Research Article Details
Article ID: | A28006 |
PMID: | 16762007 |
Source: | Liver Int |
Title: | Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver. |
Abstract: | BACKGROUND AND AIMS: The fatty liver Shionogi (FLS) mouse, a unique model for nonalcoholic fatty liver disease (NAFLD), is an inbred strain that develops spontaneous hepatic steatosis without obesity or diabetes mellitus. Peroxisome proliferator-activated receptor (PPAR) alpha controls fatty acid metabolism. In the present study, we investigated the effect of fenofibrate, a PPARalpha agonist, on hepatic steatosis in FLS mice. METHODS: Thirteen-week-old FLS mice were fed a diet with 0.1% fenofibrate (w/w) for 12 days. The degree of hepatic steatosis was estimated by histological examination and hepatic triglyceride levels. Expression levels of genes involved in fatty acid turnover, including Acox1, Cpt1a, Fabp1, Acadl, and Acadm, were determined by Northern blot analyses. We measured levels of lipid peroxidation, glutathione, and anti-oxidative enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in the liver. RESULT: Treatment of FLS mice with fenofibrate improved hepatic steatosis by activating expression of genes involved in fatty acid turnover and decreased hepatic lipid peroxidation. Fenofibrate increased the activity of catalase by upregulating its mRNA levels. CONCLUSION: Fenofibrate, which is currently used in therapy of hyperlipidemia, might also be useful for treating patients with NAFLD even in cases where NAFLD is not associated with obesity or diabetes mellitus. |
DOI: | 10.1111/j.1478-3231.2006.01265.x |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D133 | Fenofibrate | Chemical drug | DB01039 | PPARA agonist; NR1I2 partial agonist | Anti-inflammatory | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |