Research Article Details

Article ID: A31683
PMID: 30047905
Source: IEEE Trans Neural Netw Learn Syst
Title: Distributed Generalized Nash Equilibrium Seeking Algorithm Design for Aggregative Games Over Weight-Balanced Digraphs.
Abstract: In this paper, two aggregative games over weight-balanced digraphs are studied, where the cost functions of all players depend on not only their own decisions but also the aggregate of all decisions. In the first problem, the cost functions of players are differentiable with Lipschitz gradients, and the decisions of all players are coupled by linear coupling constraints. In the second problem, the cost functions are nonsmooth, and the decisions of all players are constrained by local feasibility constraints as well as linear coupling constraints. In order to seek the variational generalized Nash equilibrium (GNE) of the differentiable aggregative games, a continuous-time distributed algorithm is developed via gradient descent and dynamic average consensus, and its exponential convergence to the variational GNE is proven with the help of Lyapunov stability theory. Then, another continuous-time distributed projection-based algorithm is proposed for the nonsmooth aggregative games based on differential inclusions and differentiated projection operations. Moreover, the convergence of the algorithm to the variational GNE is analyzed by utilizing singular perturbation analysis. Finally, simulation examples are presented to illustrate the effectiveness of our methods.
DOI: 10.1109/TNNLS.2018.2850763