Research Article Details
Article ID: | A14965 |
PMID: | 29152605 |
Source: | Hepatol Commun |
Title: | Hepatic Natural Killer T-cell and CD8+ T-cell Signatures in Mice with Nonalcoholic Steatohepatitis. |
Abstract: | Hepatic inflammation is a key pathological feature of Nonalcoholic Steatohepatitis (NASH). Natural Killer T-cells (NKT) and CD8+ T-cells are known to play an important role in obesity related adipose tissue inflammation. We hypothesized that these same inflammatory phenotypes would be present in progressive NASH. We used a previously established high fat high carbohydrate (HFHC) murine obesogenic diet model of progressive NASH to investigate the role of NKT cells and CD8+ T-cells in C57Bl6/J mice. Further, to better understand the impact of these cell populations; CD1d-deficient and CD8+ T-cell depleted mice were subjected to HFHC diet for 16 weeks. C57Bl6/J mice fed HFHC diet had increased body weight, liver triglyceride content, serum alanine aminotransferase (ALT) levels and increased NKT cells and CD8+ T-cells infiltration in the liver. In addition human liver sections from patients with NASH showed increased CD8+ T-cells. In comparison, CD1d-deficient and CD8-T cell depleted mice fed HFHC had lower hepatic triglyceride content, lower ALT levels, as well reduced α-smooth muscle actin (αSMA), collagen type 1 alpha 1 (Col1a1), collagen type 1 alpha 2 (Col1a2) mRNA expression, lower activated resident macrophages and infiltrating macrophages and improved NAFLD activity scores. Further, while CD1d-deficient mice were protected against weight gain on the HFHC diet, CD8 T-cell depleted mice gained weight on the HFHC diet. Conclusion: We found that NASH has an immunological signature that includes hepatic infiltrating NKT and CD8+ T-Cells. Depletion of these cells resulted in reduced NASH progression and thus presents novel therapeutic avenues for the treatment of NASH. |
DOI: | 10.1002/hep4.1041 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |