Research Article Details
Article ID: | A11828 |
PMID: | 30718741 |
Source: | Sci Rep |
Title: | Dietary Niacin Intake Predicts the Decrease of Liver Fat Content During a Lifestyle Intervention. |
Abstract: | Niacin inhibits fatty acid flux from adipose tissue to liver, reduces hepatic triglyceride synthesis and increases hepatic lipid oxidation. Thus, niacin may have a role in the regulation of liver fat content in humans. We tested if dietary intake of niacin predicts change of liver fat content during a lifestyle intervention. To this end, we estimated the composition of diet from diaries of 202 healthy subjects at risk of type 2 diabetes undergoing lifestyle intervention comprising physical activity and diet counselling. Total-, subcutaneous- and visceral adipose tissue mass were measured by magnetic resonance (MR) tomography and liver fat content by 1H-MR spectroscopy at baseline and after 9 months of follow-up. Among fat compartments, liver fat content showed the largest decrease (-32%, p < 0.0001). High baseline niacin intake predicted a larger decrease of liver fat (p = 0.004). Subjects in the highest quartile of niacin intake at baseline also had the largest decrease of liver fat (1st:-10%; 2nd:-27%; 3rd:-35%; 4th:-37%). Among 58 subjects with nonalcoholic fatty liver disease (NAFLD) at baseline, NAFLD resolved in 23 subjects during the lifestyle intervention. For one standard deviation increase in niacin intake, the odds ratio for resolution of NAFLD was 1.77 (95% CI, 1.00-3.43). High dietary niacin intake may have a favorable effect on the reduction of liver fat during lifestyle intervention. |
DOI: | 10.1038/s41598-018-38002-7 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S08 | Lifestyle measures | Lifestyle intervention; weight loss; diet adaptation; dietary interventions; lifestyle modifications; Exercise | -- | -- | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D239 | Niacin | Supplement | DB00627 | NNMT binder | Hypolipidemic drug | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |