Basic Information
Accession number
GCA_000263095.1
Release date
2012-05-16
Organism
Klebsiella pneumoniae subsp. pneumoniae LZ
Species name
Klebsiella pneumoniae

Assembly level
Contig
Assembly name
Klebphe1.0
Assembly submitter
Shanghai Jiao Tong University
Assembly Type
haploid
Genome size
5.4 Mb
GC percent
57.0
Contig count
196

Collection date
-
Sample location
-
Host
-
Isolation source
soil
Isolate type
Environment
Strain
LZ
Isolate
-
ARG List
ORF_ID Pass_Bitscore Best_Hit_Bitscore Best_Hit_ARO Best_Identities ARO Model_type SNPs_in_Best_Hit_ARO Other_SNPs Drug class Resistance mechanism AMR gene family Description
AJVY01000009.1_8 # 6941 # 7801 550.0 580.867 SHV-11 100.0 ARO:3001070 protein homolog model carbapenem; cephalosporin; penam antibiotic inactivation SHV beta-lactamase SHV-11 is a broad-spectrum beta-lactamase found in E. coli, Klebsiella pneumoniae, Proteus mirabilis, and Shigella dysenteriae.
AJVY01000009.1_28 # 27904 # 28278 230.0 243.432 marA 92.74 ARO:3000263 protein homolog model fluoroquinolone antibiotic; monobactam; carbapenem; cephalosporin; glycylcycline; cephamycin; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; penem; disinfecting agents and antiseptics antibiotic efflux; reduced permeability to antibiotic resistance-nodulation-cell division (RND) antibiotic efflux pump; General Bacterial Porin with reduced permeability to beta-lactams In the presence of antibiotic stress, E. coli overexpresses the global activator protein MarA, which besides inducing MDR efflux pump AcrAB, also down- regulates synthesis of the porin OmpF.
AJVY01000014.1_82 # 92906 # 93538 400.0 432.95 CRP 99.05 ARO:3000518 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; penam antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump CRP is a global regulator that represses MdtEF multidrug efflux pump expression.
AJVY01000022.1_12 # 13902 # 14321 280.0 283.878 FosA6 98.56 ARO:3004111 protein homolog model phosphonic acid antibiotic antibiotic inactivation fosfomycin thiol transferase FosA6 is a plasmid-encoded enzyme that confers resistance to fosfomycin in Escherichia coli by breaking the epoxide ring of the molecule.
AJVY01000028.1_7 # 6190 # 7173 550.0 577.785 PmrF 83.69 ARO:3003578 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase PmrF is required for the synthesis and transfer of 4-amino-4-deoxy-L-arabinose (Ara4N) to Lipid A, which allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. pmrF corresponds to 1 locus in Pseudomonas aeruginosa PAO1 and 1 locus in Pseudomonas aeruginosa LESB58.
AJVY01000028.1_10 # 10054 # 11709 400.0 1093.18 ArnT 99.27 ARO:3005053 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase ArnT is involved in Cell Wall Biosynthesis, specifically 4-amino-4-deoxy-L-arabinose (Ara4N). It confers resistance to peptide antibiotics.
AJVY01000039.1_121 # 142223 # 143173 500.0 541.576 leuO 83.44 ARO:3003843 protein homolog model nucleoside antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump leuO, a LysR family transcription factor, exists in a wide variety of bacteria of the family Enterobacteriaceae and is involved in the regulation of as yet unidentified genes affecting the stress response and pathogenesis expression. LeuO is also an activator of the MdtNOP efflux pump.
AJVY01000039.1_151 # 181704 # 184052 1500.0 1619.75 LptD 100.0 ARO:3005059 protein homolog model peptide antibiotic; aminocoumarin antibiotic; rifamycin antibiotic antibiotic efflux ATP-binding cassette (ABC) antibiotic efflux pump LptD is involved in LPS transport in a ABC Transporter efflux system. It confers resistance to rifamycin, aminocoumarin, and peptide antibiotics.
AJVY01000075.1_21 # 23444 # 26590 1900.0 1941.39 acrB 91.52 ARO:3000216 protein homolog model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump Protein subunit of AcrA-AcrB-TolC multidrug efflux complex. AcrB functions as a herterotrimer which forms the inner membrane component and is primarily responsible for substrate recognition and energy transduction by acting as a drug/proton antiporter.
AJVY01000075.1_145 # 147098 # 148195 250.0 260.766 vanG 38.66 ARO:3002909 protein homolog model glycopeptide antibiotic antibiotic target alteration glycopeptide resistance gene cluster; Van ligase VanG is a D-Ala-D-Ala ligase homolog that can synthesize D-Ala-D-Ser, an alternative substrate for peptidoglycan synthesis that reduces vancomycin binding affinity in Enterococcus faecalis.
AJVY01000086.1_21 # 25730 # 26092 150.0 223.402 Klebsiella pneumoniae KpnE 99.17 ARO:3004580 protein homolog model macrolide antibiotic; aminoglycoside antibiotic; cephalosporin; tetracycline antibiotic; peptide antibiotic; rifamycin antibiotic; disinfecting agents and antiseptics antibiotic efflux small multidrug resistance (SMR) antibiotic efflux pump KpnE subunit of KpnEF resembles EbrAB from E. coli. Mutation in KpnEF resulted in increased susceptibility to cefepime, ceftriaxon, colistin, erythromycin, rifampin, tetracycline, and streptomycin as well as enhanced sensitivity toward sodium dodecyl sulfate, deoxycholate, dyes, benzalkonium chloride, chlorhexidine, and triclosan.
AJVY01000086.1_22 # 26079 # 26408 150.0 206.453 Klebsiella pneumoniae KpnF 100.0 ARO:3004583 protein homolog model macrolide antibiotic; aminoglycoside antibiotic; cephalosporin; tetracycline antibiotic; peptide antibiotic; rifamycin antibiotic; disinfecting agents and antiseptics antibiotic efflux small multidrug resistance (SMR) antibiotic efflux pump KpnF subunit of KpnEF resembles EbrAB from E. coli. Mutation in KpnEF resulted in increased susceptibility to cefepime, ceftriaxon, colistin, erythromycin, rifampin, tetracycline, and streptomycin as well as enhanced sensitivity toward sodium dodecyl sulfate, deoxycholate, dyes, benzalkonium chloride, chlorhexidine, and triclosan.
AJVY01000088.1_22 # 30030 # 31703 1000.0 1160.98 eptB 99.46 ARO:3005047 protein homolog model peptide antibiotic antibiotic target alteration pmr phosphoethanolamine transferase eptB is a phosphoethanolamine transferase. It confers resistance to peptide antibiotics.
AJVY01000107.1_200 # 229714 # 230436 450.0 457.603 baeR 92.5 ARO:3000828 protein homolog model aminoglycoside antibiotic; aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump BaeR is a response regulator that promotes the expression of MdtABC and AcrD efflux complexes.
AJVY01000107.1_203 # 233364 # 236441 1800.0 1855.11 mdtC 91.41 ARO:3000794 protein homolog model aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MdtC is a transporter that forms a heteromultimer complex with MdtB to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex. In the absence of MdtB, MdtC can form a homomultimer complex that results in a functioning efflux complex with a narrower drug specificity. mdtC corresponds to 3 loci in Pseudomonas aeruginosa PAO1 (gene name: muxC/muxB) and 3 loci in Pseudomonas aeruginosa LESB58.
AJVY01000107.1_204 # 236442 # 239564 1800.0 1852.8 mdtB 90.77 ARO:3000793 protein homolog model aminocoumarin antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MdtB is a transporter that forms a heteromultimer complex with MdtC to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex.
AJVY01000113.1_62 # 62947 # 64017 700.0 727.243 OmpA 99.44 ARO:3005044 protein homolog model peptide antibiotic reduced permeability to antibiotic General Bacterial Porin with reduced permeability to peptide antibiotics OmpA is a porin that confers resistance to beta-lactam antibiotics.
AJVY01000113.1_103 # 113390 # 115138 1000.0 1125.15 msbA 92.61 ARO:3003950 protein homolog model nitroimidazole antibiotic antibiotic efflux ATP-binding cassette (ABC) antibiotic efflux pump MsbA is a multidrug resistance transporter homolog from E. coli and belongs to a superfamily of transporters that contain an adenosine triphosphate (ATP) binding cassette (ABC) which is also called a nucleotide-binding domain (NBD). MsbA is a member of the MDR-ABC transporter group by sequence homology. MsbA transports lipid A, a major component of the bacterial outer cell membrane, and is the only bacterial ABC transporter that is essential for cell viability.
AJVY01000113.1_170 # 194504 # 195736 700.0 706.057 Escherichia coli mdfA 85.61 ARO:3001328 protein homolog model tetracycline antibiotic; disinfecting agents and antiseptics antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump Multidrug efflux pump in E. coli. This multidrug efflux system was originally identified as the Cmr/CmlA chloramphenicol exporter.
AJVY01000164.1_41 # 40867 # 42021 700.0 720.309 Klebsiella pneumoniae OmpK37 94.27 ARO:3004122 protein homolog model monobactam; carbapenem; cephalosporin; cephamycin; penam; penem reduced permeability to antibiotic General Bacterial Porin with reduced permeability to beta-lactams Klebsiella pneumoniae outer membrane porin protein. Is preferentially detected in porin-deficient strains. Functional characterization of this new porin revealed a narrower pore than those of porins OmpK35 and OmpK36, which did not allow penetration by certain beta-lactams. Also, when a resistant strain expresses porin OmpK37 is less susceptible to cefotaxime and cefoxitin than when it is expressing either OmpK36 or OmpK35.
AJVY01000166.1_66 # 70062 # 73175 1900.0 1954.1 acrD 91.13 ARO:3000491 protein homolog model aminoglycoside antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AcrD is an aminoglycoside efflux pump expressed in E. coli. Its expression can be induced by indole, and is regulated by baeRS and cpxAR.
AJVY01000179.1_293 # 293538 # 296648 750.0 750.355 adeF 41.66 ARO:3000777 protein homolog model fluoroquinolone antibiotic; tetracycline antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump AdeF is the membrane fusion protein of the multidrug efflux complex AdeFGH.
AJVY01000189.1_161 # 169748 # 169933 100.0 109.383 rsmA 85.25 ARO:3005069 protein homolog model fluoroquinolone antibiotic; diaminopyrimidine antibiotic; phenicol antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump rsmA is a gene that regulates virulence of Pseudomonas aeruginosa. However, its negative effect on MexEF-OprN overexpression has been noted to confer resistance to various antibiotics. It's Escherichia coli homolog is csrA.
AJVY01000189.1_169 # 177350 # 178888 700.0 937.947 Klebsiella pneumoniae KpnH 94.02 ARO:3004597 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; carbapenem; cephalosporin; penam; peptide antibiotic; penem antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump KpnH consists of ~511 residues, resembles EmrB of E. coli, and is probably a translocase in the KpnGH-TolC efflux protein in K. pneumoniae. Disruption of the pump components KpnG-KpnH signficantly decrease resistance to azithromycin, ceftazidime, ciprofloxacin, ertapenem, erythromycin, gentamicin, imipenem, ticarcillin, norfloxacin, polymyxin-B, piperacillin, spectinomycin, tobramycin, and streptomycin.
AJVY01000189.1_170 # 178904 # 180076 700.0 785.408 Klebsiella pneumoniae KpnG 99.49 ARO:3004588 protein homolog model macrolide antibiotic; fluoroquinolone antibiotic; aminoglycoside antibiotic; carbapenem; cephalosporin; penam; peptide antibiotic; penem antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump KpnG consists of ~390 residues and resembles EmrA of E. coli. Disruption of the pump components KpnG-KpnH signficantly decrease resistance to azithromycin, ceftazidime, ciprofloxacin, ertapenem, erythromycin, gentamicin, imipenem, ticarcillin, norfloxacin, polymyxin-B, piperacillin, spectinomycin, tobramycin, and streptomycin.
AJVY01000189.1_171 # 180202 # 180732 280.0 338.961 emrR 92.57 ARO:3000516 protein homolog model fluoroquinolone antibiotic antibiotic efflux major facilitator superfamily (MFS) antibiotic efflux pump EmrR is a negative regulator for the EmrAB-TolC multidrug efflux pump in E. coli. Mutations lead to EmrAB-TolC overexpression.
AJVY01000189.1_213 # 220746 # 223898 2000.0 2114.73 oqxB 99.81 ARO:3003923 protein homolog model fluoroquinolone antibiotic; glycylcycline; tetracycline antibiotic; diaminopyrimidine antibiotic; nitrofuran antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump RND efflux pump conferring resistance to fluoroquinolone.
AJVY01000189.1_214 # 223922 # 225097 670.0 798.119 oqxA 100.0 ARO:3003922 protein homolog model fluoroquinolone antibiotic; glycylcycline; tetracycline antibiotic; diaminopyrimidine antibiotic; nitrofuran antibiotic antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump RND efflux pump conferring resistance to fluoroquinolone.
AJVY01000019.1_50 # 48838 # 50229 850.0 864.374 Escherichia coli UhpT with mutation conferring resistance to fosfomycin 95.03 ARO:3003890 protein variant model E350Q phosphonic acid antibiotic antibiotic target alteration antibiotic-resistant UhpT Mutations to the active importer UhpT, which is involved with the uptake of many phosphorylated sugars, confer resistance to fosfomycin by reducing import of the drug into the bacteria.
AJVY01000039.1_114 # 134236 # 136002 500.0 595.89 Haemophilus influenzae PBP3 conferring resistance to beta-lactam antibiotics 52.37 ARO:3004446 protein variant model D350N, S357N cephalosporin; cephamycin; penam antibiotic target alteration Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics PBP3 is a penicillin-binding protein and beta-lactam resistance enzyme encoded by the ftsI gene in Haemophilus influenzae. Mutations in ftsI confer resistance to beta-lactam antibiotics.
AJVY01000009.1_29 # 28299 # 28733 210.0 253.447 Escherichia coli AcrAB-TolC with MarR mutations conferring resistance to ciprofloxacin and tetracycline 84.03 ARO:3003378 protein overexpression model fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics antibiotic target alteration; antibiotic efflux resistance-nodulation-cell division (RND) antibiotic efflux pump MarR is a repressor of the mar operon marRAB, thus regulating the expression of marA, the activator of multidrug efflux pump AcrAB.
VF List
Query_id %Identity E-value Related genes VF ID Virulence factor VFcategory VFcategoryID Characteristics Description Strain
AJVY01000003.1_1 98.837 6.33E-57 vipA/tssB VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (vipA/tssB) type VI secretion system contractile sheath small subunit VipA [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000003.1_2 100.0 0.0 vipB/tssC VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (vipB/tssC) type VI secretion system contractile sheath large subunit VipB [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000003.1_3 99.105 0.0 vasE/tssK VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (vasE/tssK) type VI secretion system baseplate subunit TssK [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000003.1_4 100.0 1.62E-170 dotU/tssL VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (dotU/tssL) type VI secretion system protein, DotU/TssL family [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000003.1_5 97.711 0.0 ompA VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (ompA) OmpA family protein [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000003.1_6 100.0 1.77E-122 hcp/tssD VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (hcp/tssD) type VI secretion system protein, Hcp family [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000003.1_7 98.869 0.0 clpV/tssH VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (clpV/tssH) type VI secretion system ATPase TssH [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000003.1_8 81.193 0.0 vgrG/tssI VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (vgrG/tssI) type VI secretion system tip protein VgrG [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000014.1_67 65.315 3.1E-103 rpe VF0543 Capsule Immune modulation VFC0258 Group 4 capsule; high molecular weight (HMW) O-antigen capsule (rpe) ribulose-phosphate 3-epimerase [Capsule (VF0543) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AJVY01000014.1_82 67.327 4.54E-100 vfr VF0082 Type IV pili Adherence VFC0001 PilA, B, C, D, E, F, M, N, O, P, Q, T, U, V, W, X, Y1, Y2, Z, and fimT, U, V are involved in the biogenesis and mechanical function of pili, pilG, H, I, K, chpA, B, C, D, E, pilS, R, fimS, rpoN, algR, algU, and vfr are involved in transcriptional regulation and chemosensory pathways that control the expression or activity of the twitching motility of the pili (vfr) cAMP-regulatory protein [Type IV pili (VF0082) - Adherence (VFC0001)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AJVY01000014.1_101 83.582 1.08E-34 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AJVY01000032.1_1 92.553 0.0 galF VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (galF) GalU regulator GalF [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000032.1_2 69.378 2.14E-106 KP1_RS17355 VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (KP1_RS17355) phosphatase PAP2 family protein [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000032.1_3 89.308 0.0 KP1_RS17345 VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (KP1_RS17345) capsule assembly Wzi family protein [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000032.1_4 87.533 0.0 KP1_RS17340 VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (KP1_RS17340) polysaccharide export protein [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000032.1_6 60.0 0.0 wbaP/rfbP VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (wbaP/rfbP) undecaprenyl-phosphate galactosephosphotransferase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000039.1_7 63.926 1.67E-175 lpxB VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxB) lipid-A-disaccharide synthase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000039.1_8 67.557 6.95E-133 lpxA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxA) UDP-N-acetylglucosamine acyltransferase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000039.1_10 65.089 1.19E-161 lpxD VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxD) UDP-3-O-(3-hydroxymyristoyl) glucosamine N-acyltransferase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000039.1_42 60.731 0.0 exeD VF0478 Exe T2SS Effector delivery system VFC0086 (exeD) general secretion pathway protein D [Exe T2SS (VF0478) - Effector delivery system (VFC0086)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AJVY01000039.1_43 63.711 0.0 exeE VF0478 Exe T2SS Effector delivery system VFC0086 (exeE) general secretory pathway protein E [Exe T2SS (VF0478) - Effector delivery system (VFC0086)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AJVY01000039.1_45 77.206 4.65E-75 exeG VF0478 Exe T2SS Effector delivery system VFC0086 (exeG) general secretion pathway protein G [Exe T2SS (VF0478) - Effector delivery system (VFC0086)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AJVY01000039.1_102 77.632 0.0 lpxC VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (lpxC) UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000046.1_1 74.895 0.0 fepA VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fepA) outer membrane receptor FepA [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000061.1_43 99.029 0.0 iroE VF0563 Sal Nutritional/Metabolic factor VFC0272 Salmochelin is a glycosylated Ent that requires the iroA locus for production and transport (iroE) siderophore esterase IroE [Sal (VF0563) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000064.1_1 79.525 0.0 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AJVY01000066.1_86 93.274 4.86E-154 phoP VF0111 PhoPQ Regulation VFC0301 (phoP) response regulator in two-component regulatory system with PhoQ [PhoPQ (VF0111) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AJVY01000066.1_87 80.698 0.0 phoQ VF0111 PhoPQ Regulation VFC0301 (phoQ) sensor protein PhoQ [PhoPQ (VF0111) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AJVY01000068.1_105 60.082 2.36E-103 CBU_1566 VF0696 T4SS secreted effectors Effector delivery system VFC0086 (CBU_1566) Coxiella Dot/Icm type IVB secretion system translocated effector [T4SS secreted effectors (VF0696) - Effector delivery system (VFC0086)] [Coxiella burnetii RSA 493] Coxiella burnetii
AJVY01000068.1_145 99.517 8.64E-156 rcsA VF0571 RcsAB Regulation VFC0301 (rcsA) transcriptional activator for ctr capsule biosynthesis [RcsAB (VF0571) - Regulation (VFC0301)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000070.1_49 66.492 3.86E-99 sodB VF0169 SodB Stress survival VFC0282 (sodB) superoxide dismutase [SodB (VF0169) - Stress survival (VFC0282)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AJVY01000075.1_20 100.0 0.0 acrA VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrA) acriflavine resistance protein A [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000075.1_21 100.0 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000075.1_68 66.495 2.25E-98 clpP VF0074 ClpP Stress survival VFC0282 21.6 kDa protein belongs to a family of proteases highly conserved in prokaryotes and eukaryotes (clpP) ATP-dependent Clp protease proteolytic subunit [ClpP (VF0074) - Stress survival (VFC0282)] [Listeria monocytogenes EGD-e] Listeria monocytogenes
AJVY01000076.1_25 62.295 0.0 icl VF0253 Isocitrate lyase Others VFC0346 (icl) Isocitrate lyase Icl (isocitrase) (isocitratase) [Isocitrate lyase (VF0253) - Others (VFC0346)] [Mycobacterium tuberculosis H37Rv] Mycobacterium tuberculosis
AJVY01000078.1_44 79.167 6.02E-114 gmhA/lpcA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (gmhA/lpcA) phosphoheptose isomerase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000080.1_20 99.588 0.0 iutA VF0565 Aerobactin Nutritional/Metabolic factor VFC0272 Aer is typically plasmid-encoded; the siderophore Aer has been distinguished as the most common siderophore secreted by hypervirulent K. pneumoniae (iutA) ferric aerobactin receptor IutA [Aerobactin (VF0565) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000080.1_36 61.538 1.93E-27 acpXL VF0367 LPS Immune modulation VFC0258 Brucella possesses a non-classical LPS as compared with the so-called classical LPS from enterobacteria such as Escherichia coli. B. abortus lipid A possesses a diaminoglucose backbone (rather than glucosamine), and acyl groups are longer (C28 rather than C12 and C16) and are only linked to the core by amide bounds (rather than ester and amide bonds).; In contrast to enterobacterial LPSs, Brucella LPS is several-hundred-times less active and toxic than E. coli LPS.; this is an evolutionary adaptation to an intracellular lifestyle, low endotoxic activity is shared by other intracellular pathogens such as Bartonella and Legionella. (acpXL) acyl carrier protein [LPS (VF0367) - Immune modulation (VFC0258)] [Brucella melitensis bv. 1 str. 16M] Brucella melitensis
AJVY01000080.1_37 77.869 3.08E-141 flmH VF0473 Polar flagella Motility VFC0204 Types of bacterial movement: swimming, swarming, gliding, twitching and sliding. Only swimming and swarming are correlated with the presence of flagella. Swimming is an individual endeavour, while swarming is the movement of a group of bacteria; constitutively expressed for motility in liquid environments (flmH) short chain dehydrogenase/reductase family oxidoreductase [Polar flagella (VF0473) - Motility (VFC0204)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AJVY01000082.1_3 75.856 0.0 htpB VF0159 Hsp60 Adherence VFC0001 (htpB) Hsp60, 60K heat shock protein HtpB [Hsp60 (VF0159) - Adherence (VFC0001)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AJVY01000084.1_33 83.333 1.38E-15 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AJVY01000088.1_82 78.247 0.0 rfaD VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rfaD) ADP-L-glycero-D-mannoheptose-6-epimerase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000088.1_83 62.018 4.73E-145 rfaF VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rfaF) ADP-heptose-LPS heptosyltransferase II [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000089.1_4 69.004 6.03E-129 IlpA VF0513 IlpA Adherence VFC0001 (IlpA) immunogenic lipoprotein A [IlpA (VF0513) - Adherence (VFC0001)] [Vibrio vulnificus YJ016] Vibrio vulnificus
AJVY01000091.1_6 75.054 0.0 ibeB VF0237 Ibes Invasion VFC0083 IbeA is unique to E. coli K1. The ibeB and ibeC are found to have K12 homologues p77211 and yijP respectively. (ibeB) Cu(+)/Ag(+) efflux RND transporter outer membrane channel CusC [Ibes (VF0237) - Invasion (VFC0083)] [Escherichia coli O45:K1:H7 str. S88] Escherichia coli (NMEC)
AJVY01000095.1_65 70.852 1.21E-105 mgtC VF1365 MgtC Nutritional/Metabolic factor VFC0272 An inner membrane protein; anti-virulence protein CigR inhibits the virulence functions of MgtC at early times inside macrophages (mgtC) Salmonella virulence protein MgtC [MgtC (VF1365) - Nutritional/Metabolic factor (VFC0272)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AJVY01000102.1_82 98.79 0.0 entA VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (entA) 2,3-dihydroxybenzoate-2,3-dehydrogenase [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_83 99.647 0.0 entB VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (entB) 2,3-dihydro-2,3-dihydroxybenzoate synthetase, isochroismatase [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_84 99.626 0.0 entE VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (entE) enterobactin synthase subunit E [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_85 98.977 0.0 entC VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (entC) isochorismate synthase [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_86 99.373 0.0 fepB VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fepB) iron-enterobactin transporter periplasmic binding protein [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_87 100.0 0.0 entS VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (entS) enterobactin exporter EntS [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_88 99.701 0.0 fepD VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fepD) iron-enterobactin transporter membrane protein [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_89 100.0 0.0 fepG VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fepG) iron-enterobactin transporter permease [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_90 100.0 0.0 fepC VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fepC) iron-enterobactin transporter ATP-binding protein [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_91 99.304 0.0 entF VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (entF) enterobactin synthase subunit F [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_93 99.254 0.0 fes VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fes) enterobactin/ferric enterobactin esterase [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_94 99.73 0.0 fepA VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fepA) outer membrane receptor FepA [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000102.1_95 88.649 9.05E-117 entD VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (entD) enterochelin synthetase component D [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000107.1_92 100.0 7.08E-158 rcsB VF0571 RcsAB Regulation VFC0301 (rcsB) transcriptional regulator RcsB [RcsAB (VF0571) - Regulation (VFC0301)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000109.1_22 75.277 3.89E-149 fepA VF0562 Ent Nutritional/Metabolic factor VFC0272 Various iron acquisition systems in Klebsiella are needed to overcome host defenses in different anatomical compartments. (fepA) outer membrane receptor FepA [Ent (VF0562) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000113.1_62 85.393 0.0 ompA VF0236 OmpA Invasion VFC0083 Major outer membrane protein in E. coli, homologous to Neisseria Opa proteins which have been shown to be involved in invasion of eukaryotic cells (ompA) outer membrane protein A [OmpA (VF0236) - Invasion (VFC0083)] [Escherichia coli O18:K1:H7 str. RS218] Escherichia coli (NMEC)
AJVY01000113.1_99 72.112 2.48E-132 nueA VF0473 Polar flagella Motility VFC0204 Types of bacterial movement: swimming, swarming, gliding, twitching and sliding. Only swimming and swarming are correlated with the presence of flagella. Swimming is an individual endeavour, while swarming is the movement of a group of bacteria; constitutively expressed for motility in liquid environments (nueA) NeuA protein [Polar flagella (VF0473) - Motility (VFC0204)] [Aeromonas hydrophila ML09-119] Aeromonas hydrophila
AJVY01000113.1_103 66.436 0.0 msbA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (msbA) lipid transporter ATP-binding/permease [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000119.1_25 64.881 1.81E-168 rffG VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rffG) dTDP-glucose 46-dehydratase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000119.1_26 64.948 5.4E-142 wbtL VF0542 LPS Immune modulation VFC0258 The structure of Francisella spp. lipid A is unique in that it is modified by various carbohydrates that greatly reduce TLR4 activation and allow for immune evasion (wbtL) glucose-1-phosphate thymidylyltransferase [LPS (VF0542) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AJVY01000129.1_1 83.333 1.38E-15 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AJVY01000134.1_1 92.485 0.0 yagX/ecpC VF0404 ECP Adherence VFC0001 (yagX/ecpC) E. coli common pilus usher EcpC [ECP (VF0404) - Adherence (VFC0001)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AJVY01000134.1_2 91.441 8.84E-141 yagY/ecpB VF0404 ECP Adherence VFC0001 (yagY/ecpB) E. coli common pilus chaperone EcpB [ECP (VF0404) - Adherence (VFC0001)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AJVY01000134.1_3 95.897 4.03E-133 yagZ/ecpA VF0404 ECP Adherence VFC0001 (yagZ/ecpA) E. coli common pilus structural subunit EcpA [ECP (VF0404) - Adherence (VFC0001)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AJVY01000134.1_4 90.556 1.89E-117 ykgK/ecpR VF0404 ECP Adherence VFC0001 (ykgK/ecpR) regulator protein EcpR [ECP (VF0404) - Adherence (VFC0001)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AJVY01000150.1_7 96.0 1.17E-106 fur VF0113 Fur Regulation VFC0301 (fur) ferric iron uptake transcriptional regulator [Fur (VF0113) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AJVY01000159.1_1 97.165 0.0 ugd VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (ugd) UDP-glucose 6-dehydrogenase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000159.1_4 65.411 1.16E-144 wbtL VF0542 LPS Immune modulation VFC0258 The structure of Francisella spp. lipid A is unique in that it is modified by various carbohydrates that greatly reduce TLR4 activation and allow for immune evasion (wbtL) glucose-1-phosphate thymidylyltransferase [LPS (VF0542) - Immune modulation (VFC0258)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis
AJVY01000159.1_5 60.896 3.93E-158 rffG VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rffG) dTDP-glucose 46-dehydratase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000159.1_6 97.65 0.0 gndA VF0560 Capsule Immune modulation VFC0258 The Klebsiella polysaccharide capsule is produced through a Wzy-dependent process, for which the synthesis and export machinery are encoded in a single 10-30 kb region of the genome known as the K locus.; 78 distinct capsule phenotypes have been recognized by serological typing, but many isolates are serologically non-typable.; capsular serotypes vary substantially in the degree of serum resistance; K1, K2 and K5 are highly serum resistant and are associated with hypervirulent strains that differ from classical K. pneumoniae in that they commonly cause community-acquired disease. (gndA) NADP-dependent phosphogluconate dehydrogenase [Capsule (VF0560) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000160.1_4 63.043 2.26E-81 tssF VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (tssF) type VI secretion system baseplate subunit TssF [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000160.1_25 83.039 3.67E-180 kdsA VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (kdsA) 2-dehydro-3-deoxyphosphooctonate aldolase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000164.1_6 96.641 0.0 icmF/tssM VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (icmF/tssM) type VI secretion protein TssM [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000164.1_7 62.127 0.0 impA/tssA VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (impA/tssA) type VI secretion system protein TssA [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000164.1_8 99.144 0.0 tssF VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (tssF) type VI secretion system baseplate subunit TssF [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000164.1_9 99.446 0.0 tssG VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (tssG) type VI secretion system baseplate subunit TssG [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000164.1_10 98.889 1.91E-132 sciN/tssJ VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (sciN/tssJ) type VI secretion system lipoprotein TssJ [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000166.1_66 65.128 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000166.1_160 64.921 6.04E-90 algU VF0091 Alginate Biofilm VFC0271 Alginate production is frequently referred to as mucoidy because colonies producing alginate have a wet glistening (mucoid) appearance, which is very different from that of colonies not producing alginate; most of the alginate biosynthetic genes are clustered in the algD operon; Alginate production is highly regulated. Regulatory genes are located in two areas far removed from the biosynthetic genes, with one exception algC (algU) alginate biosynthesis protein AlgZ/FimS [Alginate (VF0091) - Biofilm (VFC0271)] [Pseudomonas aeruginosa PAO1] Pseudomonas aeruginosa
AJVY01000173.1_43 100.0 5.49E-176 mrkH VF0567 Type 3 fimbriae Biofilm VFC0271 Approximately 2~4 nm wide and 0.5~2 <mu>m in length in length; mrkA gene expression is affected by c-di-GMP (mrkH) transcriptional activator [Type 3 fimbriae (VF0567) - Biofilm (VFC0271)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_44 100.0 2.53E-139 mrkI VF0567 Type 3 fimbriae Biofilm VFC0271 Approximately 2~4 nm wide and 0.5~2 <mu>m in length in length; mrkA gene expression is affected by c-di-GMP (mrkI) LuxR family regulatory protein [Type 3 fimbriae (VF0567) - Biofilm (VFC0271)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_45 99.58 1.01E-180 mrkJ VF0567 Type 3 fimbriae Biofilm VFC0271 Approximately 2~4 nm wide and 0.5~2 <mu>m in length in length; mrkA gene expression is affected by c-di-GMP (mrkJ) phosphodiesterase [Type 3 fimbriae (VF0567) - Biofilm (VFC0271)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_46 100.0 6.47E-159 mrkF VF0567 Type 3 fimbriae Biofilm VFC0271 Approximately 2~4 nm wide and 0.5~2 <mu>m in length in length; mrkA gene expression is affected by c-di-GMP (mrkF) type 3 fimbrial minor pilin subunit MrkF [Type 3 fimbriae (VF0567) - Biofilm (VFC0271)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_47 99.698 0.0 mrkD VF0567 Type 3 fimbriae Biofilm VFC0271 Approximately 2~4 nm wide and 0.5~2 <mu>m in length in length; mrkA gene expression is affected by c-di-GMP (mrkD) fimbrial adhesin protein precursor MrkD [Type 3 fimbriae (VF0567) - Biofilm (VFC0271)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_48 100.0 0.0 mrkC VF0567 Type 3 fimbriae Biofilm VFC0271 Approximately 2~4 nm wide and 0.5~2 <mu>m in length in length; mrkA gene expression is affected by c-di-GMP (mrkC) fimbrial biogenesis outer membrane usher protein mrkC precursor [Type 3 fimbriae (VF0567) - Biofilm (VFC0271)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_49 100.0 4.53E-173 mrkB VF0567 Type 3 fimbriae Biofilm VFC0271 Approximately 2~4 nm wide and 0.5~2 <mu>m in length in length; mrkA gene expression is affected by c-di-GMP (mrkB) fimbrial chaperone protein mrkB precursor [Type 3 fimbriae (VF0567) - Biofilm (VFC0271)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_50 99.505 4.97E-146 mrkA VF0567 Type 3 fimbriae Biofilm VFC0271 Approximately 2~4 nm wide and 0.5~2 <mu>m in length in length; mrkA gene expression is affected by c-di-GMP (mrkA) type 3 fimbrial major pilin subunit MrkA [Type 3 fimbriae (VF0567) - Biofilm (VFC0271)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_55 99.502 3.54E-152 fimB VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimB) tyrosine recombinase [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_56 99.505 3.07E-152 fimE VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimE) tyrosine recombinase [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_57 100.0 3.8E-128 fimA VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimA) type 1 major fimbrial subunit precursor [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_58 99.438 6.91E-132 fimI VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimI) type 1 pilus biosynthesis fimbrial protein [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_59 98.718 3.68E-174 fimC VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimC) periplasmic chaperone [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_60 99.77 0.0 fimD VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimD) outer membrane usher protein [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_61 98.286 3.32E-126 fimF VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimF) type 1 fimbrial minor component [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_62 98.758 4.22E-114 fimG VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimG) type 1 fimbrial minor component [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_63 99.336 0.0 fimH VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimH) type 1 fimbrial adhesin precursor [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000173.1_64 98.511 0.0 fimK VF0566 Type I fimbriae Adherence VFC0001 Type I fimbriae are expressed in 90% of both clinical and environmental K. pneumoniae isolates as well as almost all members of the Enterobacteriaceae.; Type I fimbriae are filamentous, membrane-bound, adhesive structures composed primarily of FimA subunits, with the FimH subunit on the tip. (fimK) transcriptional regulator [Type I fimbriae (VF0566) - Adherence (VFC0001)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000178.1_22 65.981 0.0 iroN VF0563 Sal Nutritional/Metabolic factor VFC0272 Salmochelin is a glycosylated Ent that requires the iroA locus for production and transport (iroN) salmochelin receptor IroN [Sal (VF0563) - Nutritional/Metabolic factor (VFC0272)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000178.1_108 97.368 2.94E-49 vipA/tssB VF0569 T6SS Effector delivery system VFC0086 Type VI bacterial lipase/phospholipase effectors (Tle) has been sub-divided into Tle1Tle5. The Tle1Tle4 families exhibit the GXSXG motif, while Tle5 present a dual HXKXXXXD motif (vipA/tssB) type VI secretion system contractile sheath small subunit VipA [T6SS (VF0569) - Effector delivery system (VFC0086)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000179.1_96 70.172 0.0 rfaE VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (rfaE) ADP-heptose synthase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000179.1_107 61.863 0.0 ureB VF0050 Urease Stress survival VFC0282 (ureB) urease beta subunit UreB, urea amidohydrolase [Urease (VF0050) - Stress survival (VFC0282)] [Helicobacter pylori 26695] Helicobacter pylori
AJVY01000179.1_110 63.265 1.49E-93 ureG VF0050 Urease Stress survival VFC0282 (ureG) urease accessory protein (ureG) [Urease (VF0050) - Stress survival (VFC0282)] [Helicobacter pylori 26695] Helicobacter pylori
AJVY01000179.1_292 70.053 0.0 acrA VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrA) acriflavine resistance protein A [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000179.1_293 81.336 0.0 acrB VF0568 AcrAB Antimicrobial activity/Competitive advantage VFC0325 (acrB) acriflavine resistance protein B [AcrAB (VF0568) - Antimicrobial activity/Competitive advantage (VFC0325)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000181.1_66 80.093 2.78E-128 pmrA VF1355 PmrAB Regulation VFC0301 (pmrA) response regulator PmrA [PmrAB (VF1355) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AJVY01000181.1_67 64.023 2.85E-162 pmrB VF1355 PmrAB Regulation VFC0301 (pmrB) sensory kinase PmrB [PmrAB (VF1355) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AJVY01000184.1_1 95.745 8.31E-128 yagX/ecpC VF0404 ECP Adherence VFC0001 (yagX/ecpC) E. coli common pilus usher EcpC [ECP (VF0404) - Adherence (VFC0001)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AJVY01000184.1_2 94.333 0.0 yagW/ecpD VF0404 ECP Adherence VFC0001 (yagW/ecpD) polymerized tip adhesin of ECP fibers [ECP (VF0404) - Adherence (VFC0001)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AJVY01000184.1_3 86.864 4.22E-158 yagV/ecpE VF0404 ECP Adherence VFC0001 (yagV/ecpE) E. coli common pilus chaperone EcpE [ECP (VF0404) - Adherence (VFC0001)] [Escherichia coli O157:H7 str. EDL933] Escherichia coli (EHEC)
AJVY01000186.1_96 74.394 2.7E-160 galU VF0044 LOS Immune modulation VFC0258 Lic1A (phosphorylcholine (ChoP) kinase) 5'-CAAT-3' within the 5'-end of its coding sequence; lic2A, also referred to as lexA, variation in the number of 5'-CAAT-3' repeats has been shown to correlate directly with phase variation of the Gal-alpha(1-4)beta-Gal LPS structure; But lgtC (glycosyltransferase), another phase-variable gene, ultimately dictates whether this structure is synthesized. lic3A encode a sialyl transferase which directs the substitution of LPS with sialic acid. (galU) glucosephosphate uridylyltransferase [LOS (VF0044) - Immune modulation (VFC0258)] [Haemophilus influenzae Rd KW20] Haemophilus influenzae
AJVY01000189.1_86 98.182 0.0 rpoS VF0112 RpoS Regulation VFC0301 (rpoS) RNA polymerase sigma factor RpoS [RpoS (VF0112) - Regulation (VFC0301)] [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] Salmonella enterica (serovar typhimurium)
AJVY01000189.1_98 60.261 1.45E-118 chuU VF0227 Chu Nutritional/Metabolic factor VFC0272 ChuA encodes for a 69-kDa outer membrane protein responsible for heme uptake. The chuA nucleotide sequence shows high homology to shuA gene of S. dysenteriae type 1. The gene is part of a larger locus, termed the heme transport locus, which appears to be widely distributed among pathogenic E. coli strains (chuU) heme permease protein ChuU [Chu (VF0227) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AJVY01000189.1_100 65.487 3.28E-166 chuS VF0227 Chu Nutritional/Metabolic factor VFC0272 ChuA encodes for a 69-kDa outer membrane protein responsible for heme uptake. The chuA nucleotide sequence shows high homology to shuA gene of S. dysenteriae type 1. The gene is part of a larger locus, termed the heme transport locus, which appears to be widely distributed among pathogenic E. coli strains (chuS) heme oxygenase ChuS [Chu (VF0227) - Nutritional/Metabolic factor (VFC0272)] [Escherichia coli CFT073] Escherichia coli (UPEC)
AJVY01000189.1_161 76.667 1.4E-30 csrA VF0261 CsrA Regulation VFC0301 Belongs to a highly conserved family of global regulators that typically control stationary phase traits post-transcriptionally (csrA) carbon storage regulator CsrA [CsrA (VF0261) - Regulation (VFC0301)] [Legionella pneumophila subsp. pneumophila str. Philadelphia 1] Legionella pneumophila
AJVY01000189.1_166 73.099 6.29E-95 luxS VF0406 AI-2 Biofilm VFC0271 AI-2 is produced and detected by a wide variety of bacteria and is presumed to facilitate interspecies communications. (luxS) S-ribosylhomocysteinase [AI-2 (VF0406) - Biofilm (VFC0271)] [Vibrio cholerae O1 biovar El Tor str. N16961] Vibrio cholerae
AJVY01000189.1_213 61.053 0.0 adeG VF0504 AdeFGH efflux pump Biofilm VFC0271 Belongs to resistance-nodulation-cell division (RND)-type efflux system; RND efflux systems, composed of an inner membrane protein (RND pump) linked by a periplasmic adaptor protein (PAP) to an outer membrane factor (OMF), can extrude a wide range of substrates often unrelated in structure; To date, three Acinetobacter drug efflux (Ade) RND systems, AdeABC, AdeFGH, and AdeIJK, have been characterized in A. baumannii (adeG) cation/multidrug efflux pump [AdeFGH efflux pump (VF0504) - Biofilm (VFC0271)] [Acinetobacter baumannii ACICU] Acinetobacter baumannii
AJVY01000190.1_6 71.895 0.0 ibeB VF0237 Ibes Invasion VFC0083 IbeA is unique to E. coli K1. The ibeB and ibeC are found to have K12 homologues p77211 and yijP respectively. (ibeB) Cu(+)/Ag(+) efflux RND transporter outer membrane channel CusC [Ibes (VF0237) - Invasion (VFC0083)] [Escherichia coli O45:K1:H7 str. S88] Escherichia coli (NMEC)
AJVY01000192.1_15 98.138 0.0 KP1_RS17225 VF0561 LPS Immune modulation VFC0258 In K. pneumoniae there are nine main O-serotypes. Three of these, O1, O2, and O3, are responsible for almost 80% of all Klebsiella infections.; Compared with other Enterobacteriaceae, such as Escherichia coli 161 defined O serotypes and Shigella flexneri at least 47 O serotypes, Klebsiella has a surprisingly low number of reported O serotypes which promises a more viable alternative for vaccine development compared with K-antigen-based vaccines; The O-antigen biosynthesis enzymes are encoded on the rfb locus. (KP1_RS17225) glycosyltransferase family 4 protein [LPS (VF0561) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000192.1_16 98.99 0.0 KP1_RS17230 VF0561 LPS Immune modulation VFC0258 In K. pneumoniae there are nine main O-serotypes. Three of these, O1, O2, and O3, are responsible for almost 80% of all Klebsiella infections.; Compared with other Enterobacteriaceae, such as Escherichia coli 161 defined O serotypes and Shigella flexneri at least 47 O serotypes, Klebsiella has a surprisingly low number of reported O serotypes which promises a more viable alternative for vaccine development compared with K-antigen-based vaccines; The O-antigen biosynthesis enzymes are encoded on the rfb locus. (KP1_RS17230) glycosyltransferase [LPS (VF0561) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000192.1_17 97.656 0.0 rfbD VF0561 LPS Immune modulation VFC0258 In K. pneumoniae there are nine main O-serotypes. Three of these, O1, O2, and O3, are responsible for almost 80% of all Klebsiella infections.; Compared with other Enterobacteriaceae, such as Escherichia coli 161 defined O serotypes and Shigella flexneri at least 47 O serotypes, Klebsiella has a surprisingly low number of reported O serotypes which promises a more viable alternative for vaccine development compared with K-antigen-based vaccines; The O-antigen biosynthesis enzymes are encoded on the rfb locus. (rfbD) UDP-galactopyranose mutase [LPS (VF0561) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000192.1_18 98.891 0.0 KP1_RS17240 VF0561 LPS Immune modulation VFC0258 In K. pneumoniae there are nine main O-serotypes. Three of these, O1, O2, and O3, are responsible for almost 80% of all Klebsiella infections.; Compared with other Enterobacteriaceae, such as Escherichia coli 161 defined O serotypes and Shigella flexneri at least 47 O serotypes, Klebsiella has a surprisingly low number of reported O serotypes which promises a more viable alternative for vaccine development compared with K-antigen-based vaccines; The O-antigen biosynthesis enzymes are encoded on the rfb locus. (KP1_RS17240) DUF4422 domain-containing protein [LPS (VF0561) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000192.1_19 99.187 0.0 rfbB VF0561 LPS Immune modulation VFC0258 In K. pneumoniae there are nine main O-serotypes. Three of these, O1, O2, and O3, are responsible for almost 80% of all Klebsiella infections.; Compared with other Enterobacteriaceae, such as Escherichia coli 161 defined O serotypes and Shigella flexneri at least 47 O serotypes, Klebsiella has a surprisingly low number of reported O serotypes which promises a more viable alternative for vaccine development compared with K-antigen-based vaccines; The O-antigen biosynthesis enzymes are encoded on the rfb locus. (rfbB) O-antigen export ABC transporter ATP-binding protein RfbB [LPS (VF0561) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000192.1_20 100.0 0.0 rfbA VF0561 LPS Immune modulation VFC0258 In K. pneumoniae there are nine main O-serotypes. Three of these, O1, O2, and O3, are responsible for almost 80% of all Klebsiella infections.; Compared with other Enterobacteriaceae, such as Escherichia coli 161 defined O serotypes and Shigella flexneri at least 47 O serotypes, Klebsiella has a surprisingly low number of reported O serotypes which promises a more viable alternative for vaccine development compared with K-antigen-based vaccines; The O-antigen biosynthesis enzymes are encoded on the rfb locus. (rfbA) O-antigen export ABC transporter permease RfbA [LPS (VF0561) - Immune modulation (VFC0258)] [Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044] Klebsiella pneumoniae
AJVY01000194.1_4 83.582 1.08E-34 tufA VF0460 EF-Tu Adherence VFC0001 (tufA) elongation factor Tu [EF-Tu (VF0460) - Adherence (VFC0001)] [Francisella tularensis subsp. tularensis SCHU S4] Francisella tularensis