secretion system effector ExoY, adenylate cyclase [TTSS secreted effectors (VF0853) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2374 99.695 0.0 pvcA VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvcA) paerucumarin biosynthesis protein PvcA [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2375 99.313 0.0 pvcB VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvcB) paerucumarin biosynthesis protein PvcB [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2376 99.2 0.0 pvcC VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvcC) paerucumarin biosynthesis protein PvcC [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2377 99.07 1.82E-157 pvcD VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvcD) paerucumarin biosynthesis protein PvcD [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2378 99.679 0.0 ptxR VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (ptxR) transcriptional regulator PtxR [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2474 65.242 5.41E-161 PA2359 VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (PA2359) transcriptional regulator [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2479 99.723 0.0 PA2359 VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (PA2359) transcriptional regulator [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2480 99.454 0.0 tssA VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssA) type VI secretion system protein TssA [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2481 99.449 0.0 tssM VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssM) type VI secretion system membrane subunit [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2482 98.81 1.46E-180 icmH/tssL VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (icmH/tssL) DotU/TssL family secretion system protein [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2483 99.774 0.0 tssK VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssK) type VI secretion system baseplate subunit TssK [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2484 99.367 4.05E-116 PA2364 VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (PA2364) hypothetical protein [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2485 99.448 4.73E-129 tssB VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssB) type VI secretion system contractile sheath small subunit [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2486 100.0 0.0 tssC VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssC) type VI secretion system contractile sheath large subunit [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2487 100.0 1.26E-122 hcp/tssD VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (hcp/tssD) Hcp family type VI secretion system effector [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2488 99.291 6.49E-97 tssE VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssE) type VI secretion system baseplate subunit TssE [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2489 99.497 0.0 tssF VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssF) type VI secretion system baseplate subunit TssF [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2490 100.0 0.0 tssG VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssG) type VI secretion system baseplate subunit TssG [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2491 99.764 0.0 tssH VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssH) type VI secretion system ATPase TssH [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2494 96.108 0.0 tssI VF0944 HSI-3 Effector delivery system VFC0086 The expression of T6SSs in P. aeruginosa is regulated by the QS system. There are several QS systems in P. aeruginosa, two N-acyl-homoserine lactone based QS systems (las and rhl systems) and one quinolone PQS system (pqs). The expression of H1-T6SS is negatively regulated by both las and pqs QS systems, while the expression of H2- and H3-T6SS is positively regulated by las, rhl, and pqs (tssI) type VI secretion system tip protein VgrG [HSI-3 (VF0944) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2504 100.0 0.0 PA2383 VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (PA2383) transcriptional regulator [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2505 99.065 8.55E-74 PA2384 VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (PA2384) hypothetical protein [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2506 99.738 0.0 pvdQ VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdQ) 3-oxo-C12-homoserine lactone acylase PvdQ [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2507 99.323 0.0 pvdA VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdA) L-ornithine N5-oxygenase PvdA [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2508 100.0 4.19E-115 fpvI VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (fpvI) RNA polymerase sigma factor [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2509 99.396 0.0 fpvR VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (fpvR) protein FpvR [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2513 88.381 0.0 pvdP VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdP) tyrosinase required for pyoverdine maturation [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2514 87.751 0.0 pvdM VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdM) dipeptidase precursor [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2515 90.632 0.0 pvdN VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdN) pyoverdine biosynthesis protein PvdN [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2516 96.831 0.0 pvdO VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdO) pyoverdine biosynthesis protein PvdO [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2517 95.985 0.0 pvdF VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdF) pyoverdine synthetase F [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2531 100.0 4.21E-52 mbtH-like VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (mbtH-like) MbtH-like protein from the pyoverdine cluster [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2532 100.0 0.0 pvdH VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdH) diaminobutyrate-2-oxoglutarate aminotransferase PvdH [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2543 99.563 0.0 pvdL VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdL) peptide synthase PvdL [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2544 99.606 0.0 pvdG VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdG) pyoverdine biosynthesis protein PvdG [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2545 100.0 2.14E-141 pvdS VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdS) extracytoplasmic-function sigma-70 factor [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2546 98.71 1.31E-108 pvdY VF0094 Pyoverdine Nutritional/Metabolic factor VFC0272 A greenish-yellow compound, a hydroxyquinolone chromophore to which an amino acid tail is attached, the tail can vary in length; the synthesis of pyoverdine requires a special sigma factor, PvdS, which is in turn regulated by the Fur repressor; also called pseudobactin (pvdY) hypothetical protein [Pyoverdine (VF0094) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_2619 67.395 0.0 adeG VF0504 AdeFGH efflux pump Biofilm VFC0271 Belongs to resistance-nodulation-cell division (RND)-type efflux system; RND efflux systems, composed of an inner membrane protein (RND pump) linked by a periplasmic adaptor protein (PAP) to an outer membrane factor (OMF), can extrude a wide range of substrates often unrelated in structure; To date, three Acinetobacter drug efflux (Ade) RND systems, AdeABC, AdeFGH, and AdeIJK, have been characterized in A. baumannii (adeG) cation/multidrug efflux pump [AdeFGH efflux pump (VF0504) - Biofilm (VFC0271)] [Acinetobacter baumannii ACICU] Acinetobacter baumannii
AFXJ01000001.1_2658 68.675 8.12E-36 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXJ01000001.1_2661 75.776 1.68E-79 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXJ01000001.1_2902 76.129 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXJ01000001.1_3032 99.696 0.0 tse5/rhsP1 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse5/rhsP1) Toxin protein Tse5 [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3033 74.234 0.0 vgrG1b VF0334 HSI-1 Effector delivery system VFC0086 HSI-1 is highly homologous to a group of genes found in many Gram-negative proteobacteria that have been termed the IcmF-associated homologous protein (IAHP) cluster and encodes a secretory system that may play a general role in mediating host interaction (vgrG1b) type VI secretion system substrate VgrG1b [HSI-1 (VF0334) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3036 63.725 0.0 fepA VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fepA) outer membrane receptor FepA [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AFXJ01000001.1_3049 100.0 1.34E-116 tse2 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse2) type VI secretion system effector Tse2 [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3169 100.0 5.36E-134 tse4 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse4) Toxin protein Tse4 [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3404 100.0 1.8E-85 pilZ VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilZ) type 4 fimbrial biogenesis protein PilZ [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3410 65.753 1.64E-28 acpXL VF0367 LPS Immune modulation VFC0258 Brucella possesses a non-classical LPS as compared with the so-called classical LPS from enterobacteria such as Escherichia coli. B. abortus lipid A possesses a diaminoglucose backbone (rather than glucosamine), and acyl groups are longer (C28 rather than C12 and C16) and are only linked to the core by amide bounds (rather than ester and amide bonds).; In contrast to enterobacterial LPSs, Brucella LPS is several-hundred-times less active and toxic than E. coli LPS.; this is an evolutionary adaptation to an intracellular lifestyle, low endotoxic activity is shared by other intracellular pathogens such as Bartonella and Legionella. (acpXL) acyl carrier protein [LPS (VF0367) - Immune modulation (VFC0258)] [Brucella melitensis bv. 1 str. 16M] Brucella melitensis
AFXJ01000001.1_3411 64.228 2.73E-106 flmH VF0473 Polar flagella Motility VFC0204 Types of bacterial movement: swimming, swarming, gliding, twitching and sliding. Only swimming and swarming are correlated with the presence of flagella. Swimming is an individual endeavour, while swarming is the movement of a group of bacteria; constitutively expressed for motility in liquid environments (flmH) short chain dehydrogenase/reductase family oxidoreductase [Polar flagella (VF0473) - Motility (VFC0204)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AFXJ01000001.1_3537 99.425 3.54E-122 xcpZ VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpZ) general secretion pathway protein M [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3538 100.0 0.0 xcpY VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpY) general secretion pathway protein L [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3539 99.7 0.0 xcpX VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpX) general secretion pathway protein K [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3540 99.578 2.04E-172 xcpW VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpW) general secretion pathway protein J [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3541 100.0 2.16E-90 xcpV VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpV) general secretion pathway protein I [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3542 100.0 4.28E-121 xcpU VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpU) general secretion pathway protein H [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3543 99.296 6.6E-102 xcpT VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpT) general secretion pathway protein G [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3544 100.0 0.0 xcpS VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpS) general secretion pathway protein F [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3545 100.0 0.0 xcpR VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpR) general secretion pathway protein E [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3546 99.541 3.11E-158 xcpP VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpP) secretion protein XcpP [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3547 99.848 0.0 xcpQ VF0084 Xcp secretion system Effector delivery system VFC0086 (xcpQ) general secretion pathway protein D [Xcp secretion system (VF0084) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3557 99.782 0.0 fimV VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (fimV) a polar peptidoglycan-binding protein involved in type IV pilus assembly [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3583 99.839 0.0 wbpM VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpM) nucleotide sugar epimerase/dehydratase WbpM [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3585 100.0 0.0 wbpL VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpL) glycosyltransferase WbpL [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3586 100.0 0.0 wbpK VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpK) NAD-dependent epimerase/dehydratase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3587 100.0 0.0 wbpJ VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpJ) glycosyl transferase WbpJ [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3588 100.0 0.0 wbpI VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpI) UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronate 2-epimeras [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3589 100.0 0.0 wbpH VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpH) glycosyltransferase WbpH [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3590 100.0 0.0 wbpG VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpG) LPS biosynthesis protein WbpG [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3591 100.0 0.0 hisF2 VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (hisF2) imidazole glycerol phosphate synthase subunit HisF [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3592 100.0 0.0 wzx VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wzx) O-antigen translocase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3593 100.0 0.0 wzy VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wzy) B-band O-antigen polymerase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3594 99.721 0.0 wbpE VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpE) UDP-2-acetamido-2-deoxy-3-oxo-D-glucuronate aminotransferase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3595 100.0 7.94E-143 wbpD VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpD) UDP-2-acetamido-3-amino-2, 3-dideoxy-D-glucuronate N-acetyltransferase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3596 99.682 0.0 PA3157 VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (PA3157) acetyltransferase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3597 100.0 0.0 wbpB VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpB) UDP-N-acetyl-2-amino-2-deoxy-D-glucuronate oxidase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3598 100.0 0.0 wbpA VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wbpA) UDP-N-acetyl-d-glucosamine 6-dehydrogenase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3599 99.713 0.0 wzz VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (wzz) O-antigen chain length regulator [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3793 100.0 0.0 PA3348 VF0273 Flagella Motility VFC0204 (PA3348) chemotaxis protein methyltransferase [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3794 100.0 0.0 PA3349 VF0273 Flagella Motility VFC0204 (PA3349) chemotaxis protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3795 99.569 2.28E-170 flgA VF0273 Flagella Motility VFC0204 (flgA) flagellar basal body P-ring biosynthesis protein FlgA [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3796 100.0 2.75E-75 flgM VF0273 Flagella Motility VFC0204 (flgM) negative regulator of flagellin synthesis [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3797 99.359 3.75E-107 flgN VF0273 Flagella Motility VFC0204 (flgN) flagella synthesis protein FlgN [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3925 99.502 8.53E-151 rhlI VF0093 Quorum sensing Biofilm VFC0271 Consists of two separate but interrelated systems, las and rhl. The autoinducer signal molecules produced by P.aeruginosa are N-(3-oxododencanoyl) homeserine lactone(3O-C12-HSL) and N-butyryl homoserine lactone(C4-HSL); a novel, additional autoinducer has recently been demonstrated to be involved in quorum sensing. It is 2-heptyl-3-hydroxy-4-quinolone, an additional link between the Las and Rhl circuits (rhlI) autoinducer synthesis protein RhlL [Quorum sensing (VF0093) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3926 100.0 0.0 rhlR VF0093 Quorum sensing Biofilm VFC0271 Consists of two separate but interrelated systems, las and rhl. The autoinducer signal molecules produced by P.aeruginosa are N-(3-oxododencanoyl) homeserine lactone(3O-C12-HSL) and N-butyryl homoserine lactone(C4-HSL); a novel, additional autoinducer has recently been demonstrated to be involved in quorum sensing. It is 2-heptyl-3-hydroxy-4-quinolone, an additional link between the Las and Rhl circuits (rhlR) transcriptional regulator RhlR [Quorum sensing (VF0093) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3927 100.0 0.0 rhlB VF0089 Rhamnolipid Immune modulation VFC0258 Nonenzyme glycolipid (rhlB) rhamnosyltransferase chain B [Rhamnolipid (VF0089) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3928 99.661 0.0 rhlA VF0089 Rhamnolipid Immune modulation VFC0258 Nonenzyme glycolipid (rhlA) rhamnosyltransferase chain A [Rhamnolipid (VF0089) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3933 100.0 0.0 tse3 VF1194 HSI-1 T6SS secreted effectors Effector delivery system VFC0086 (tse3) type VI secretion system effector Tse3, glycoside hydrolase [HSI-1 T6SS secreted effectors (VF1194) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3954 100.0 0.0 motY VF0273 Flagella Motility VFC0204 (motY) probable outer membrane protein precursor [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3968 100.0 0.0 algD VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algD) GDP-mannose 6-dehydrogenase AlgD [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3969 99.797 0.0 alg8 VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (alg8) alginate-c5-mannuronan-epimerase AlgG [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3970 100.0 0.0 alg44 VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (alg44) alginate biosynthesis protein Alg8 [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3971 99.789 0.0 algK VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algK) alginate biosynthesis protein Alg44 [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3972 99.592 0.0 algE VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algE) alginate biosynthetic protein AlgK precursor [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3973 100.0 0.0 algG VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algG) outer membrane protein AlgE [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3974 99.789 0.0 algX VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algX) alginate biosynthesis protein AlgX [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3975 100.0 0.0 algL VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algL) poly(beta-d-mannuronate) lyase precursor AlgL [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3976 99.423 0.0 algI VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algI) alginate o-acetyltransferase AlgI [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3977 100.0 0.0 algJ VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algJ) alginate o-acetyltransferase AlgJ [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3978 99.537 9.82E-159 algF VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algF) alginate o-acetyltransferase AlgF [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_3979 100.0 0.0 algA VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algA) phosphomannose isomerase / guanosine 5'-diphospho-D-mannose pyrophosphorylase [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4051 100.0 0.0 rpoS VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (rpoS) RNA polymerase sigma factor RpoS [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4065 66.784 3.34E-145 kdsA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (kdsA) 2-dehydro-3-deoxyphosphooctonate aldolase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AFXJ01000001.1_4078 100.0 0.0 mucP VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucP) metalloprotease protease [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4152 99.598 0.0 lasB VF0087 LasB Effector delivery system VFC0086 Secreted by type II secretion pathway (lasB) elastase LasB [LasB (VF0087) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4236 99.603 0.0 pilF VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilF) type 4 fimbrial biogenesis protein PilF [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4274 100.0 0.0 exoS VF0853 TTSS secreted effectors Effector delivery system VFC0086 (exoS) type III secretion system effector ExoS, ADP ribosyltransferase activity and GTPase-activating protein activity [TTSS secreted effectors (VF0853) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4275 100.0 8.95E-83 spcS VF0083 TTSS Effector delivery system VFC0086 (spcS) chaperone for exoS [TTSS (VF0083) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4516 98.876 3.49E-60 mucE VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (mucE) small envelope protein MucE [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4644 61.328 1.16E-111 fepC VF0228 Enterobactin Nutritional/Metabolic factor VFC0272 An extremely effective iron chelator, with a formation constant for the iron complex of 1049. Fe3+ is coordinated by six catechol oxygens to form a metal chelate with a net negative charge of three (fepC) ferrienterobactin ABC transporter ATPase [Enterobactin (VF0228) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AFXJ01000001.1_4695 99.701 0.0 phzM VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzM) phenazine-specific methyltransferase PhzM (adenosylmethionine dependent methyltransferase) [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4696 100.0 3.57E-122 phzA1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzA1) phenazine biosynthesis protein PhzA [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4697 100.0 2.65E-123 phzB1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzB1) phenazine biosynthesis protein PhzB [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4698 100.0 0.0 phzC1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzC1) phenazine biosynthesis protein PhzC [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4699 99.474 3.63E-141 phzD1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzD1) phenazine biosynthesis protein PhzD, isochorismatase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4700 100.0 0.0 phzE1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzE1) phenazine biosynthesis protein PhzE [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4701 100.0 0.0 phzF1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzF1) phenazine biosynthesis protein PhzF, isomerase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4702 99.533 1.28E-158 phzG1 VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzG1) phenazine biosynthesis protein PhzG, pyridoxamine 5'-phosphate oxidase [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4703 99.005 0.0 phzS VF0100 Pyocyanin Nutritional/Metabolic factor VFC0272 One of the secreted pigments that give P.aeruginosa laboratory cultures their characteristic blue-green color. It is a redox-cycling compound consisting of modified phenazine ring that is derived from anthrinilate; The precursor molecule of pyocyanin is chorismic acid, the end product on the shikimate pathway. The conversion of chorismic acid to phenazine-1-carboxylic acid (PCA) is controlled by seven genes, encoded by two operons (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2). PCA is converted to 5-methylphenazine-1-carboxylic acid betaine (MPCBA), by means of a phenazine-specific methyltransferase (PhzM). In the second step, MPCBA is catalysed by flavin-dependent monooxygenase (PhzS), involving the hydroxylation of the MPCBA betaine to 1-hydroxy-5-methyl phenazine, i.e., pyocyanin. (phzS) flavin dependent hydroxylase PhzS [Pyocyanin (VF0100) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4704 99.275 0.0 PA4218 VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (PA4218) transporter [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4705 100.0 0.0 PA4219 VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (PA4219) hypothetical protein [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4706 100.0 3.21E-56 PA4220 VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (PA4220) hypothetical protein [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4707 100.0 0.0 fptA VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (fptA) Fe(III)-pyochelin receptor precursor [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4708 100.0 0.0 pchI VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchI) ABC transporter ATP-binding protein [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4709 99.474 0.0 pchH VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchH) ABC transporter ATP-binding protein [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4710 99.427 0.0 pchG VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchG) pyochelin biosynthetic protein PchG [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4711 99.281 0.0 pchF VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchF) pyochelin synthetase PchF [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4712 99.583 0.0 pchE VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchE) dihydroaeruginoic acid synthetase PchE [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4713 100.0 0.0 pchR VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchR) transcriptional regulator PchR [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4714 99.269 0.0 pchD VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchD) pyochelin biosynthesis protein PchD [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4715 99.602 5.52E-177 pchC VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchC) pyochelin biosynthetic protein PchC [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4716 99.01 1.92E-70 pchB VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchB) salicylate biosynthesis protein PchB [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4717 100.0 0.0 pchA VF0095 Pyochelin Nutritional/Metabolic factor VFC0272 The genes for pyochelin biosynthesis are in two separate operons, pchDCBA, involved in the synthesis of the pyochelin precursor salicylic acid and pchEFGHI. pchHI appear to have an export function. The fptA gene encoding the 75 kDa ferric pyochelin receptor occurs immediately downstream of pchI (pchA) salicylate biosynthesis isochorismate synthase PchA [Pyochelin (VF0095) - Nutritional/Metabolic factor (VFC0272)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4722 69.102 0.0 katA VF0454 KatA Stress survival VFC0282 (katA) catalase [KatA (VF0454) - Stress survival (VFC0282)] [Neisseria meningitidis MC58] Neisseria meningitidis
AFXJ01000001.1_4751 80.101 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AFXJ01000001.1_4763 80.101 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AFXJ01000001.1_4854 66.492 3.06E-99 sodB VF0169 SodB Stress survival VFC0282 (sodB) superoxide dismutase [SodB (VF0169) - Stress survival (VFC0282)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXJ01000001.1_4874 76.908 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AFXJ01000001.1_4935 100.0 0.0 algW VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algW) AlgW protein [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_4952 100.0 0.0 rpoN VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (rpoN) RNA polymerase factor sigma-54 [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5007 60.971 0.0 ibeC VF0237 Ibes Invasion VFC0083 IbeA is unique to E. coli K1. The ibeB and ibeC are found to have K12 homologues p77211 and yijP respectively. (ibeC) phosphoethanolamine transferase CptA [Ibes (VF0237) - Invasion (VFC0083)] [Escherichia coli O45:K1:H7 str. S88] Escherichia coli (NMEC)
AFXJ01000001.1_5015 99.293 0.0 pilB VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilB) type 4 fimbrial biogenesis protein PilB [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5017 98.966 0.0 xcpA/pilD VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (xcpA/pilD) type 4 prepilin peptidase PilD [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5151 99.811 0.0 pilS VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilS) two-component sensor PilS [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5152 100.0 0.0 pilR VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilR) two-component response regulator PilR [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5154 99.408 6.74E-120 fimT VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (fimT) type 4 fimbrial biogenesis protein FimT [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5155 100.0 1.77E-124 fimU VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (fimU) type 4 fimbrial biogenesis protein FimU [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5156 100.0 5.52E-139 pilV VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilV) type IV pilus biogenesis protein PilV [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5157 100.0 0.0 pilW VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilW) type IV fimbrial biogenesis protein PilW [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5158 99.487 2.2E-143 pilX VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilX) type 4 fimbrial biogenesis protein PilX [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5159 92.281 0.0 pilY1 VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilY1) type 4 fimbrial biogenesis protein PilY1 [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5160 100.0 1.69E-84 pilY2 VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilY2) type 4 fimbrial biogenesis protein PilY2 [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5161 100.0 5.49E-103 pilE VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilE) type 4 fimbrial biogenesis protein PilE [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5441 70.909 0.0 mgtB VF0106 MgtB Nutritional/Metabolic factor VFC0272 A magnesium transporter (mgtB) Mg2+ transport protein [MgtB (VF0106) - Nutritional/Metabolic factor (VFC0272)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AFXJ01000001.1_5486 61.728 0.0 ureB VF0050 Urease Stress survival VFC0282 (ureB) urease beta subunit UreB, urea amidohydrolase [Urease (VF0050) - Stress survival (VFC0282)] [Helicobacter pylori 26695] Helicobacter pylori
AFXJ01000001.1_5511 67.347 4.7E-102 ureG VF0050 Urease Stress survival VFC0282 (ureG) urease accessory protein (ureG) [Urease (VF0050) - Stress survival (VFC0282)] [Helicobacter pylori 26695] Helicobacter pylori
AFXJ01000001.1_5571 100.0 0.0 motB VF0273 Flagella Motility VFC0204 (motB) flagellar motor protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5572 100.0 0.0 motA VF0273 Flagella Motility VFC0204 (motA) flagellar motor protein [Flagella (VF0273) - Motility (VFC0204)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5578 100.0 0.0 fimX VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (fimX) protein FimX [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5608 100.0 0.0 waaA VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (waaA) lipopolysaccharide core biosynthesis protein WaaP [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5629 99.627 0.0 waaP VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (waaP) UDP-glucose:(heptosyl) LPS alpha 1,3-glucosyltransferase WaaG [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5630 99.464 0.0 waaG VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (waaG) B-band O-antigen polymerase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5631 99.437 0.0 waaC VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (waaC) 3-deoxy-D-manno-octulosonic-acid (KDO) transferase [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5632 99.71 0.0 waaF VF0085 LPS Immune modulation VFC0258 Two distinct forms of LPS: A-band and B-band. A-band is a homopolymer of alpha-linked D-rhamnose, whereas B-band LPS is a heteropolymer (waaF) heptosyltransferase I [LPS (VF0085) - Immune modulation (VFC0258)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5660 99.44 0.0 pilQ VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilQ) type 4 fimbrial biogenesis protein PilQ [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5661 100.0 3.78E-128 pilP VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilP) type IV pilus biogenesis protein PilP [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5662 100.0 2.96E-154 pilO VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilO) type IV pilus inner membrane platform protein PilO [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5663 100.0 7.38E-146 pilN VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilN) type IV pilus inner membrane platform protein PilN [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5664 100.0 0.0 pilM VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (pilM) type IV pilus inner membrane platform protein PilM [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5708 94.497 0.0 pldB/tle5b VF1350 HSI-3 T6SS secreted effectors Effector delivery system VFC0086 (pldB/tle5b) phospholipase D [HSI-3 T6SS secreted effectors (VF1350) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5797 62.284 1.25E-131 wbtL VF0542 LPS Immune modulation VFC0258 The structure of Francisella spp. lipid A is unique in that it is modified by various carbohydrates that greatly reduce TLR4 activation and allow for immune evasion (wbtL) glucose-1-phosphate thymidylyltransferase [LPS (VF0542) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AFXJ01000001.1_5892 100.0 1.13E-117 algQ VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algQ) Alginate regulatory protein AlgQ [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5898 100.0 0.0 algR VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algR) alginate biosynthesis regulatory protein AlgR [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5899 100.0 0.0 algZ VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algZ) sigma factor AlgU [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5904 100.0 1.69E-130 hcpA VF0943 HSI-2 Effector delivery system VFC0086 P. aeruginosa encodes three distinct T6SS loci, H1- to H3-T6SS. While H1-T6SS has only been involved in antibacterial activity so far, H2-T6SS and H3-T6SS can target both bacterial and eukaryotic cells possessing even as said earlier trans-kingdom effectors. (hcpA) Hcp family type VI secretion system effector [HSI-2 (VF0943) - Effector delivery system (VFC0086)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5959 99.424 0.0 algC VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algC) phosphomannomutase AlgC [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_5969 100.0 0.0 crc VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (crc) catabolite repression control protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AFXJ01000001.1_6122 100.0 0.0 algB VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algB) two-component response regulator AlgB [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa