Research Article Details
Article ID: | A12382 |
PMID: | 30476583 |
Source: | Clin Gastroenterol Hepatol |
Title: | Liver Fat Is Associated With Markers of Inflammation and Oxidative Stress in Analysis of Data From the Framingham Heart Study. |
Abstract: | BACKGROUND & AIMS: Nonalcoholic fatty liver disease is an inflammatory condition that results in progressive liver disease. It is unknown if individuals with hepatic steatosis, but not known to have liver disease, have higher serum concentrations of markers of systemic inflammation and oxidative stress. METHODS: We collected data from 2482 participants from the Framingham Heart Study (mean age, 51 ± 11 y; 51% women) who underwent computed tomography and measurement of 14 serum markers of systemic inflammation. Heavy alcohol users were excluded. The liver:phantom ratio (a continuous parameter of liver attenuation relative to a calibration phantom) was used to identify individuals with radiographic evidence of liver fat. Primary covariates included age, sex, smoking, alcohol, aspirin use, hypertension, dyslipidemia, diabetes, and cardiovascular disease. Body mass index and visceral fat were secondary covariates. We used multivariable linear regression models to assess the association between liver fat and systemic inflammatory markers. RESULTS: In multivariable-adjusted models, liver fat was associated with the following inflammatory markers: high-sensitivity C-reactive protein (P < .001), urinary isoprostanes (P < .001), interleukin 6 (P < .001), intercellular adhesion molecule 1 (P < .001), and P-selectin (P = .002). Additional adjustment for body mass index or visceral fat attenuated the results slightly, although all associations remained statistically significant (P for all ≤ .01). CONCLUSIONS: In a community-based cohort, individuals with hepatic steatosis without known liver disease had higher mean serum concentrations of systemic markers of inflammation. Studies are needed to determine whether treatment of hepatic steatosis reduces systemic inflammation. |
DOI: | 10.1016/j.cgh.2018.11.037 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I12 | 10763 | Hypertension | An artery disease characterized by chronic elevated blood pressure in the arteries. https://en.wikipedia.org/wiki/Hypertension, https://www.ncbi.nlm.nih.gov/pubmed/24352797 | disease of anatomical entity/ cardiovascular system disease/vascular disease/ artery disease | Details |
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D018 | Aspirin | Chemical drug | DB00945 | AKR1C1 inhibitor; PCNA downregulator | Enhance lipid metabolism | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |