Research Article Details
Article ID: | A46967 |
PMID: | 32045450 |
Source: | PLoS One |
Title: | Mesenchymal stem cells reduce alcoholic hepatitis in mice via suppression of hepatic neutrophil and macrophage infiltration, and of oxidative stress. |
Abstract: | Mesenchymal stem cells (MSCs) are a population of pluripotent cells that have been tested for the treatment of many inflammatory diseases. It remains unclear whether MSCs were effective in treating mice with alcoholic hepatitis (AH) and its underlying mechanism. In the present study, MSCs were isolated from bone marrow of 4-6 week-old C57BL/6N male mice. AH was induced in female mice by chronic-binge ethanol feeding for 10 days. Intraperitoneal (i.p.) transplantation of MSCs or saline were performed in mice on day 10. Blood samples and hepatic tissues were harvested on day 11. Biochemical, liver histological and flow cytometric analyses were performed. Compared to the control mice, the AH mice had significantly increased liver/body weight ratio, serum alanine aminotransferase (ALT) and aspartate aminotransferases (AST), hepatic total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), hepatic neutrophil and macrophage infiltration (P<0.001), which were markedly reduced by i.p. transplantation of MSCs (P<0.01). Compared to the control mice, the hepatic glutathione (GSH) was prominently lower in the AH mice (P<0.001), which was markedly enhanced after i.p. injection of MSCs (P<0.001). MSCs were effective for the treatment of AH mice, which might be associated with their ability in inhibiting hepatic neutrophil and macrophage infiltration, and alleviating oxidative stress. |
DOI: | 10.1371/journal.pone.0228889 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
S15 | Cell therapy | Mesenchymal stem cells; Stem cell therapy | -- | -- | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |