Research Article Details
Article ID: | A22761 |
PMID: | 24325457 |
Source: | J Med Food |
Title: | The effects of α-lipoic acid on liver oxidative stress and free fatty acid composition in methionine-choline deficient diet-induced NAFLD. |
Abstract: | Development of nonalcoholic fatty liver disease (NAFLD) occurs through initial steatosis and subsequent oxidative stress. The aim of this study was to examine the effects of α-lipoic acid (LA) on methionine-choline deficient (MCD) diet-induced NAFLD in mice. Male C57BL/6 mice (n=21) were divided into three groups (n=7 per group): (1) control fed with standard chow, (2) MCD2 group--fed with MCD diet for 2 weeks, and (3) MCD2+LA group--2 weeks on MCD receiving LA i.p. 100 mg/kg/day. After the treatment, liver samples were taken for pathohistology, oxidative stress parameters, antioxidative enzymes, and liver free fatty acid (FFA) composition. Mild microvesicular hepatic steatosis was found in MCD2 group, while it was reduced to single fat droplets evident in MCD2+LA group. Lipid peroxidation and nitrosative stress were increased by MCD diet, while LA administration induced a decrease in liver malondialdehyde and nitrates+nitrites level. Similary, LA improved liver antioxidative capacity by increasing total superoxide dismutase (tSOD), manganese SOD (MnSOD), and copper/zinc-SOD (Cu/ZnSOD) activity as well as glutathione (GSH) content. Liver FFA profile has shown a significant decrease in saturated acids, arachidonic, and docosahexaenoic acid (DHA), while LA treatment increased their proportions. It can be concluded that LA ameliorates lipid peroxidation and nitrosative stress in MCD diet-induced hepatic steatosis through an increase in SOD activity and GSH level. In addition, LA increases the proportion of palmitic, stearic, arachidonic, and DHA in the fatty liver. An increase in DHA may be a potential mechanism of anti-inflammatory and antioxidant effects of LA in MCD diet-induced NAFLD. |
DOI: | 10.1089/jmf.2013.0111 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D545 | Pig placenta extract | Biological extract | -- | -- | -- | Under clinical trials | Details |
D007 | Alpha-lipoic acid | Chemical drug | DB00166 | LIPT1 | Antioxidant drug | Under clinical trials | Details |
D105 | DHA | Chemical drug | DB03756 | PPARA ligand; PPARG ligand | Anti-inflammatory | Under clinical trials | Details |
D075 | Choline | Supplement | DB00122 | PLD2 product of; PLD1 product of | -- | Under clinical trials | Details |
D395 | Zinc | Chemical drug | DB01593 | PSPH; CCS; HDAC1 cofactor; HDAC4 cofactor; INS; UTRN; ASPA cofactor; TP73 cofactor; A2M; AGT; APOBR; APOE; APOL1; C3; C5; CFB; CFH; CFI; CLU; CP; CPN2; DSP; F12; F13B; FGA; GSN; HBB; HPR; JUP; SELENOP; TTR; VTN | -- | Under clinical trials | Details |
D367 | Thioctic acid | Chemical drug | DB00166 | -- | Vitamin source drug | Under clinical trials | Details |
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D463 | Alphalipoic acid | Chemical drug | DB00166 | -- | -- | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |