Research Article Details
Article ID: | A05685 |
PMID: | 33159388 |
Source: | FEBS Open Bio |
Title: | MiR-22 modulates the expression of lipogenesis-related genes and promotes hepatic steatosis in vitro. |
Abstract: | Nonalcoholic fatty liver disease (NAFLD) is highly correlated with obesity, and lifestyle changes to reduce weight remain the main therapeutic approach. The noncoding RNA miR-22 has previously been reported to be highly abundant in the sera of NAFLD patients. In addition, miR-22 directly targets peroxisome proliferative-activated receptor, Pgc-1α, peroxisome proliferator-activated receptor α, and sirtuin 1 (Sirt1), which are important factors involved in fatty acid metabolism. Given that miR-22 directly targets genes involved in the control of metabolism and obesity, we investigated whether miR-22 contributes to metabolic alterations induced by obesity. We observed increased expression of miR-22, decreased expression of Sirt1, and alterations in the expression of adipogenesis-related genes in a mouse model of obesity and a human hepatocyte cell line. We identified that miR-22 and the 3'-UTR of Sirt1 are complementary. Mutation of the complementary fragment abolishes the ability of miR-22 to regulate the Sirt1 gene. Furthermore, treatment of hepatic steatosis cells with miR-22 mimics or inhibitors showed that miR-22 can promote hepatic steatosis, and miR-22 inhibitors effectively reduced triglyceride levels without affecting cell activity. Finally, we validated that miR-22 has similar effects on downstream lipid metabolism-related genes. Our data reveal the pathways and mechanisms through which miR-22 regulates lipid metabolism and suggest that miR-22 inhibitors may have potential as candidate drugs for NAFLD and obesity. |
DOI: | 10.1002/2211-5463.13026 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D581 | sobetirome | Chemical drug | -- | Thyroid hormone receptor beta agonists | Enhance lipid metabolism | Under investigation | Details |