| Abstract: | Cooperation among self-interested players in a social dilemma is fragile and easily interrupted by mistakes. In this work, we study the repeated n-person public-goods game and search for a strategy that forms a cooperative Nash equilibrium in the presence of implementation error with a guarantee that the resulting payoff will be no less than any of the co-players'. By enumerating strategic possibilities for n=3, we show that such a strategy indeed exists when its memory length m equals three. It means that a deterministic strategy can be publicly employed to stabilize cooperation against error with avoiding the risk of being exploited. We furthermore show that, for general n-person public-goods game, m ≥ n is necessary to satisfy the above criteria. |