Research Article Details
Article ID: | A02754 |
PMID: | 34258604 |
Source: | Med (N Y) |
Title: | A genome-first approach to mortality and metabolic phenotypes in MTARC1 p.Ala165Thr (rs2642438) heterozygotes and homozygotes. |
Abstract: | Background: A coding variant in MTARC1 (rs2642438; p.Ala165Thr) was recently associated with protection from cirrhosis in European individuals. However, its impact on overall and cause-specific mortality remained elusive. Methods: Using a genome-first approach, we explored a range of metabolic phenotypes and outcomes associated with MTARC1 p.Ala165Thr in the UKBiobank and the Penn-Medicine BioBank. Findings: MTARC1 p.Ala165Thr was significantly associated with higher triglycerides, lower total cholesterol, lower LDL-C, lower ApoB, lower HDL-C, lower ApoA-I and higher IGF-1. Per each minor allele, the risk of NAFLD was reduced by ~15%. The ALT-lowering and NAFLD-protective effect of MTARC1 p.Ala165Thr was amplified by obesity, diabetes mellitus and presence of PNPLA3 rs738409:G. In African-American and Black-British individuals, the allele frequency of MTARC1 p.Ala165Thr was lower, but carriers showed the same distinctive lipid phenotype. Importantly, MTARC1 p.Ala165Thr carriers did not show higher cardiovascular disease burden as evidenced by cardiac MRI and carotid ultrasound. In prospective analyses, the homozygous minor allele was associated with up to 39% lower rates of liver-related mortality, while no risk of increased overall or cardiovascular death could be observed. Strikingly, liver-related mortality was more than 50% reduced in diabetic participants or carriers of PNPLA3 rs738409:G. Conclusions: Together these data highlight MTARC1 as an important liver disease modifier that influences plasma lipids in an allele-dose-dependent manner without increasing cardiovascular outcomes. Our results point toward potential mechanisms and reveal a remarkable association with liver-related mortality calling for future studies exploring its therapeutic potential. Funding: This study was funded by the German Research Foundation (DFG). |
DOI: | 10.1016/j.medj.2021.04.011 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs |
---|
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |