Pubmed_ID Title DOI Journal
25699574 Ribifolin, an orbitide from Jatropha ribifolia, and its potential antimalarial activity 10.1021/np5007668.

J Nat Prod

Ribifolin, an orbitide from Jatropha ribifolia, and its potential antimalarial activity

Abstract

  • A new orbitide named ribifolin was isolated and characterized from Jatropha ribifolia using mass spectrometry, NMR spectroscopy, quantitative amino acid analysis, molecular dynamics/simulated annealing, and Raman optical activity measurements and calculations. Ribifolin (1) and its linear form (1a) were synthesized by solid-phase peptide synthesis, followed by evaluation of its antiplasmodial and cytotoxicity activities. Compound 1 was moderately effective (IC50 = 42 μM) against the Plasmodium falciparum strain 3D7.
25747118 Identification of the Biosynthetic Gene Cluster for the Anti-infective Desotamides and Production of a New Analogue in a Heterologous Host 10.1021/acs.jnatprod.5b00009.

J Nat Prod

Identification of the Biosynthetic Gene Cluster for the Anti-infective Desotamides and Production of a New Analogue in a Heterologous Host

Abstract

  • The desotamides (DSAs) are potent antibacterial cyclohexapeptides produced by Streptomyces scopuliridis SCSIO ZJ46. We have identified the 39-kb dsa biosynthetic gene cluster by whole-genome scanning. Composed of 17 open reading frames, the cluster codes for four nonribosomal peptide synthetases and associated resistance, transport, regulatory, and precursor biosynthesis proteins. Heterologous expression of the dsa gene cluster in S. coelicolor M1152 afforded desotamides A and B and the new desotamide G. Cluster identification and its demonstrated amenability to heterologous expression provide the foundation for future mechanistic studies as well as the generation of new and potentially clinically significant DSA analogues.
25756919 Transcriptomic screening for cyclotides and other cysteine-rich proteins in the metallophyte Viola baoshanensis 10.1016/j.jplph.2015.01.017.

J Plant Physiol

Transcriptomic screening for cyclotides and other cysteine-rich proteins in the metallophyte Viola baoshanensis

Abstract

  • Cysteine (Cys)-rich proteins (CRPs) are frequently associated with plant defense and stress resistance. Viola baoshanensis is a cadmium (Cd) hyper-accumulating plant whose CRPs-based defense systems are so far poorly understood. Next generation sequencing (NGS) techniques and a specialist searching tool, CrpExcel, were employed for identifying CRPs in V. baoshanensis. The transcriptome sequences of V. baoshanensis were assembled primarily from 454FLX/Hiseq2000 reads of plant cDNA sequencing libraries. CrpExcel was then used to search the ORFs and 9687 CRPs were identified, and included zinc finger (ZF) proteins, lipid transfer proteins, thaumatins and cyclotide precursors. Real-time PCR results showed that all CRP genes tested are constitutively expressed, but the genes of defensive peptides showed greater up-regulated expression than those of ZF-proteins in Cd- and/or wounding (Wd) treatments of V. baoshanensis seedlings. The NGS-derived sequences of cyclotide precursor genes were verified by RT-PCR and ABI3730 sequencing studies, and 32 novel cyclotides were identified in V. baoshanensis. In general, the metal-binding sites of ZF-containing CRPs also represented the potential vulnerable targets of toxic metals. This study provides broad insights into CRPs-based defense systems and stress-vulnerable targets in V. baoshanensis. It now brings the number of cyclotide sequences in V. baoshanensis to 53 and based on projections from this work, the number of cyclotides in the Violaceae is now conservatively estimated to be >30000.
25781981 Glycine-containing flaxseed orbitides 10.1021/np5008558.

J Nat Prod

Glycine-containing flaxseed orbitides

Abstract

  • Five new orbitides, cyclolinopeptides 21-25, were identified in flaxseed oil (Linum usitatissimum) extracts. Their HPLC-ESIMS quasimolecular ion peaks at m/z 1097.7 (21), 1115.6 (22), 1131.6 (23), 1018.6 (24), and 1034.6 (25) [M + H](+) corresponded to the molecular formulae C59H89N10O10, C58H87N10O10S, C58H87N10O11S, C53H80N9O9S, and C53H80N9O10S, respectively. Their structures were elucidated by extensive HPLC-ESIMS/MS analyses, and their presence was confirmed by precursor proteins identified in flax genomic DNA sequence data. The amino acid sequences of these orbitides were confirmed as [1-10-NαC]-GILVPPFFLI, [1-10-NαC]-GMLIPPFFVI, [1-10-NαC]-GOLIPPFFVI, [1-9-NαC]-GMLVFPLFI, and [1-9-NαC]-GOLVFPLFI for cyclolinopeptides 21-25, respectively. Previously reported orbitides, [1-9-NαC]-ILVPPFFLI (1), [1-9-NαC]-MLIPPFFVI (2), [1-9-NαC]-OLIPPFFVI (3), [1-8-NαC]-MLVFPLFI (7), and [1-8-NαC]-OLVFPLFI (8), were also present in flaxseed oil. The precursors of orbitides 21, 22, and 24 also produced orbitides 1, 2, and 7 by alternative cyclization. Cyclolinopeptides 3, 8, 23, and 25 contain MetO (O) and are not directly encoded, but are products of post-translational modification of the Met present in 2, 7, 22, and 24, respectively. Sufficient cyclolinopeptide 23 was isolated for characterization via 1D ((1)H and (13)C) and 2D (NOESY and HMBC) NMR spectroscopy. These compounds have been named as cyclolinopeptides U, V, W, X, and Y for 21, 22, 23, 24, and 25, respectively.
25847237 Mycobacterium tuberculosis TlyA protein negatively regulates T helper (Th) 1 and Th17 differentiation and promotes tuberculosis pathogenesis. 10.1074/jbc.m115.653600

J. Biol. Chem.

Mycobacterium tuberculosis TlyA protein negatively regulates T helper (Th) 1 and Th17 differentiation and promotes tuberculosis pathogenesis.

Abstract

  • Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence.
25883274 Genome Sequence of Aspergillus flavus NRRL 3357, a Strain That Causes Aflatoxin Contamination of Food and Feed 10.1128/genomeA.00168-15.

Genome Announc

Genome Sequence of Aspergillus flavus NRRL 3357, a Strain That Causes Aflatoxin Contamination of Food and Feed

Abstract

  • Aflatoxin contamination of food and livestock feed results in significant annual crop losses internationally. Aspergillus flavus is the major fungus responsible for this loss. Additionally, A. flavus is the second leading cause of aspergillosis in immunocompromised human patients. Here, we report the genome sequence of strain NRRL 3357.
25894999 Inhibition of Human Prolyl Oligopeptidase Activity by the Cyclotide Psysol 2 Isolated from Psychotria solitudinum 10.1021/np501061t.

J Nat Prod

Inhibition of Human Prolyl Oligopeptidase Activity by the Cyclotide Psysol 2 Isolated from Psychotria solitudinum

Abstract

  • Cyclotides are head-to-tail cyclized peptides comprising a stabilizing cystine-knot motif. To date, they are well known for their diverse bioactivities such as anti-HIV and immunosuppressive properties. Yet little is known about specific molecular mechanisms, in particular the interaction of cyclotides with cellular protein targets. Native and synthetic cyclotide-like peptides from Momordica plants are potent and selective inhibitors of different serine-type proteinases such as trypsin, chymotrypsin, matriptase, and tryptase-beta. This study describes the bioactivity-guided isolation of a cyclotide from Psychotria solitudinum as an inhibitor of another serine-type protease, namely, the human prolyl oligopeptidase (POP). Analysis of the inhibitory potency of Psychotria extracts and subsequent fractionation by liquid chromatography yielded the isolated peptide psysol 2 (1), which exhibited an IC50 of 25 μM. In addition the prototypical cyclotide kalata B1 inhibited POP activity with an IC50 of 5.6 μM. The inhibitory activity appeared to be selective for POP, since neither psysol 2 nor kalata B1 were able to inhibit the proteolytic activity of trypsin or chymotrypsin. The enzyme POP is well known for its role in memory and learning processes, and it is currently being considered as a promising therapeutic target for the cognitive deficits associated with several psychiatric and neurodegenerative diseases, such as schizophrenia and Parkinson's disease. In the context of discovery and development of POP inhibitors with beneficial ADME properties, cyclotides may be suitable starting points considering their stability in biological fluids and possible oral bioavailability.
25906695 A novel cyclic dipeptide from deep marine-derived fungus Aspergillus sp. SCSIOW2 10.1080/14786419.2015.1033623.

Nat Prod Res

A novel cyclic dipeptide from deep marine-derived fungus Aspergillus sp. SCSIOW2

Abstract

  • A novel cyclic dipeptide, 14-hydroxy-cyclopeptine (1), was purified from a deep sea derived fungal isolate identified as an Aspergillus sp. The structure was elucidated by detailed spectroscopic analyses using 1D and 2D NMR experiments and high resolution mass spectrometry. The absolute configuration of the amino acid was determined by Marfey's method. Two conformational isomers of 1 were established by ROE analyses. 1 inhibited nitric oxide production with IC50 values at 40.3 μg/mL in a lipopolysaccharide and recombinant mouse interferon-γ -activated macrophage-like cell line, RAW 264.7 and showed no cytotoxic effect in the tested dose range up to 100 μg/mL.
25918675 Twins in spirit - episode I: comparative preclinical evaluation of [(68)Ga]DOTATATE and [(68)Ga]HA-DOTATATE 10.1186/s13550-015-0099-x.

EJNMMI Res

Twins in spirit - episode I: comparative preclinical evaluation of [(68)Ga]DOTATATE and [(68)Ga]HA-DOTATATE

Abstract

  • Recently, an intra-patient comparison demonstrated that the somatostatin (sst) ligand [(68)Ga]HA-DOTATATE ([(68)Ga]DOTA-3-iodo-Tyr(3)-octreotate) provides PET images comparable to or superior to those obtained with [(68)Ga]DOTATATE. To provide a comprehensive basis for nevertheless observed slight differences in tracer biodistribution and dosimetry, the characteristics of [(68)Ga]HA-DOTATATE were investigated in a detailed preclinical study. Affinities of (nat)Ga-HA-DOTATATE and (nat)Ga-DOTATATE to sst1-5 were determined using membrane preparations and [(125)I]SST-28 as radioligand. Internalization into AR42J cells was studied in dual-tracer studies with [(125)I]TOC as internal reference. Biodistribution was investigated using AR42J tumor-bearing CD1 mice, and specificity of tracer uptake was confirmed in competition studies by coinjection of 0.8 mg TOC/kg. Sst2 affinities (IC50) of [(nat)Ga]HA-DOTATATE (1.4 ± 0.8 nM, logP: -3.16) and [(nat)Ga]DOTATATE (1.2 ± 0.6 nM, logP: -3.69) were nearly identical. Both compounds displayed IC50 > 1 μM for sst1,3,4, while sst5 affinity was markedly increased for (nat)Ga-HA-DOTATATE (102 ± 65 nM vs >1 μM for (nat)Ga-DOTATATE). [(nat)Lu]HA-DOTATATE and [(nat)Lu]DOTATATE showed slightly lower, identical sst2 affinities (2.0 ± 1.6 and 2.0 ± 0.8 nM, respectively) and sst3 affinities of 93 ± 1 and 162 ± 16 nM. Internalization of [(68)Ga]HA-DOTATATE was tenfold higher than that of [(125)I]TOC but only sixfold higher for [(68)Ga]DOTATATE and [(177)Lu]HA-DOTATATE. While [(68)Ga]HA-DOTATATE and [(68)Ga]DOTATATE had shown similar target- and non-target uptake in patients, biodistribution studies in mice at 1 h post injection (n = 5) revealed slightly increased non-specific uptake of [(68)Ga]HA-DOTATATE in the blood, liver, and intestines (0.7 ± 0.3, 1.0 ± 0.2, and 4.0 ± 0.7 %iD/g vs 0.3 ± 0.1, 0.5 ± 0.1, and 2.7 ± 0.8 %iD/g for [(68)Ga]DOTATATE). However, sst-mediated accumulation of [(68)Ga]HA-DOTATATE in the pancreas, adrenals, and tumor was significantly enhanced (36.6 ± 4.3, 10.8 ± 3.2, and 33.6 ± 10.9 %iD/g vs 26.1 ± 5.0, 5.1 ± 1.4, and 24.1 ± 4.9 %iD/g, respectively). Consequently, tumor/background ratios for [(68)Ga]HA-DOTATATE in the AR42J model are comparable or slightly increased compared to [(68)Ga]DOTATATE. The present preclinical data fully confirm the general biodistribution pattern and excellent in vivo sst-targeting characteristics previously observed for [(68)Ga]HA-DOTATATE in patients. The effect of slightly enhanced lipophilicity on background accumulation and normal organ dose is compensated by the high uptake of [(68)Ga]HA-DOTATATE in tumor. Thus, [(68)Ga]HA-DOTATATE represents a fully adequate, freely available substitute for [(68)Ga]DOTATATE and, given the superb sst-targeting characteristics of [(177)Lu]HA-DOTATATE in vitro, potential applicability for sst-targeted PRRT.
25944712 N-terminome analysis of the human mitochondrial proteome. 10.1002/pmic.201400617

Proteomics

N-terminome analysis of the human mitochondrial proteome.

Abstract

  • The high throughput characterization of protein N-termini is becoming an emerging challenge in the proteomics and proteogenomics fields. The present study describes the free N-terminome analysis of human mitochondria-enriched samples using trimethoxyphenyl phosphonium (TMPP) labelling approaches. Owing to the extent of protein import and cleavage for mitochondrial proteins, determining the new N-termini generated after translocation/processing events for mitochondrial proteins is crucial to understand the transformation of precursors to mature proteins. The doublet N-terminal oriented proteomics (dN-TOP) strategy based on a double light/heavy TMPP labelling has been optimized in order to improve and automate the workflow for efficient, fast and reliable high throughput N-terminome analysis. A total of 2714 proteins were identified and 897 N-terminal peptides were characterized (424 N-α-acetylated and 473 TMPP-labelled peptides). These Results allowed the precise identification of the N-terminus of 693 unique proteins corresponding to 26% of all identified proteins. Overall, 120 already annotated processing cleavage sites were confirmed while 302 new cleavage sites were characterized. The accumulation of experimental evidence of mature N-termini should allow increasing the knowledge of processing mechanisms and consequently also enhance cleavage sites prediction algorithms. Complete datasets have been deposited to the ProteomeXchange Consortium with identifiers PXD001521, PXD001522 and PXD001523 (http://proteomecentral.proteomexchange.org/dataset/PXD001521, http://proteomecentral.proteomexchange.org/dataset/PXD0001522 and http://proteomecentral.proteomexchange.org/dataset/PXD001523, respectively).
25952736 64Cu-DOTATATE PET for Neuroendocrine Tumors: A Prospective Head-to-Head Comparison with 111In-DTPA-Octreotide in 112 Patients 10.2967/jnumed.115.156539.

J Nucl Med

64Cu-DOTATATE PET for Neuroendocrine Tumors: A Prospective Head-to-Head Comparison with 111In-DTPA-Octreotide in 112 Patients

Abstract

  • Neuroendocrine tumors (NETs) can be visualized using radiolabeled somatostatin analogs. We have previously shown the clinical potential of (64)Cu-DOTATATE in a small first-in-human feasibility study. The aim of the present study was, in a larger prospective design, to compare on a head-to-head basis the performance of (64)Cu-DOTATATE and (111)In-diethylenetriaminepentaacetic acid (DTPA)-octreotide ((111)In-DTPA-OC) as a basis for implementing (64)Cu-DOTATATE as a routine. We prospectively enrolled 112 patients with pathologically confirmed NETs of gastroenteropancreatic or pulmonary origin. All patients underwent both PET/CT with (64)Cu-DOTATATE and SPECT/CT with (111)In-DTPA-OC within 60 d. PET scans were acquired 1 h after injection of 202 MBq (range, 183-232 MBq) of (64)Cu-DOTATATE after a diagnostic contrast-enhanced CT scan. Patients were followed for 42-60 mo for evaluation of discrepant imaging findings. The McNemar test was used to compare the diagnostic performance. Eighty-seven patients were congruently PET- and SPECT-positive. No SPECT-positive cases were PET-negative, whereas 10 false-negative SPECT cases were identified using PET. The diagnostic sensitivity and accuracy of (64)Cu-DOTATATE (97% for both) were significantly better than those of (111)In-DTPA-OC (87% and 88%, respectively, P = 0.017). In 84 patients (75%), (64)Cu-DOTATATE identified more lesions than (111)In-DTPA-OC and always at least as many. In total, twice as many lesions were detected with (64)Cu-DOTATATE than with (111)In-DTPA-OC. Moreover, in 40 of 112 cases (36%) lesions were detected by (64)Cu-DOTATATE in organs not identified as disease-involved by (111)In-DTPA-OC. With these results, we demonstrate that (64)Cu-DOTATATE is far superior to (111)In-DTPA-OC in diagnostic performance in NET patients. Therefore, we do not hesitate to recommend implementation of (64)Cu-DOTATATE as a replacement for (111)In-DTPA-OC.
25967583 LC-ESI-MS/MS analysis and pharmacokinetics of heterophyllin B, a cyclic octapeptide from Pseudostellaria heterophylla in rat plasma 10.1002/bmc.3481.

Biomed Chromatogr

LC-ESI-MS/MS analysis and pharmacokinetics of heterophyllin B, a cyclic octapeptide from Pseudostellaria heterophylla in rat plasma

Abstract

  • Heterophyllin B (HB) is a cyclic octapeptide isolated from Pseudostellaria heterophylla. HB is used as the quality control index for evaluating P. heterophylla in the Chinese Pharmacopoeia. A rapid and sensitive LC-ESI-MS/MS method was developed and validated for the analysis of HB in rat plasma. Sample preparation consisted of a solid-phase extraction step for the removal of interference and preconcentration of the target analyte HB and the internal standard N-acetylcysteine before chromatographic analysis by MS/MS detection. The separation of HB and N-acetylcysteine was performed using a Hypersil GOLD™ C18 column and a mixture of methanol-water (60:40, v/v) containing 10 mmol/L ammonium formate and 0.1% formic acid as the mobile phase. The determination step was optimized in the selected reaction monitoring mode for the highly selective and sensitive quantitation of HB in rat plasma. Intra- and inter-assay precision (as relative standard deviation) was ≤9.1%, and accuracy was between 92.6 and 102.7%. The validated method was successfully applied to quantify HB concentrations up to 7 h after tail intravenous injections of 2.08, 4.16 and 8.32 mg/kg HB in rats. The LC-MS/MS method identified the relevant pharmacokinetic parameters of HB and its studied analog.
25985581 Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with gram-positive bacteria and Candida spp

None

Pharmazie

Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with gram-positive bacteria and Candida spp

Abstract

  • Tyrothricin, an antimicrobial peptide combination produced by Bacillus brevis consisting of gramicidins and tyrocidins commands broad antimicrobial activity against gram-positive bacteria and some yeasts in vitro. The polypeptide and its components have been used therapeutically for about 60 years in the local treatment of infected skin and infected oro-pharyngeal mucous membranes. Though older studies suggest that resistance development of originally susceptible microorganisms towards tyrothricin is a rare event, data concerning recent state of resistance are lacking. In the present in vitro study the susceptibility to tyrothricin of clinical isolates of bacterial and yeast origin from superficial swabs of the skin and mucous membranes of outpatients and inpatients obtained from clinical material in the second half of the year 2003 was determined. Using a microdilution assay, the minimum inhibitory concentration (MIC and MIC90, defined as the concentration that inhibits at least 90 percent of the tested strains) of 20 strains each of Staphylococcus aureus of the variety MSSA (susceptible to methicillin), Staphylococcus aureus of the variety MRSA (methicillin resistant), Staphylococcus haemolyticus, Streptococcus pyogenes, Enterococcus faecalis, Corynebacterium spec., Candida albicans and Candida parapsilosis was determined. All of the tested gram-positive bacteria turned out to be highly susceptible to tyrothricin with MICs ≤ 4mg/l. The tested yeast strains were susceptible to the polypeptide antibiotic as well, but (with MICs of 16 mg/l and 32 mg/l, respectively) to a lesser extent. No acquired resistance of the tested strains was determined, indicating that the risk of resistance development against topically applied tyrothricin is only marginal, if there is any at all. Thus, long-term-, i.e. decade-long use of topically applied tyrothricin and its components in the local treatment of infected skin does not pose a major risk with respect to acquired resistance of originally susceptible gram-positive bacteria and yeasts, not even in the case of Staphylococcus aureus, both with MSSA and MRSA strains. The broad anti-bacterial and anti-fungal activity of tyrothricin combined with its lacking risk for resistance development make the antimicrobial peptide a valuable addition to our therapeutic armamentarium in the treatment of infected skin.
26001342 Trichormamides C and D, antiproliferative cyclic lipopeptides from the cultured freshwater cyanobacterium cf. Oscillatoria sp. UIC 10045 10.1016/j.bmc.2015.04.073.

Bioorg Med Chem

Trichormamides C and D, antiproliferative cyclic lipopeptides from the cultured freshwater cyanobacterium cf. Oscillatoria sp. UIC 10045

Abstract

  • Extract from the cultured freshwater cf. Oscillatoria sp. UIC 10045 showed antiproliferative activity against HT-29 cell line. Bioassay-guided fractionation led to the isolation of two new cyclic lipopeptides, named trichormamides C (1) and D (2). The planar structures were determined by combined analyses of HRESIMS, Q-TOF ESIMS/MS, and 1D and 2D NMR spectra. The absolute configurations of the amino acid residues were assigned by advanced Marfey's analysis after partial and complete acid hydrolysis. Trichormamides C (1) is a cyclic undecapeptide and D (2) is a cyclic dodecapeptide, both containing a lipophilic β-aminodecanoic acid residue. Trichormamide C (1) displayed antiproliferative activities against HT-29 and MDA-MB-435 cancer cell lines with IC50 values of 1.7 and 1.0μM, respectively, as well as anti-Mycobacterium tuberculosis activity with MIC value of 23.8μg/mL (17.3μM). Trichormamide D (2) was found to be less potent against both HT-29 and MDA-MB-435 cancer cell lines with IC50 values of 11.5 and 11.7μM, respectively.
26023835 Structural and Functional Characterization of a Novel α-Conotoxin Mr1.7 from Conus marmoreus Targeting Neuronal nAChR α3β2, α9α10 and α6/α3β2β3 Subtypes 10.3390/md13063259.

Mar Drugs

Structural and Functional Characterization of a Novel α-Conotoxin Mr1.7 from Conus marmoreus Targeting Neuronal nAChR α3β2, α9α10 and α6/α3β2β3 Subtypes

Abstract

  • In the present study, we synthesized and, structurally and functionally characterized a novel α4/7-conotoxin Mr1.7 (PECCTHPACHVSHPELC-NH2), which was previously identified by cDNA libraries from Conus marmoreus in our lab. The NMR solution structure showed that Mr1.7 contained a 310-helix from residues Pro7 to His10 and a type I β-turn from residues Pro14 to Cys17. Electrophysiological results showed that Mr1.7 selectively inhibited the α3β2, α9α10 and α6/α3β2β3 neuronal nicotinic acetylcholine receptors (nAChRs) with an IC50 of 53.1 nM, 185.7 nM and 284.2 nM, respectively, but showed no inhibitory activity on other nAChR subtypes. Further structure-activity studies of Mr1.7 demonstrated that the PE residues at the N-terminal sequence of Mr1.7 were important for modulating its selectivity, and the replacement of Glu2 by Ala resulted in a significant increase in potency and selectivity to the α3β2 nAChR. Furthermore, the substitution of Ser12 with Asn in the loop2 significantly increased the binding of Mr1.7 to α3β2, α3β4, α2β4 and α7 nAChR subtypes. Taken together, this work expanded our knowledge of selectivity and provided a new way to improve the potency and selectivity of inhibitors for nAChR subtypes.