Research Article Details
Article ID: | A34125 |
PMID: | 26858882 |
Source: | Cell Med |
Title: | Electron Therapy Attenuated Elevated Alanine Aminotransferase and Oxidative Stress Values in Type 2 Diabetes-Induced Nonalcoholic Steatohepatitis of Rats. |
Abstract: | Chronic oxidative stress plays a key role in the progression of nonalcoholic steatohepatitis (NASH). We examined the efficacy of antioxidative electron treatment on type 2 diabetes-induced NASH in a rat model. We established NASH model rats, induced by neonatal administration of streptozotocin and a high-fat diet, which exhibited pathologically high values of alanine aminotransferase (ALT), glucose, and malondialdehyde (MDA). The rats were exposed to electron discharge at very low energy for 4 weeks; this dose results in the reduction of Fe(3+) and glutathione disulfide in vitro. Serum ALT values were increased from baseline (8 weeks) to 125.0 ± 13 U/L at 10 weeks in the control group. In contrast, the values in the treated group did not show any increase at 10 weeks [87 ± 10 U/L (p = 0.0391)]. Hepatic MDA levels were also significantly decreased at 12 weeks (p < 0.05), but 8-hydroxy-2'-deoxyguanosine values were not statistically significant (p = 0.076). A gradual but steadily decreasing trend from initially high glucose levels was observed, though the values were not significant in 12-week-old animals (p = 0.074). However, the serum values of MDA, ALT, and glucose were well correlated. The progression of fibrosis as measured by increased serum levels of hyaluronic acid and histological examinations were not affected by the treatment in this model. Antioxidative electron treatment at very low energy attenuated the pathogenically elevated liver inflammation and oxidative stress, together with presumably impaired glucose metabolism in NASH rat model. |
DOI: | 10.3727/215517913X674225 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |