Basic Information
Accession number
GCA_000253495.2
Release date
2012-03-16
Organism
Campylobacter coli 2553
Species name
Campylobacter coli

Assembly level
Contig
Assembly name
ASM25349v2
Assembly submitter
Cornell University
Assembly Type
haploid
Genome size
1.8 Mb
GC percent
31.0
Contig count
208

Collection date
-
Sample location
-
Host
turkey
Isolation source
-
Isolate type
-
Strain
2553
Isolate
-
ARG List
ORF_ID Pass_Bitscore Best_Hit_Bitscore Best_Hit_ARO Best_Identities ARO Model_type SNPs_in_Best_Hit_ARO Other_SNPs Drug class Resistance mechanism AMR gene family Description
AIMM01000062.1_4 # 2159 # 4078 300.0 1323.53 tet(O) 100.0 ARO:3000190 protein homolog model tetracycline antibiotic antibiotic target protection tetracycline-resistant ribosomal protection protein Tet(O) is a ribosomal protection protein. It is associated with conjugative plasmids.
AIMM01000041.1_1 # 65 # 859 500.0 536.184 APH(3')-IIIa 100.0 ARO:3002647 protein homolog model aminoglycoside antibiotic antibiotic inactivation APH(3') APH(3')-IIIa is a plasmid-encoded aminoglycoside phosphotransferase in S. aureus and Enterococcus spp.
AIMM01000027.1_7 # 4341 # 5114 500.0 516.153 OXA-489 100.0 ARO:3005724 protein homolog model carbapenem; cephalosporin; penam antibiotic inactivation OXA beta-lactamase OXA-489 is a OXA beta-lactamase.
AIMM01000018.1_32 # 35070 # 37637 1200.0 1495.72 Campylobacter jejuni gyrA conferring resistance to fluoroquinolones 90.51 ARO:3003789 protein variant model T86I fluoroquinolone antibiotic antibiotic target alteration fluoroquinolone resistant gyrA Campylobacter jejuni is a major bacterial infectious agent associated with gastroenteritis. Quinolone resistance is reportedly conferred by a single C-257-T nucleotide substitution in the gyrA gene.
VF List
Query_id %Identity E-value Related genes VF ID Virulence factor VFcategory VFcategoryID Characteristics Description Strain
AIMM01000190.1_1 89.333 5.05E-40 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000183.1_1 81.429 1.35E-33 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000181.1_1 98.889 6.12E-56 pseE/maf5 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseE/maf5) motility accessory factor PseE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000180.1_1 100.0 3.52E-45 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000177.1_2 100.0 2.0E-8 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000164.1_1 62.308 4.07E-52 pseE/maf5 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseE/maf5) motility accessory factor PseE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000148.1_1 72.727 5.13E-33 maf4 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (maf4) motility accessory factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000146.1_1 100.0 1.31E-43 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000139.1_1 84.834 2.93E-91 flaA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaA) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000132.1_1 96.793 0.0 pseI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseI) N-acetylneuraminic acid synthetase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000127.1_1 100.0 1.11E-44 flaA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaA) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000127.1_2 100.0 1.51E-18 flaB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaB) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000122.1_1 72.642 8.57E-47 maf4 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (maf4) motility accessory factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000114.1_1 96.825 1.2E-125 flaB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaB) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000098.1_1 100.0 3.11E-17 flaA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaA) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000079.1_2 85.357 2.91E-176 fliY VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliY) flagellar motor switch protein FliY [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000079.1_3 98.329 0.0 fliM VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliM) flagellar motor switch protein FliM [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000079.1_4 91.739 1.0E-142 fliA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliA) flagellar biosynthesis sigma factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000079.1_6 95.833 0.0 flhG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhG) ATP-binding protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000079.1_7 87.269 0.0 flhF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhF) flagellar biosynthesis regulator FlhF [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000075.1_9 66.845 5.36E-93 clpP VF0074 ClpP Stress survival VFC0282 21.6 kDa protein belongs to a family of proteases highly conserved in prokaryotes and eukaryotes (clpP) ATP-dependent Clp protease proteolytic subunit [ClpP (VF0074) - Stress survival (VFC0282)] [Listeria monocytogenes EGD-e] Listeria monocytogenes
AIMM01000075.1_12 95.662 0.0 fliI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliI) flagellum-specific ATP synthase FliI [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000067.1_9 60.759 0.0 vipB VF0480 T6SS Effector delivery system VFC0086 (vipB) Type VI secretion system contractile sheath large subunit TssC/VipB [T6SS (VF0480) - Effector delivery system (VFC0086)] [Aeromonas hydrophila subsp. hydrophila ATCC 7966] Aeromonas hydrophila
AIMM01000061.1_1 97.414 2.08E-172 pseF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseF) acylneuraminate cytidylyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000061.1_2 99.635 0.0 pseG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseG) UDP-2,4-diacetamido-2,4,6-trideoxy-beta-L-altropyranose hydrolase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000061.1_3 88.535 1.48E-102 pseH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseH) N-acetyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000061.1_6 99.735 0.0 pseA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseA) pseudaminic acid biosynthesis PseA protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000058.1_26 79.441 0.0 ciaB VF0324 CiaB Invasion VFC0083 73-kDa protein secreted by the flagellin export apparatus; CiaB lacks an identifiable signal sequence, and an environmental stimulus is required to induce Cia protein secretion, but there is no evidence of a type III secretion system (ciaB) invasion antigen CiaB [CiaB (VF0324) - Invasion (VFC0083)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000058.1_32 84.556 1.9E-164 pebA VF0327 PEB1 Adherence VFC0001 An aspartate/glutamate-binding protein of an ABC transporter, essential for microaerobic growth on dicarboxylic amino acids (pebA) bifunctional adhesin/ABC transporter aspartate/glutamate-binding protein [PEB1 (VF0327) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000052.1_23 96.899 2.5E-89 fliW VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliW) flagellar assembly protein FliW [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000049.1_1 96.359 0.0 pseE/maf5 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseE/maf5) motility accessory factor PseE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000049.1_2 100.0 3.18E-45 flaB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaB) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000048.1_30 83.447 0.0 flgE2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgE2) flagellar hook protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000044.1_4 76.413 0.0 eptC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (eptC) phosphoethanolamine transferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000043.1_2 79.545 3.89E-129 flgA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgA) flagellar basal body P-ring biosynthesis protein FlgA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000037.1_3 88.166 0.0 flgS VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgS) signal transduction histidine kinase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000037.1_5 98.0 0.0 flgL VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgL) flagellar hook-associated protein FlgL [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000037.1_8 89.706 2.16E-88 Cj0883c VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (Cj0883c) transcriptional regulator [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000037.1_9 96.138 0.0 flhA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhA) flagellar biosynthesis protein FlhA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000036.1_41 96.943 1.62E-159 fliP VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliP) flagellar biosynthesis protein FliP [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000034.1_16 78.986 5.51E-158 fliH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliH) flagellar assembly protein H [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000034.1_17 99.123 0.0 fliG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliG) flagellar motor switch protein G [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000034.1_18 94.821 0.0 fliF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliF) flagellar M-ring protein FliF [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000033.1_2 72.431 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AIMM01000028.1_7 66.917 2.49E-129 cdtB VF0115 CDT Exotoxin VFC0235 (cdtB) cytolethal distending toxin B [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000028.1_13 95.597 0.0 cheV VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheV) chemotaxis protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000028.1_14 93.498 0.0 cheA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheA) chemotaxis histidine kinase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000028.1_15 95.954 3.18E-120 cheW VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheW) chemotaxis protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000026.1_53 80.723 0.0 cadF VF0322 CadF Adherence VFC0001 (cadF) outer membrane fibronectin-binding protein [CadF (VF0322) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000026.1_64 96.053 0.0 flgK VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgK) flagellar hook-associated protein 1 FlgK [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000026.1_66 100.0 2.1E-41 flgM VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgM) negative regulator of flagellin synthesis [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000026.1_67 98.23 7.62E-77 flgJ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgJ) flagellar rod assembly protein/muramidase FlgJ [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000026.1_68 93.391 0.0 flgI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgI) flagellar P-ring protein precursor FlgI [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000021.1_1 99.225 1.15E-84 pseE/maf5 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseE/maf5) motility accessory factor PseE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000020.1_15 81.633 4.29E-159 flgD VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgD) flagellar basal-body rod modification protein FlgD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000020.1_16 95.413 0.0 flgE VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgE) flagellar hook protein FlgE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000018.1_33 86.705 3.12E-107 flgP VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgP) required for flagellar motility [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000018.1_34 79.866 3.65E-88 flgQ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgQ) required for flagellar motility [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000018.1_35 83.834 0.0 flgR VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgR) sigma-54 associated transcriptional activator [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_2 89.37 9.73E-165 fliR VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliR) flagellar biosynthetic protein FliR [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_24 80.0 1.41E-106 gmhB VF0326 LOS Immune modulation VFC0258 (gmhB) D-glycero-alpha-D-manno-heptose-1,7-bisphosphate 7-phosphatase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_25 93.375 0.0 hldD VF0326 LOS Immune modulation VFC0258 (hldD) ADP-glyceromanno-heptose 6-epimerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_26 92.018 0.0 hldE VF0326 LOS Immune modulation VFC0258 (hldE) bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_27 95.161 4.59E-131 gmhA VF0326 LOS Immune modulation VFC0258 (gmhA) phosphoheptose isomerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_28 94.671 0.0 waaF VF0326 LOS Immune modulation VFC0258 (waaF) heptosyltransferase II [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_29 92.222 0.0 waaV VF0326 LOS Immune modulation VFC0258 (waaV) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_39 62.733 3.15E-152 Cj1137c VF0326 LOS Immune modulation VFC0258 (Cj1137c) glycosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_40 66.494 0.0 Cj1136 VF0326 LOS Immune modulation VFC0258 (Cj1136) glycosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_41 79.223 0.0 Cj1135 VF0326 LOS Immune modulation VFC0258 (Cj1135) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_42 64.286 2.68E-137 htrB VF0326 LOS Immune modulation VFC0258 (htrB) lipid A biosynthesis lauroyl acyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_43 81.287 0.0 waaC VF0326 LOS Immune modulation VFC0258 (waaC) heptosyltransferase I [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000016.1_56 93.846 1.67E-87 cheY VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheY) chemotaxis regulatory protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000015.1_19 72.671 5.71E-89 luxS VF0406 AI-2 Biofilm VFC0271 AI-2 is produced and detected by a wide variety of bacteria and is presumed to facilitate interspecies communications. (luxS) S-ribosylhomocysteinase [AI-2 (VF0406) - Biofilm (VFC0271)] [Vibrio cholerae O1 biovar El Tor str. N16961] Vibrio cholerae
AIMM01000015.1_46 62.286 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AIMM01000014.1_23 89.899 9.93E-59 fliE VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliE) flagellar hook-basal body complex protein FliE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000014.1_24 98.78 4.61E-120 flgC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgC) flagellar basal body rod protein FlgC [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000014.1_25 97.203 2.09E-102 flgB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgB) flagellar basal body rod protein FlgB [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000014.1_44 100.0 1.6E-86 flaG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaG) a negative regulator of flagellar assembly [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000014.1_45 98.287 0.0 fliD VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliD) flagellar capping protein FliD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000014.1_46 100.0 1.07E-91 fliS VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliS) flagellar protein FliS [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000014.1_59 78.049 0.0 Cj1279c VF0637 FlpA Adherence VFC0001 (Cj1279c) fibronectin domain-containing lipoprotein [FlpA (VF0637) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000014.1_79 71.167 0.0 porA VF0328 MOMP Adherence VFC0001 (porA) major outer membrane protein [MOMP (VF0328) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000011.1_46 87.26 0.0 rpoN VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (rpoN) RNA polymerase factor sigma-54 [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000011.1_54 94.397 1.37E-165 flgH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgH) flagellar L-ring protein precursor FlgH [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000011.1_63 92.963 0.0 flgG2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgG2) flagellar basal-body rod protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000011.1_64 97.338 0.0 flgG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgG) flagellar basal-body rod protein FlgG [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000011.1_86 94.378 1.8E-168 flaC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaC) a secreted effector flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000009.1_10 94.933 0.0 pseC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseC) C4 aminotransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000009.1_11 97.904 0.0 pseB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseB) UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000009.1_69 82.828 2.48E-44 ciaC VF0415 CiaC Invasion VFC0083 Exported via the flagellar T3SS (ciaC) Campylobacter invasion antigen C [CiaC (VF0415) - Invasion (VFC0083)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000007.1_53 95.506 1.81E-56 fliQ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliQ) flagellar biosynthesis protein FliQ [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000005.1_2 91.989 0.0 flhB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhB) flagellar biosynthetic protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000005.1_3 78.423 6.65E-144 motB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (motB) flagellar motor protein MotB [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000005.1_4 97.287 0.0 motA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (motA) flagellar motor protein MotA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000005.1_18 94.118 5.33E-65 fliN VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliN) flagellar motor switch protein FliN [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000004.1_2 80.103 0.0 pflA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pflA) paralysed flagellum protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000003.1_1 98.828 0.0 ptmA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (ptmA) flagellin modification protein A [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000003.1_2 99.574 7.55E-176 ptmB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (ptmB) acylneuraminate cytidylyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000002.1_59 92.147 2.31E-107 Cj0371 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (Cj0371) hypothetical protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_7 77.22 2.16E-141 kpsM VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsM) capsule polysaccharide ABC transporter permease [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_8 90.411 1.49E-150 kpsT VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsT) capsule polysaccharide ABC transporter ATP-binding protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_9 77.688 0.0 kpsE VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsE) capsule polysaccharide ABC transporter permease [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_10 83.394 0.0 kpsD VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsD) capsule polysaccharide ABC transporter substrate-binding protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_11 89.206 0.0 kpsF VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsF) D-arabinose 5-phosphate isomerase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_20 74.771 1.52E-114 neuA1 VF0326 LOS Immune modulation VFC0258 (neuA1) bifunctional beta-1,4-N-acetylgalactosaminyltransferase/CMP-Neu5Ac synthase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_21 88.679 0.0 neuC1 VF0326 LOS Immune modulation VFC0258 (neuC1) UDP-N-acetylglucosamine 2-epimerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_22 84.884 0.0 neuB1 VF0326 LOS Immune modulation VFC0258 (neuB1) sialic acid synthase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_33 68.215 0.0 kpsC VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsC) capsule polysaccharide modification protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_34 87.245 0.0 kpsS VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsS) capsule polysaccharide modification protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMM01000001.1_39 95.506 1.55E-121 fliL VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliL) flagellar basal body protein FliL [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni