Repositioning Candidate Details
Candidate ID: | R1319 |
Source ID: | DB09568 |
Source Type: | approved; investigational |
Compound Type: | small molecule |
Compound Name: | Omega-3-carboxylic acids |
Synonyms: | Omega-3-carboxylic acids |
Molecular Formula: | -- |
SMILES: | -- |
DrugBank Description: | The omega-3 carboxylic acid (OM3-CA) is a new formulation of omega-3 fatty acids that present an enhanced bioavailability in the treatment of dyslipidemia. The increased bioavailability is explained because OM3-CA is found in a form of polyunsaturated free fatty acids as opposed to other products whose form is as ethyl esters. It is a complex mixture of the free fatty acids form containing eicosapentaenoic acid and docosahexaenoic acid as the most abundant species found in a proportion of 55% and 20% respectively. The rest of the concentration is represented by docosapentaenoic acid and traces of some other components such as alpha-tocopherol, gelatin, glycerol, sorbitol and purified water. It was developed by AstraZeneca Pharmaceuticals and firstly approved by the FDA on May 05, 2014. |
CAS Number: | -- |
Molecular Weight: | |
DrugBank Indication: | OM3-CA is indicated as an adjunct to diet to reduce triglycerides levels in adults patients with severe hypertriglyceridemia (>500 mg/dL). The patients involved in this treatment should be laced with an appropriate lipid-lowering diet. Hypertriglyceridemia is defined as an elevated plasma triglyceride concentration. It is usually correlated to other secondary conditions such as poor diet, alcohol use, obesity, metabolic syndrome and type 2 diabetes. |
DrugBank Pharmacology: | OM3-CA is very effective in reducing triglyceride levels. After 14 days of treatment, it is possible to observe even a 21% reduction. The reduction of the triglycerides could reach even to 25% in cases with the maximal used concentration of 4 g. |
DrugBank MoA: | The reduction of the synthesis of triglycerides in the liver may be caused because the main components of OM3-CA, eicosapentaenoic acid, and docosahexaenoic acid, are poor substrates for the enzymes responsible for the synthesis of triglycerides. These two major components inhibit the esterification of other fatty acids. OM3-CA is also thought to enhance the clearance of triglycerides from the circulating very low-density lipoprotein particles by different potential effects such as inhibition of acyl-CoA:1,2-diacylglycerol acyltransferase, increase in mitochondrial and peroxisomal beta-oxidation in the liver, decrease lipogenesis in the liver and increase lipoprotein lipase activity. |
Targets: | Diacylglycerol O-acyltransferase 2 antagonist; 3-hydroxyacyl-CoA dehydrogenase type-2 potentiator; Enoyl-CoA hydratase, mitochondrial potentiator; Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial potentiator; Elongation of very long chain fatty acids protein 4 potentiator; Lipoprotein lipase stimulator |
Inclusion Criteria: | Therapeutic strategy associated |

Strategy ID | Strategy | Synonyms | Related Targets | Related Drugs |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |