Basic Information
Accession number
GCA_000253655.2
Release date
2012-03-16
Organism
Campylobacter coli 86119
Species name
Campylobacter coli

Assembly level
Contig
Assembly name
ASM25365v2
Assembly submitter
Cornell University
Assembly Type
haploid
Genome size
1.7 Mb
GC percent
31.5
Contig count
120

Collection date
-
Sample location
-
Host
chicken
Isolation source
-
Isolate type
-
Strain
86119
Isolate
-
ARG List
ORF_ID Pass_Bitscore Best_Hit_Bitscore Best_Hit_ARO Best_Identities ARO Model_type SNPs_in_Best_Hit_ARO Other_SNPs Drug class Resistance mechanism AMR gene family Description
AIMU01000042.1_4 # 2159 # 4078 300.0 1321.99 tet(O) 99.84 ARO:3000190 protein homolog model tetracycline antibiotic antibiotic target protection tetracycline-resistant ribosomal protection protein Tet(O) is a ribosomal protection protein. It is associated with conjugative plasmids.
VF List
Query_id %Identity E-value Related genes VF ID Virulence factor VFcategory VFcategoryID Characteristics Description Strain
AIMU01000119.1_1 83.117 2.45E-38 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000114.1_1 95.714 1.49E-43 Cj1138 VF0326 LOS Immune modulation VFC0258 (Cj1138) glycosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000112.1_1 82.192 2.76E-34 maf4 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (maf4) motility accessory factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000111.1_1 98.889 5.94E-56 pseE/maf5 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseE/maf5) motility accessory factor PseE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000108.1_1 66.667 1.89E-32 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000106.1_1 98.425 9.79E-83 pseE/maf5 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseE/maf5) motility accessory factor PseE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000102.1_1 100.0 1.51E-18 flaB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaB) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000102.1_2 100.0 1.4E-30 flaA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaA) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000094.1_1 87.805 1.08E-44 maf4 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (maf4) motility accessory factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000092.1_1 65.385 3.29E-41 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000087.1_1 100.0 5.54E-31 flaB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaB) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000087.1_2 96.438 0.0 pseE/maf5 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseE/maf5) motility accessory factor PseE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000084.1_1 96.203 1.08E-102 flaB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaB) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000066.1_1 97.668 0.0 pseI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseI) N-acetylneuraminic acid synthetase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000065.1_1 97.297 9.62E-45 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000064.1_1 65.476 1.8E-32 pseD/maf2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseD/maf2) motility accessory factor PseD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000063.1_1 83.197 9.93E-108 flaA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaA) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000056.1_1 97.143 1.8E-16 flaA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaA) flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000054.1_10 96.943 1.62E-159 fliP VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliP) flagellar biosynthesis protein FliP [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000053.1_9 76.172 0.0 eptC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (eptC) phosphoethanolamine transferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000041.1_2 79.545 3.89E-129 flgA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgA) flagellar basal body P-ring biosynthesis protein FlgA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000040.1_1 99.569 3.66E-175 pseF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseF) acylneuraminate cytidylyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000040.1_2 99.635 0.0 pseG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseG) UDP-2,4-diacetamido-2,4,6-trideoxy-beta-L-altropyranose hydrolase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000040.1_3 88.535 1.48E-102 pseH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseH) N-acetyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000040.1_6 99.206 0.0 pseA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseA) pseudaminic acid biosynthesis PseA protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000038.1_3 85.357 2.91E-176 fliY VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliY) flagellar motor switch protein FliY [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000038.1_4 98.329 0.0 fliM VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliM) flagellar motor switch protein FliM [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000038.1_5 91.739 1.0E-142 fliA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliA) flagellar biosynthesis sigma factor [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000038.1_7 95.833 0.0 flhG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhG) ATP-binding protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000038.1_8 87.064 0.0 flhF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhF) flagellar biosynthesis regulator FlhF [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000037.1_2 72.431 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AIMU01000031.1_22 93.846 1.67E-87 cheY VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheY) chemotaxis regulatory protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000031.1_35 80.994 0.0 waaC VF0326 LOS Immune modulation VFC0258 (waaC) heptosyltransferase I [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000031.1_36 64.626 2.98E-138 htrB VF0326 LOS Immune modulation VFC0258 (htrB) lipid A biosynthesis lauroyl acyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000031.1_37 73.204 0.0 Cj1135 VF0326 LOS Immune modulation VFC0258 (Cj1135) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000031.1_43 84.387 3.84E-169 waaV VF0326 LOS Immune modulation VFC0258 (waaV) glucosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000031.1_44 92.926 0.0 waaF VF0326 LOS Immune modulation VFC0258 (waaF) heptosyltransferase II [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000031.1_46 95.699 2.87E-131 gmhA VF0326 LOS Immune modulation VFC0258 (gmhA) phosphoheptose isomerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000031.1_47 89.8 0.0 hldE VF0326 LOS Immune modulation VFC0258 (hldE) bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000031.1_48 96.215 0.0 hldD VF0326 LOS Immune modulation VFC0258 (hldD) ADP-glyceromanno-heptose 6-epimerase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000031.1_49 80.435 7.01E-106 gmhB VF0326 LOS Immune modulation VFC0258 (gmhB) D-glycero-alpha-D-manno-heptose-1,7-bisphosphate 7-phosphatase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000031.1_71 89.37 9.73E-165 fliR VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliR) flagellar biosynthetic protein FliR [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000030.1_1 98.047 0.0 ptmA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (ptmA) flagellin modification protein A [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000030.1_2 97.021 2.09E-170 ptmB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (ptmB) acylneuraminate cytidylyltransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000029.1_13 65.19 0.0 fliK VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliK) flagellar hook-length control protein FliK [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000029.1_14 88.776 2.97E-164 flgD VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgD) flagellar basal-body rod modification protein FlgD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000029.1_15 94.862 0.0 flgE VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgE) flagellar hook protein FlgE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000027.1_17 69.005 0.0 porA VF0328 MOMP Adherence VFC0001 (porA) major outer membrane protein [MOMP (VF0328) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000027.1_37 78.049 0.0 Cj1279c VF0637 FlpA Adherence VFC0001 (Cj1279c) fibronectin domain-containing lipoprotein [FlpA (VF0637) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000026.1_5 62.286 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AIMU01000026.1_32 72.671 5.71E-89 luxS VF0406 AI-2 Biofilm VFC0271 AI-2 is produced and detected by a wide variety of bacteria and is presumed to facilitate interspecies communications. (luxS) S-ribosylhomocysteinase [AI-2 (VF0406) - Biofilm (VFC0271)] [Vibrio cholerae O1 biovar El Tor str. N16961] Vibrio cholerae
AIMU01000023.1_1 100.0 2.92E-31 Cj1138 VF0326 LOS Immune modulation VFC0258 (Cj1138) glycosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000023.1_3 78.297 0.0 glf VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (glf) UDP-galactopyranose mutase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000022.1_23 96.899 2.5E-89 fliW VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliW) flagellar assembly protein FliW [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000021.1_45 89.899 9.93E-59 fliE VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliE) flagellar hook-basal body complex protein FliE [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000021.1_46 98.78 4.61E-120 flgC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgC) flagellar basal body rod protein FlgC [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000021.1_47 97.203 2.09E-102 flgB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgB) flagellar basal body rod protein FlgB [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000021.1_66 100.0 1.6E-86 flaG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaG) a negative regulator of flagellar assembly [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000021.1_67 98.287 0.0 fliD VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliD) flagellar capping protein FliD [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000021.1_68 100.0 1.07E-91 fliS VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliS) flagellar protein FliS [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000019.1_50 84.556 1.9E-164 pebA VF0327 PEB1 Adherence VFC0001 An aspartate/glutamate-binding protein of an ABC transporter, essential for microaerobic growth on dicarboxylic amino acids (pebA) bifunctional adhesin/ABC transporter aspartate/glutamate-binding protein [PEB1 (VF0327) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000019.1_56 79.441 0.0 ciaB VF0324 CiaB Invasion VFC0083 73-kDa protein secreted by the flagellin export apparatus; CiaB lacks an identifiable signal sequence, and an environmental stimulus is required to induce Cia protein secretion, but there is no evidence of a type III secretion system (ciaB) invasion antigen CiaB [CiaB (VF0324) - Invasion (VFC0083)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000018.1_13 96.0 0.0 flhA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhA) flagellar biosynthesis protein FlhA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000018.1_14 89.706 2.16E-88 Cj0883c VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (Cj0883c) transcriptional regulator [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000018.1_17 98.0 0.0 flgL VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgL) flagellar hook-associated protein FlgL [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000017.1_63 95.506 1.55E-121 fliL VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliL) flagellar basal body protein FliL [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000017.1_68 88.265 0.0 kpsS VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsS) capsule polysaccharide modification protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000017.1_69 68.215 0.0 kpsC VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsC) capsule polysaccharide modification protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000015.1_1 95.662 0.0 fliI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliI) flagellum-specific ATP synthase FliI [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000015.1_4 66.845 5.36E-93 clpP VF0074 ClpP Stress survival VFC0282 21.6 kDa protein belongs to a family of proteases highly conserved in prokaryotes and eukaryotes (clpP) ATP-dependent Clp protease proteolytic subunit [ClpP (VF0074) - Stress survival (VFC0282)] [Listeria monocytogenes EGD-e] Listeria monocytogenes
AIMU01000013.1_65 80.233 0.0 pflA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pflA) paralysed flagellum protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000012.1_11 94.667 0.0 pseC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseC) C4 aminotransferase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000012.1_12 97.305 0.0 pseB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (pseB) UDP-GlcNAc-specific C4,6 dehydratase/C5 epimerase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000012.1_70 82.828 2.48E-44 ciaC VF0415 CiaC Invasion VFC0083 Exported via the flagellar T3SS (ciaC) Campylobacter invasion antigen C [CiaC (VF0415) - Invasion (VFC0083)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000011.1_16 83.834 0.0 flgR VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgR) sigma-54 associated transcriptional activator [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000011.1_17 79.866 3.65E-88 flgQ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgQ) required for flagellar motility [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000011.1_18 86.705 3.12E-107 flgP VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgP) required for flagellar motility [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000010.1_3 88.166 0.0 flgS VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgS) signal transduction histidine kinase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_87 81.269 0.0 cadF VF0322 CadF Adherence VFC0001 (cadF) outer membrane fibronectin-binding protein [CadF (VF0322) - Adherence (VFC0001)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_98 96.053 0.0 flgK VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgK) flagellar hook-associated protein 1 FlgK [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_100 100.0 2.1E-41 flgM VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgM) negative regulator of flagellin synthesis [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_101 96.46 5.49E-76 flgJ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgJ) flagellar rod assembly protein/muramidase FlgJ [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_102 93.391 0.0 flgI VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgI) flagellar P-ring protein precursor FlgI [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_117 77.22 2.16E-141 kpsM VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsM) capsule polysaccharide ABC transporter permease [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_118 90.411 1.49E-150 kpsT VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsT) capsule polysaccharide ABC transporter ATP-binding protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_119 77.957 0.0 kpsE VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsE) capsule polysaccharide ABC transporter permease [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_120 83.032 0.0 kpsD VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsD) capsule polysaccharide ABC transporter substrate-binding protein [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_121 88.254 0.0 kpsF VF0323 Capsule Immune modulation VFC0258 Major antigenic component of the classic Penner serotyping system; Variation in the capsule structure may cause by multiple mechanisms, such as exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and the presence of homopolymeric G tracts in several cps genes (kpsF) D-arabinose 5-phosphate isomerase [Capsule (VF0323) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000005.1_123 98.148 4.41E-31 Cj1138 VF0326 LOS Immune modulation VFC0258 (Cj1138) glycosyltransferase [LOS (VF0326) - Immune modulation (VFC0258)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_26 95.954 3.18E-120 cheW VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheW) chemotaxis protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_27 93.498 0.0 cheA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheA) chemotaxis histidine kinase [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_28 95.597 0.0 cheV VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (cheV) chemotaxis protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_35 66.917 2.49E-129 cdtB VF0115 CDT Exotoxin VFC0235 (cdtB) cytolethal distending toxin B [CDT (VF0115) - Exotoxin (VFC0235)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_68 94.821 0.0 fliF VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliF) flagellar M-ring protein FliF [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_69 99.123 0.0 fliG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliG) flagellar motor switch protein G [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_70 78.986 5.51E-158 fliH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliH) flagellar assembly protein H [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_88 91.989 0.0 flhB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flhB) flagellar biosynthetic protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_89 78.423 6.65E-144 motB VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (motB) flagellar motor protein MotB [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_90 97.287 0.0 motA VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (motA) flagellar motor protein MotA [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_104 94.118 5.33E-65 fliN VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliN) flagellar motor switch protein FliN [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000004.1_123 93.717 1.96E-107 Cj0371 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (Cj0371) hypothetical protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000002.1_15 94.779 7.64E-169 flaC VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flaC) a secreted effector flagellin [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000002.1_37 97.338 0.0 flgG VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgG) flagellar basal-body rod protein FlgG [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000002.1_38 93.333 0.0 flgG2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgG2) flagellar basal-body rod protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000002.1_47 94.397 1.37E-165 flgH VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgH) flagellar L-ring protein precursor FlgH [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000002.1_55 87.26 0.0 rpoN VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (rpoN) RNA polymerase factor sigma-54 [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000001.1_30 96.305 0.0 flgE2 VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (flgE2) flagellar hook protein [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni
AIMU01000001.1_83 95.506 1.81E-56 fliQ VF0114 Flagella Motility VFC0204 Two different (approximately 59-kDa) flagellin subunits, FlaA and FlaB are subject to both antigenic variation and phase variation; The expression of FlaA and FlaB is controlled by different transcription factors, namely the alternative sigma28 (FlaA) and sigma54 (FlaB) transcription factors; post-translationally modified through O-linked glycosylation. The major modification are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted pseudaminic acid (PseAm). There are also minor amounts of a dihydroxyproprionyl form (Pse5Pr7Pr) and an O-acetylated form (Pse5Ac7Ac8OAc); the exact role of glycosylation is unknown. The modification appears to be important for flagellar assembly and may be required for recognition by the flagellar secretion/assembly apparatus (fliQ) flagellar biosynthesis protein FliQ [Flagella (VF0114) - Motility (VFC0204)] [Campylobacter jejuni subsp. jejuni NCTC 11168] Campylobacter jejuni